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ABSTRACT
In this paper, we consider the natural arrival and departure
of users in a social network, and ask whether the dynamics of
arrival, which have been studied in some depth, also explain
the dynamics of departure, which are not as well studied.

Through study of the DBLP co-authorship network and a
large online social network, we show that the dynamics of de-
parture behave differently from the dynamics of formation.
In particular, the probability of departure of a user with few
friends may be understood most accurately as a function of
the raw number of friends who are active. For users with
more friends, however, the probability of departure is best
predicted by the overall fraction of the user’s neighborhood
that is active, independent of size. We then study global
properties of the subgraphs induced by active and inactive
users, and show that active users tend to belong to a core
that is densifying and is significantly denser than the inac-
tive users. Further, the inactive set of users exhibit a higher
density and lower conductance than the degree distribution
alone can explain. These two aspects suggest that nodes at
the fringe are more likely to depart and subsequent depar-
tures are correlated among neighboring nodes in tightly-knit
communities.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: :User/Machine Systems;
H.2.8 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION
There has been significant focus on the dynamics of prop-

agation in social networks, ranging from the actual spread of
biological infection [19, 9] to such disparate online phenom-
ena as sharing [4], tagging [18], brand adoption [2, 11], rec-
ommendations [15], and joining a community [3]. In many
cases, such as the decision to become a member or use a
product, the story does not end at adoption. Instead, the
user may decide at any point to cease using the product, or
to depart the community. It is not clear that a decision of
this type, to “reverse” a prior socially-mediated decision to
adopt, will follow the same dynamics as the original deci-
sion to adopt. In this paper, we study this question in the
context of arrivals and departures within social networks.

A natural place to look for models of arrivals and de-
partures is the existing literature on the spread of infectious
physical disease. These models often include a recovery com-
ponent[19, 9], which is akin to a reversal of the decision to
become infected. Typically, however, this component as-
sumes that an infected user recovers based on properties of
the immune system, without reference to any social process.
In our case, we are motivated by the metaphor of a user at
a party with friends. The user is more likely to attend upon
discovering that some number of friends will also attend. If
some or all of the friends then opt to depart, whether for a
new party or to just go home, then the original user is much
more likely to follow suit. Hence, we anticipate to see the
network effect in both arrivals and departures.

We begin to address this question with a basic study of the
temporal correlation of arrivals and departures, and show
that both processes introduce significant correlation; in fact,
we show that time intervals between the departure of friends
are more tightly distributed than the equivalent distribution
of gaps between arrival of friends.

Assuming social influence has some effect on the temporal
correlation, we might consider arrival as the propagation of
a “join” virus, and departure as simply the propagation of
a new virus, in this case representing the decision to cease
usage. However, this formulation is at odds in reality. It is



plausible that seeing one friend join a social network, then
two, then three, might impel a user to join, as we see in prior
work [3]. However, once a user has two hundred friends,
will the departure of one, then two, then three friends have
a qualitatively different impact on the user’s likelihood to
depart? Perhaps like the decision to join, the decision to de-
part depends more on the number of active friends than the
number of inactive friends. Or perhaps departure is a funda-
mentally different decision that depends on an assessment of
the pulse of the neighborhood, captured more accurately by
the fraction of friends who remain active. At last, departure
can be a process that is driven mostly by exogenous factors
rather than social forces.

We study this question in the context of the DBLP co-
authorship graph and a large social network, and argue that
a hybrid of the social influence models could characterize the
observed temporal clustering rather accurately. While the
number of active friends is known to be a strong predictor
of joining a group, for users with twenty or more friends,
overall neighborhood activity, measured by the fraction of
friends who remain active, is by far the best predictor of
likelihood to depart. Surprisingly, this likelihood is linear
in the fraction of active friends throughout almost its entire
range, and the linear form is identical in both slope and
intercept for several different buckets of neighborhood size.
Raw counts of inactive friends have low predictive power,
and raw counts of active friends, while stronger, remain weak
compared to the overall fraction of active friends. On the
other hand, for users with fewer than twenty neighbors, the
actual count of active friends remains a strong predictor of
likelihood to depart. One interpretation of these findings can
be that users with few friends rely heavily on the presence
of individual friends, while users with more friends stay for
the neighborhood atmosphere - they appear one unit closer
to departure by each successive fraction of existing friends
observed to depart (this phenomena does not apply for the
DBLP dataset where many nodes have very small degree).

From this emerging local picture of behavior, we may then
ask how arrival and departure dynamics interact with the
global structure of the graph. In particular, we seek to un-
derstand where departures happen in the graph. It is pos-
sible, for example, that departures tend to occur as high-
status users in the core of the graph choose to depart in
search of the next big thing. Alternately, it is possible that
departure happens first at the “fringes” of the graph, and
then spreads inwards from there. We study this problem
by computing the average induced degree(or density) and
conductance of the subgraphs of active and inactive users
through time, and comparing these results to thought exper-
iments in which each node decides independently whether to
remain active. These experiments allow us to conclude that
a core of active nodes remains at much higher internal den-
sity than the set of inactive nodes. We also compare the
densities observed against the expected density and conduc-
tance under a planted degree constraint model. The results
suggest that although the inactive set of nodes densifies, its
densification is not just a consequence of the degree distri-
bution, but really a consequence of well-connected cluster
of nodes from the fringes departing. We reach the picture
that departures happen from the fringes and spread to their
immediate neighborhoods, while an internal dense core of
active nodes survives. We also build a simple model of net-
work evolution based on affiliation networks that incorpo-

rates departures and analyze it theoretically to corroborate
some of the observed trends.

2. RELATED WORK
There is a large body of work studying the correlation of

activity among friends in online communities (see examples
in [1, 3, 7, 18, 22]). Most are forms of diffusion research,
built on the premise that user engagement is contagious. As
such, a user is more likely to adopt new products or behav-
iors if his friends do so [3, 15]; and large cascades of behavior
can be triggered by the actions of a few individuals [11, 21].
With regard to the effect of local structure on the spread of
behavior, empirical work has shown a “diminishing returns”
on the correlation of activities among network neighbors[3,
22]. Furthermore, the probability of a user adopting a be-
havior not only correlates with the number of neighbors who
have already adopted, but also with the connectivity among
his local neighborhood[3, 22].

In addition to research on local influence, a number of the-
oretical models have been developed to simulate the growth
of social networks over time [17, 13, 16]. By modeling the
process of nodes arrival and edges creation, these models can
generate graphs with observed evolving macro-level struc-
tural properties such as degree distribution, edge densifica-
tion, and diameters shrinking. Although some work in this
domain shows that incorporating random deletion of links
can induce degree distribution that better matches the ob-
served power-law pattern[10], most existing empirical work
focuses on the growth of networks and the increase of ac-
tivity. Our paper differs by emphasizing the dynamics of
user departure from social networks, and the decline of ac-
tivity. What leads people to depart from social networks?
Is inactivity also contagious? Previous studies on user churn
in mobile phone networks suggest the existence of social in-
fluence at user’s disengagement. Dasgupta et al. showed
in [8] that the probability of a user churning grows with
the number of contacts who already churned. Richter et
al. studied users in groups based on communication in-
tensity[20], finding a strong correlation between individuals’
propensity to churn and the group-level characteristics, es-
pecially, the (in)activity of the “leader” of the group. Does
the same group effect exist when people disengage from a
social network? A big difference here is the visibility of the
behavior. In the case of a mobile phone network, leaving
the service usually involves notifying existing contacts and
signaling them about the disengagement; in online social
networks, inactivity is less visible and thus may have less
influence on others’ behavior. However, the extreme case in
which all friends depart suggests that there must be some
effect. Given such effect, how would a graph evolve struc-
turally after it stops growing, or starts shrinking? There has
been some recent theoretical work on modeling the evolution
of network structure in the process of “unraveling”[5]. How-
ever, built on top of simple game theory principles, these
models are not yet examined by empirical data. To our
knowledge, this work is the first to address these questions.

3. DATA
In this paper, we study the dynamics of arrival and de-

parture using a snapshot of the DBLP co-authorship graph
and a well-known social network. As previous research [3]
showed that the co-author network largely reassembles the



dynamics of online social networks in forming individual
communities, we are interested at testing whether this simi-
larity persists in the forming and degenerating of the entire
social graph. The DBLP snapshot that we consider con-
tains 1 million nodes and around 1.8 millions edges, for each
author we store his/her co-authors and the year of the last
publication. Furthermore for each author to author edge we
also store the year of the first publication. In the rest of
the paper we will refer to it as DBLP. The social network
dataset we study contains millions of users and over a bil-
lion edges. For each user, we have the timestamp of signup
and last login, and for each edge, we have the timestamp of
edge creation. In the rest of the paper we will refer to this
network as SN.

To study the pattern of user arrivals and departures, we
first describe each user at each timestamp as either active
or inactive, based on his most recent activity time. Given
a snapshot of the SN network at time t, we consider a user
inactive if his last login time is earlier than two months prior
to t, and consider a user active otherwise1. Given a snapshot
of the DBLP network at time t, we consider a user inactive
if he/she has not published any paper in the earlier than five
year prior to t, and consider a user active otherwise. Note
that our results do not depend on the time frame that we
used. In fact, they hold for two quite different networks and
time frames.

4. ARRIVAL AND DEPARTURE CORRELA-
TION AMONG FRIENDS

In this section, we study the basic properties of arrival and
departure. We wish to understand whether users typically
arrive and/or depart together in social networks. However,
we cannot directly compare gaps between arrivals and depar-
tures of friends, as networks are not stationary—consider for
example the case of a network that grows very rapidly during
a brief period, resulting in a flurry of temporally-proximate
arrivals, leading to a mistaken conclusion that arrivals tend
to be tightly clustered in time. We must therefore normalize
in some way against global rates of arrival and departure,
which we do by the following technique. Given a snapshot
of the network at time t, we consider two samples of user-
pairs, one in which the pair of users are friends, and another
in which the pair of users is chosen uniformly from all pos-
sible pairs2. We then consider the distribution of the gap in
arrival time between pairs in the two cases. Differences in
these distributions will then highlight temporal correlation
of arrivals of friends compared to strangers.

To study departures, we adopt the same technique. We
consider only inactive users, and generate again a set of pairs
of friends, and another set of pairs chosen uniformly at ran-
dom. For a fixed time t, we define the last login time of
inactive users as their departure time. We pick 1M pairs for
each of these four sample groups, and compute the Cumu-
lative Distribution Function (CDF) for these distributions.

1As most online social network or social game sites use
Monthly-Active-Users(MAU) as a standard way to measure
the number of engaged users, we double the cutoff window
to 2-month for a more conservative threshold to determine
a user has departed.
2Technically, it is possible for a random pair to be a pair of
friends, however, given the service policy that each user has
a rather small upper-bound for the number of friends, the
chance of a random pair being friends is negligible.

In Figure 1, we plot the CDF curves, showing the percent-
age of friends(co-authors)/strangers who joined and left the
SN(DBLP) within n days(years) of each other.
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Figure 1: The CDF curve for the difference in arrival and depar-
ture time between friends and random pairs of users.

The CDF for both arrivals and departures of friends lies
significantly above the CDF for random pairs, indicating
that friends both arrive and depart together, in comparison
to the control group of random pairs. As the figure shows, in
the case of SN, 43% of random pairs depart within 200 days
of one another, while 61% of friends depart within the same
period. We find similar pattern in the time interval of arrival
- only 31% of random pairs arrive within 200 days, but 45%
of friends arrive within the same period. This observation
is even more evident in DBLP, where the solid and dashed
lines show stronger separation.

To quantify the differences, we plot in Figure 2 the distri-
bution of absolute difference in the CDF values at each time,
for arrivals and departures. The correlation of departures in
SN is seen to be stronger than the correlation of arrivals,
although the two gaps peak around roughly the same value.
However, arrivals and departures behave almost identically
in DBLP, suggesting the dynamics of arrival and departure
are more similar in collaboration networks than in social
networks.
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Figure 2: Gap between CDF curves.

The temporally correlated activities between friends have
been observed and modeled before[3, 18, 1], mostly in the
form of adopting a new behavior or product within an exist-
ing social network. However, given that there is not a single
underlying social network that might be accountable for the
joining of new users, are those models still applicable in the
scenarios of arrival? To answer this question, we will now
focus on individual users, and study one’s arrival in position
of his local neighborhood.

Since we have no information on friendship outside the



networks we are studying, we use the eventual set of friends
acquired by a user at the snapshot time t to approximate
the set of friends he had before arrival, and ask whether
those friends join before or after the user. For DBLP, we
see the “diminishing returning” curve (Figure 3c) as found
in previous research [3]. In SN (Figure 3a), however, the
probability of a user signup increases near-linearly as the
number of adopted friends increases. The expected fraction
of friends joining before the user is 0.5, as the friend network
is undirected and each edge contributes one pair in which
a joins before b, and one pair with b before a. Thus, for
regular graphs (of constant degree), the mean fraction of
friends already signed up will be 0.5. The results are shown
in Figure 3. True social networks are of course non-regular,
and while the distribution of plot (Figure 3b) appears largely
symmetrical, there are some outliers. In particular, in SN
there are more than 20 times as many users who signed up
after all of their eventual friends did, compared to users who
signed up before any of their friends. This follows from the
many low-degree nodes who join in response to an invitation
but do not subsequently engage with the network. In DBLP,
the peaks at 0%, 25%, 1

3
, 50%,..., 100% (Figure 3d) can be

explained by the substantial number of authors with only
one publication, as they have a very small set of co-authors.
Although the plot in Figure 3d is largely symmetrical but is
slightly skewed to the left. This shows that there are more
authors whose collaboration networks grow than ones who
stay with their early collaborators. Overall, we posit a weak
network effect for new users in both networks, which may
not be enough to actively engage users after they sign up.
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Figure 3: Count and fraction of friends signed-up before user.

Our conclusion from these graphs is that friends tend to
arrive and depart together, but at least for SN, departures
are more tightly clustered than arrivals. We also find in-
teresting nuances in the dynamics of arrivals, that was not
noted previously. In the next section, we will look more
closely at departures, learning the how neighborhood activ-
ities correspond to one’s likelihood to depart.

5. LOCAL NEIGHBORHOODS
Figure 1 shows a strong correlation in arrivals and depar-

tures for friends; now we will go beyond single-edges and

study how such correlation is presented in the entire neigh-
borhood of a node.

5.1 Dependence on local properties
To better understand how a user’s departure corresponds

to his local community, we look at the probability of a user’s
departure in relation to the following four properties of the
user’s neighborhood.

• number of active friends;
• fraction of active friends;
• number of inactive friends;
• number of inactive friends who left in the past 6 months;

We use a similar method as in [3] to calculate the probabil-
ity of a user becoming inactive, as a function of the number
of active friends: we first take two snapshots (t0, t1) of the
network, three months apart in SN and three years apart
in DBLP; we then find all pairs (u, k) such that u is active
at the time of first snapshot t0, and has k friends who are
also active at t0; p(k) is calculated as the fraction of such
pairs (u, k) for a given k such that u had left the network
at the time of second snapshot t1. In other words, p(k) is
the fraction of active users who left the network in the next
three months, given that k friends were active at the first
snapshot time. Figure 4a and Figure 4c shows the curves of
p(k) at three different t0. In a similar way, we can fix the
fraction of friends f who are active at time t0, and calculate
the probability p(f) of an active user leaving the network
as function of f (see Figure 4e). Note that in all figures
involving the fraction of active/inactive friends, we exclude
all nodes with no friends in SN (around 10% of all active
users as of 2011/1/1). Among those users, 35% of them left
within three months.

Not surprisingly, Figure 4a, Figure 4c and Figure 4e show
that as more and more friends stay active, a user is less and
less likely to be inactive. The curve of p(k) (see Figure 4a)
also matches very well with what has been seen in other
domains [3], exhibiting the “diminishing returns” property.
This observation indicates that the marginal gain of hav-
ing each additional active friend is quite significant for users
with a small number of active friends, but rather negligi-
ble when a user already has many, say more than 50, active
friends. In contrast, in Figure 4e, we do not see such a “di-
minishing returns”trend, but a steeper, and almost constant
rate of decrease in the probability of departure throughout
the course when the fraction of active friends increases. This
is an interesting observation that has not been previously
seen (specifically in various positive influence studies).

To see how the inactivity of the neighborhood determines
the departure of a user, we also plot the probability of depar-
ture as a function of number of inactive friends, in Figure 4b
and Figure 4d. The curves in Figure 4b and Figure 4d show
an interesting trend of decreasing slope through time: while
the probability of a user departing increases with the growth
in the number of inactive friends initially, it becomes more
and more insensitive to the value of k in the later curves.
This phenomenon is quite intriguing to us: if the departure
of friends do have certain predictive power on the depar-
ture of the user, as shown in the earlier curves, why is such
predictive power diminished so much in the latest years? To
answer this question, we note that we are counting the num-
ber of inactive friends as prior to the time of each snapshot,
but many of them could have been inactive for a long time
thus could hardly account for the dynamics of the network
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Figure 4: Probability of departure as function of different local properties. (a) f(active friend count) in SN; (b) f(inactive friend count)
in SN; (c) f(active friend count) in DBLP; (d) f(inactive friend count) in DBLP, (e) f(active friend fraction) in SN; (f) f(inactive friends
who left in the past 6 months) in SN.

at the snapshot time. Figure 4f confirms this idea, showing
that the curves we see in Figure 4b are somewhat misleading
- in general, the probability of user’s departure constantly
grows with the number of friends r who recently became
inactive (when r is not too small).

5.2 Interaction between local properties
The results of the previous section provide qualitative ev-

idence that an individual’s probability of departure is re-
lated to the activeness of his neighborhood. However, does
that apply to all users? Do the highly connected users act
differently than the more marginally connected ones? Is
the probability of departure sensitive to the degeneration of
neighborhood, or is it a step function that will only drop
once there are less than k active friends, as modeled in [5]?
To address these issues, we compute the probability of user’s
departure in SN in relation to the interaction between local
properties. Specifically, in Figure 5a, we divide users into
three groups based on their degrees, and plot the proba-
bility of departure as a function of the number/fraction of
active friends, for each group separately. We note that for
users with different levels of connectivity in the network,
the curves of p(f) (Figure 5a) are qualitatively identical.
This result demonstrates again that the fraction of friends
who are active has a stronger effect on the probability of
an individual’s departure, regardless of the size of the user’s
neighborhood.

In addition, we aggregate users by the fraction of ac-
tive/inactive friends, and look at how the probability of de-
parture depends on the number of active/inactive friends
for each group (see Figure 5). There are two things we note
from Figure 5: First, for users with different fractions of in-
active friends, there is a big gap between their probabilities
of departure - for example, compared to users with less than
10% friends inactive (blue line in Figure 5c), users who have
more than 50% friends inactive (red line in Figure 5c) are
10 times more likely to leave as well. Second, once the user

is in an inactive part of the neighborhood, the raw count of
inactive friends has little effect in determining the probabil-
ity of the user’s departure (green line in Figure 5b). Note
that the blue line in Figure 5b is very noisy because there
are very few people in a highly obsolete neighborhood but
still with a substantial amount of active friends. We still
plot it just to be symmetric with Figure 5c.

5.3 Predict the departure of user
Given a strong correlation between the probability of a

user becoming inactive and the inactivity of his friends, the
next question is, can we actually predict individuals’s depar-
tures based on local properties? In this section, we model
the departure of users using simple linear regression mod-
els and decision tree classifiers. In particular, we will focus
exclusively on SN because we have a richer set of features
available.

To start, we formalize our problem as a binary classifica-
tion task in which class 1 is defined as consisting of those
users who were active as of Jan 1st, 2011 (t0) and departed
within two months after t0, and class 0 is defined as consist-
ing of those who stayed active for two months after t0. We
then randomly sample 500K examples for each class, from all
the users who were active at t. Note that in our data, there
are 90% negative and only 10% positive cases; our sampling
scheme provides a more balanced distribution of examples
of both classes.

We extract two sets of local features for each user:
• Neighborhood features. The local structural proper-

ties of the user’s direct neighborhood, including the
number of friends who already departed, the number
of friends who are active, the number of friends who
departed recently (six months prior to t0), and the
fraction of friends who departed recently.

• Activity features. The properties reflecting user’s par-
ticipation to activities in the network, including the
number of contents he received, the number of con-
tents he sent, and the number of status updates.
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Figure 5: Probability of departure as function of local properties, at different levels of active/inactive friend fraction and friend count
(snapshot taken at time t =2011/1/1). in SN

Table 1: Predict user departure with decision tree

Feature Accuracy F1 pos ROC area
Neighborhood 0.694 0.694 0.755

Activity 0.730 0.735 0.801
All 0.755 0.761 0.833

To predict the departure of users, we train a simple de-
cision tree (REPTree) classifier on our examples. Table 1
gives the performance of the classifier with different sets of
features under 10-fold cross validation.

Table 1 shows that relying on only local features of in-
dividuals, the simple decision tree classifier can predict the
departure of user with high accuracy (75% with all features,
as compared to 50% for always predicting one class). This
result demonstrates a strong connection between user’s local
properties and the propensity of departure. Moreover, com-
paring across 3 sets of features, we see that although the
activity features are most effective, neighborhood features
can also provide rather accurate insights on the departure
of users.

6. STRUCTURAL TRENDS IN NETWORK
TOPOLOGY

In this section, we explore the overall structural changes
that occur in the network as a result of the departure of
existing users, as well as the steady arrival of new users.
Topological changes have been studied in the context of new
nodes arriving but here we pay specific attention to how the
global structure changes in the process of the departure or
decline of user activities.

To get a sense of the how the structure of the network
evolves over time, we first study the distribution of edges
among active and inactive nodes. Specially, we look at the
edges between active nodes (Figure 6a and Figure 6d), edges
between inactive nodes (Figure 6b and Figure 6e), and the
edges across active and inactive nodes (Figure 6c and Fig-
ure 6f), and plot the ratio between the actual number of
edges over the expected value over time. The expected num-
ber of edges is computed based on the total number of edges,
|E|, in the network and the number of nodes in each of the
active and inactive sets. The expected number of edges of
any type is the expected number of edges when the total |E|
edges are placed between randomly chosen pairs of nodes.

To understand the overall structure among the sets of ac-
tive and inactive nodes, we study the density and conduc-
tance of these two sub-networks in the rest of this section.

Here the active sub-network consists of the active nodes and
the edges among them, and the inactive sub-network is sim-
ilarly defined.

Figure 7 and plots the overall density of the active (7a and
7c) and inactive (7b and 7d) set of nodes, as a function of
time. For comparison, we also plot the expected densities of
the respective sets, as determined by the number of active
and inactive nodes and edges and the degree distributions.

We use the definition density of a set of nodes (or av-
erage induced degree) used in [6], where the density of a
set of nodes is the number of edges between the nodes di-
vided by the number of nodes; i.e. for a set of nodes S,

density(S) = |E(S,S)|
|S| (here E(S,S) contains all edges (u, v)

such that u, v ∈ S). Therefore, the density of set S is half
of the average induced degree of the set of nodes in S. In
order to compare the the density we observe for the set of
active nodes and the set of inactive nodes, we define an ex-
pected density for each sub-network. The expected density
of the inactive set of nodes could be computed simply as
the density of the entire graph times the fraction of inactive
nodes.

However, we even use a stronger baseline to see if the
trends we observe are a result of a trend more than just that
of degrees. Therefore, we compute expected density subject
to the overall degree constraints on active and inactive nodes
as follows.

Consider each edge as occupying two slots (end points),
each slot being in either Sa (the active set of nodes), or Si

(the inactive set of nodes); therefore Sa ∪ Si = V (G). Let
the fraction of all these slots that are in Si be Pi (which
is the number of edges going across the active and inactive
sub-network plus twice the number of edges in the inactive
sub-network); therefore the number of such slots occupied
in Sa is Pa = (1− Pi). Suppose that all the |E| edges were
randomly placed in two slots each, with probabilities deter-
mined such that in expectation we respect Pi and Pa, then
we consider the induced density of this process as the ex-
pected density (for respective sub-networks). Notice that
this is a more stringent baseline for our comparison. There-
fore, an edge is contained in the inactive sub-network with
probability P 2

i and so the expected density of the inactive
set is (|E|P 2

i )/|Si|. Similarly the expected density of the
active sub-network can be computed.

The plots on these densities in Figure 7 shows that the
density of the active set density(Sa) increases rapidly with
increase in time. However, as shown in the plot on distri-
bution of edges in Figures 6, as the number of edges in the
active sub-network continue growing, the density of the ac-



1.
00

0
1.

01
0

1.
02

0
1.

03
0

time

ac
tu

al
 #

ex
pe

ct
ed

 #

2008 2009 2010 2011

(a) active(SN)

0
20

40
60

80

time

ac
tu

al
 #

ex
pe

ct
ed

 #

2008 2009 2010 2011

(b) inactive(SN)

20
40

60
80

time

ac
tu

al
 #

ex
pe

ct
ed

 #

2008 2009 2010 2011

(c) semi-active(SN)

1960 1980 2000

1.
10

1.
15

1.
20

time

ac
tu

al
 #

ex
pe

ct
ed

 #

(d) active(DBLP)

1960 1980 2000

2
3

4
5

6
time

ac
tu

al
 #

ex
pe

ct
ed

 #

(e) inactive(DBLP)

1960 1980 2000

0.
40

0.
45

0.
50

0.
55

0.
60

time

ac
tu

al
 #

ex
pe

ct
ed

 #

(f) semi-active(DBLP)

Figure 6: Distribution of edges, indicated by the ratio of actual number of edges over the expected number of edges.
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Figure 7: Density of the active and inactive sub-networks

tive sub-network is only marginally higher than its expected
density. On contrast, the density of inactive sub-network is
significantly higher than the expected density, even condi-
tioned on the degree distribution. This further confirms the
fact that departure is correlated across edges, as shown in
our local analysis. The nodes that are departing are still
probably at the periphery of the network (since the inactive
set has much lower density than the active set), but these
inactive nodes continue to be internally well-connected be-
cause of a higher-than-expected density. This strengthens
the evidence from previous sections that a node’s likelihood

to become inactive is strongly associated with neighboring
inactivity.

After studying the connectedness within the active/inactive
sub-network separately, we now look at the connection of
each sub-network to the rest of social graph, to get a more
complete picture about where departures happen and spread
in the network. We use conductance to measure the amount
of possible connections between different sets of nodes in a
network.
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Figure 8: Conductance of the active and inactive sets

Conductance of a set of nodes S, φ(s), first defined in [12],

is measured as φ(S) = |E(S,V (G)§)|
|E(S)| . Here E(S,V (G)§) con-

tains all edges (u, v) such that u ∈ S, v /∈ S, and |E(S)| =
2|E(S, S)|+|E(S, V (G)§)|. So notice that conductance is al-
ways less than 1, and any set with more than half its edges
going across to the complement set has a conductance of
more than 1

3
. We again measure the conductance of sets

Sa and Si through time and compare with their expected
conductances (see Figure 8). The computation of expected
conductance is also performed in a similar manner to as de-
scribed previously for expected density.

We see a similar trend in conductance (Figure 8) as seen
for densities. The conductance of the active set of nodes Sa,



φ(Sa) remains less than the conductance expected for this
set. This suggests that there are fewer edges going across
from Sa to the inactive set Si and far more edges within
Sa itself, than would be expected. The conductance plots
for the set of inactive nodes however is again more contrast-
ing. φ(Si) remains far lower than the expected conductance.
Nodes that are becoming inactive continue to have many
more edges within, than one would expect. This clearly
suggests that the inactive set of nodes are influencing neigh-
bors to inactivity. Yet again, the absolute conductance value
still suggests that nodes at the periphery of the network are
more susceptible to becoming inactive.

The takeaway from these plots are two fold. Firstly, of
course, these trends corroborate our findings from the pre-
vious sections suggesting that there is a strong correlation
among inactivity in neighboring nodes . However, these
plots on global measures such as density and conductance
also suggest a picture of the evolving network. With the
active sub-network’s density being much higher than the in-
active, and the inactive set showing higher than expected
density and lower than average conductance, we are led to
believe that nodes in the core of the network are much more
likely to survive, while nodes at the periphery are more sus-
ceptible to departure, probably by a combination of external
forces and the neighborhood inactivity.

7. MODELING THE ARRIVAL AND DEPAR-
TURE DYNAMICS

In this section we introduce a simple evolving model that
is able to explain formally the densification of the active
part of the network. To the best of our knowledge this is
the first model that explains the densification of the edges in
a network where nodes and edges join and leave the network.
Our model is an extension of the Affiliation Networks model
introduced in [14]. 3

First note that the arrival dynamics are already captured
by the Affiliation Networks model, where at each step a node
is added with constant probability. In order to model the
departure probability we introduce in the Affiliation Net-
work model a departure probability of a node, we define the
probability of leaving the network for a node v in a step as

P [v��] = f(n) + h(N(v))

where f(n) is a function of the size of the network, n, and
captures the probability of a node leaving independently of
its neighborhood and h(N(v)) is the probability of leaving
as a function of a node neighborhood, N(v).

In particular we fix f(n) = α
n
, where α is a constant

smaller than 1. Furthermore from figures 4a and 4c we have

that h(N(v)) ∝
(

1

|N�(v)|
)λ

, where N�(v) is the number of

active neighbors of v and α is a constant and λ = g(n) where
g(n) is function slowly growing with the number of nodes in
the network4. So we define:

P [v��] =
α

n
+

(
1

|N�(v)|
)λ

3We here study the Affiliation Network model because it
gives us a clear way to identify community in the network.
4Note that if λ was a constant, all the constant degree nodes
would disappear from the networks in a constant number of
steps and this is not the case.

Here we only consider the dependency on the number of ac-
tive friends, since in section 5 we showed empirically that
this is the more relevant feature. We now present the affilia-
tion network model and our extension to it, and then apply
our extension of the model to explain the densification of
the active part of the network.

7.1 Our model
We now recall the Affiliation Network model presented

in [14] and explain our extension. In the models there are
two graphs that evolve at the same time: a bipartite graph
between people and their interests and a social network just
on the people. The evolution of the two graphs is described
in table 2.

In our extension a node v in P in B(P, I) and G(P,E)
can also become inactive. More precisely, with probability
P [v��] at each (discrete) timestamp after the first departure
time td (the time when people start to leave the network), a
node becomes inactive with probability P [v��]. Hereafter,
we assume that td is equal to εn, where ε is a constant and
n is the time at which we analyze the network.

7.2 Densification
In this subsection, we prove that, in our network model,

the graph induced by the active nodes densifies even when
we allow deactivation of the nodes.

Theorem 1. There exist small constant value of λ, α and
ε for which our model densifies in time with high probability.

Where with high probability we mean probability bigger
than 1 − o(1). The detailed proof of this theorem is post-
poned to the appendix but we sketch the main intuitions
here.

Proof. (Sketch) First we notice that from [14] we have
that at time td there exist several nodes in I of polynomial
degree in the bipartite graph B(P, I) and thus a dense com-
munity in G(P,E).

Then we prove that even if part of the network is becom-
ing inactive, there is still a significant number of new user
joining the dense community. Furthermore the new nodes
will tend to add edges(via preferential attachment) to popu-
lar existing community. So we have that even if some nodes
are becoming inactive, the dense part of the graph is still
growing.

The last observation with the analysis of densification pre-
sented in [14] implies that the network is still densifying.

Note that the main proof’s idea are in line with our exper-
imental finding; in fact it suggests that most of the nodes
that are leaving the network are in the fringes and not in
the core part of the graph (that is composed by the dense
communities which continue to grow with time).

Finally it is interesting to notice that the preferential at-
tachment, that does not have a strong clustering structure,
do not have the densification property. In fact, the density
of the preferential attachment model is also always upper-
bounded by a constant when we allow node deletion. Specifi-
cally, the density of the preferential attachment model with-
out node deletion is m, where m is the number of edges
added by a new node; and it is ≤ m for the model with
deletions. To prove this, note that we can attribute inactive
nodes to inactivation of the m edges that had been added
when the node joined the network.



B(P, I) G(P,E)

Fix integers cp, ci > 0. Fix β ∈ (0, 1).
At time 0, the bipartite graph B0(P, I) is a simple graph with
at least cpci edges.

Fix integers cp, ci, s. Fix β ∈ (0, 1).
At time 0, G0(P,E) two vertices have an edge between them
for every neighbor in I that they have in common in B0(P, I).

At time t > 0: At time t > 0:

(Evolution of P ) With probability β:
A new node v is added to P .
A node vi ∈ P is chosen as prototypes for the new node, with
probability proportional to its active degree.
cp edges are “copied” from vi

(Evolution of P ) With probability β:
A new node v is added to P .
An edge between v and another node in P is added with
probability p for every neighbor that they have in common in
B(P, I). The new node also add s preferential attachment on
active edges.

(Evolution of I) With probability 1 − β, a new node v is
added to I following a symmetrical process, adding ci edges to
v.

(Edges via evolution of I) With probability 1− β:
A new edge is added between two nodes active v1 and v2 if the
new a new common interested has been added

Table 2: Informal description of the evolving model, for a detailed description refer to [14].

8. CONCLUSIONS
We have studied the dynamics of user departure from on-

line social networks and collaboration networks, from the
perspectives of local and global network structure. We con-
sidered the predictive power of local neighborhoods on the
behavior of nodes as well as studied global changes in the
network topology. At the local level, we studied individuals
and the dynamics in their local neighborhood, measured the
probability of user arrival and departure in relation to the
activity of their friends. Our findings are threefold: first,
there is a strong clustered effect in the timing of departure
among friends while this is not as visible in arrivals; sec-
ond, although both numbers and fractions of neighborhood
(in)activity are correlated to the probability of the individ-
ual’s departure, the fraction of inactive friends has arguably
the better predictive power on the departure probability,
providing an interesting complement to literature on arrivals
which shows number of active friends as the most predictive
of these measures; third, once a significant fraction of friends
depart, the overall connectivity of individuals in the entire
network does not have predictive power as to whether the
user will leave the network. At the global level, we looked
at the trend of network topological properties over the past
few years, showing that as the network evolves, users at the
peripheral region of the network are more likely to depart
in groups; yet an internal core of the network survives and
densifies over time.

We want to emphasize that our results do not prove a
causal relationship between the departure of friends and the
departure of a user. What we have observed and modeled is
only correlated actions among neighbors, and we are aware
of the possible factors that can contribute to, or actually
lead to, the departure of users. For example, internally,
users with similar personal traits may tend to leave the net-
work altogether; externally, the emergence of competing ser-
vices may draw users away from the original network. Our
model provides one possible explanation on the emergence
of observed pattern, but does not exclude other explana-
tions. Our goal is to offer a space for building better models
of how people tune out of social networks, in additional to
how they sign up.
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10. APPENDIX

Theorem 2. There exist small constant values of λ, α
and ε for which our model densifies in time with high prob-
ability.

Proof. In order to prove the statement we first analyze
the evolution of the high degree interests, in particular we
will prove that those interests will continue to grow even af-
ter the departure of some nodes from the network. Then we
will show that this in turn implies that the network densifies
in time.

Let S be the set of nodes in I in B(P, I) such that their
degree is bigger or equal to tδd, for a fixed constant δ =
1
10

(
4 + ciβ

cp(1−β)

)−1

. Note that Theorem 1 in [14] implies

that S �= ∅. Consider a node v in S, note that from con-
struction the N(v) in B(P, I) are a community of size big-
ger or equal than tδd in G(P,E). Let us call this community
C(v).

We will start by showing that the number of active nodes
in C(v) for an interest v ∈ S grows asymptotically as in the
model without deletions, finally we will use this property to
prove the densification.

Let us call En
�(v) the expected number of active nodes in

C(v) at time n, En
⊗(v) the number of inactive nodes, en the

number of edges in B(P, I), and Ct(v) the set of nodes in
N(v) as of time t.

We start by bounding En
⊗(v). We first upper bound the

nodes that become inactive by random choice independently
of their neighbors. Let us call them I⊗(v).

Let Wt be the number of nodes (active or inactive) in C(v)
at time t. By Lemma 2 in [14] we have that Wn ≤ k|Ctδ (v)|
for some constant k > 0.

Now we can bound E[I⊗(v)] ≤ ∑n
t=td

Wt
α
n

≤ Wn
α
n
(n −

td) = (1−ε)αk|Ctδ (v)|. In addition, by applying the Chernoff-
Hoeffding’s bound we have that I⊗(v) ≤ (1+γ)(1−ε)αk|Ctδ (v)|
with probability 1 − o( 1

n2 ) for any γ > 0. So by fixing

α < (1 + γ) k(1−ε)
10

we have that I⊗(v) ≤ |Ctδ
(v)|

10
with high

probability.
We now bound the number of nodes that became inactive

at time t because other nodes in their neighborhood have left
the network, we call those nodes Dt

⊗(v). To do it we will
first prove that for a node in C(v) the probability of becom-
ing inactive because other nodes in their neighborhood is
dominated by a simpler random process and use it to upper

bound Dn
⊗(v) with

Ctδ
(v)

10
.

First note that until Dt
⊗ ≤ |Ctδ

(v)|
10

, Dt
⊗(v) is dominated

the random variable Xt that counts the number of heads
that are observed when a biased coin, that gives head with
probability 1(

8Ctδ
(v)

10

)λ = 1(
8(εn)δ

10

)λ when the coin is flipped

t times.
Note that by fixing λ ≥ 1

δ
, we have that Xt in expectation

is ≤ 1 for every t ≤ n and thus by the Chernoff bound
with probability bigger than 1 − o

(
1
n2

)
Xn ≤ log n. But

log n <<
Ctδ

(v)

10
, thus Xn <<

Ctδ
(v)

10
with probability bigger

than 1− o
(

1
n2

)
.

Now Dtδ
⊗ (v) is equal to 0 and it is dominated by Xtδ until

Dt
⊗(v) it is smaller than

Ctδ
(v)

10
, but because Xn <<

Ctδ
(v)

10

this implies that Dt
⊗(v) is always dominated by Xtδa. Thus

Dn
⊗(v) <<

Ctδ
(v)

10
with probability bigger than 1− o

(
1
n2

)
.

So we get:

En
⊗(v) = I⊗(v) +D⊗(v) ≤ 1|Ctδ (v)|

5

with probability at least 1− o
(

1
n2

)
. Hence by union bound

and by the fact that |S| is smaller than n we get that with

high probability for all the v ∈ S En
⊗(v) ≥ 1|Ctδ

(v)|
5

.
Now we want to study how En

�(v) evolves in time. To do
it, note that by the bound of En

⊗ we have that the number

of deleted node in Ct(v) is ≤ 1|C(v)|
5

for all t ≥ tδ. Thus the
grow of C(v) will dominate the grow of a community that

has size 4|C(v)|
5

at time εn in the process without deletion of
the nodes. By combining the above property and Lemma 2
in [14] we get that for any C(v) with v ∈ S the final size of
the cluster in the process without deletion and in the process
with deletion are just a constant factor away.

Now note that from [14] we know that in the process with-
out deletion the graph densifies because

|En| >
∑
v∈I

(edges generated by a cluster of size I)

>
∑
v∈V

(edges generated by a cluster of size I)

>
∑
v∈S

(1− σ)p(|C(v)|(|C(v)| − 1))

>
n∑

i=nδ

(# of nodes of degree i in I)(1− σ)pi2)

>
n∑

i=nδ

(((
n

ζ (−2−Δ)

1

(i)2+Δ

)
(1± o(1))

)
(1− σ)pi2)

∈ ω(n)

Where σ is a constant >0, ζ() is Riemann zeta function and

Δ =
(
4 + ciβ

cp(1−β)

)−1

.

Thus the densification property in the process without
deletion is a consequence of the number of edges in the clus-
ters generated by large interest but we have proved that the
size of those interest change by at most a constant factor,
so also in the model with deletion the number of the edges
is ω(n) and thus the model densifies in time.


