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ABSTRACT
The phenomenal growth in the volume of easily accessible infor-
mation via various web-based services has made it essential for
service providers to provide users with personalized representa-
tive summaries of such information. Further, online commercial
services including social networking and micro-blogging websites,
e-commerce portals, leisure and entertainment websites, etc. rec-
ommend interesting content to users that is simultaneously diverse
on many different axes such as topic, geographic specificity, etc.
The key algorithmic question in all these applications is the gen-
eration of a succinct, representative, and relevant summary from a
large stream of data coming from a variety of sources. In this pa-
per, we formally model this optimization problem, identify its key
structural characteristics, and use these observations to design an
extremely scalable and efficient algorithm. We analyze the algo-
rithm using theoretical techniques to show that it always produces
a nearly optimal solution. In addition, we perform large-scale ex-
periments on both real-world and synthetically generated datasets,
which confirm that our algorithm performs even better than its ana-
lytical guarantees in practice, and also outperforms other candidate
algorithms for the problem by a wide margin.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Retrieval

General Terms
Algorithms, Performance

Keywords
Result Diversity, Online Algorithm

1. INTRODUCTION
The problem of result-set diversity has been studied in multi-

ple domains, but perhaps the most robust literature exists in web
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search. In search, it is common to introduce diversity by mixing in
different interpretations of a query, as in [11], or by attempting to
construct result sets to be pairwise distant, as in [3]. The goal in
these instances is largely to cater to the needs of multiple distinct
user types, each of whom enter the same query, but with differ-
ent goals. The system may provide a diverse result set to meet the
needs of different types simultaneously, even though a single user
might be happiest with a non-diverse result set. An alternate form
of the diversity problem, in which each individual user prefers a
diverse result set, presents itself in applications such as providing
ongoing novelty in a series of entertaining items, or a balance of
opinions on a sensitive topic.

Specifically, we consider the problem of selecting subsets of
items that are simultaneously diverse in multiple dimensions. This
problem arises in a variety of contexts. As a toy example, consider
the task of selecting the program committee for this conference.
The chairs were faced with the task of producing a committee that
offers sufficient expertise in all important topics of the conference,
while simultaneously covering different regions of the world, pro-
viding a good mix of gender, seniority, industry versus academia,
and so forth.

Many other examples exist in natural settings. An e-commerce
website may wish to show televisions covering multiple technolo-
gies, screen dimensions, manufacturers, and price points. Or a
website offering pre-packaged vacation travel may be interested in
showing customers a small set of options that cover a wide range of
alternatives: domestic or international; cheap or expensive; family-
friendly or romantic; and so on. Similarly, as an example we will
consider more closely below, consider a system recommending in-
teresting content to a user. The system aims to provide content that
is simultaneously diverse along a variety of axes including topic
(sports vs. politics vs. technology), geographic specificity (world
news vs. national news), voice (humorous, scandalous, contrapun-
tal), and media type (videos vs. blog articles).

In some of these applications, the itemset presented to a user
must be personalized to cater to her individual tastes and prefer-
ences. Selecting a distinct itemset for each individual user from a
very large corpus of items is particularly challenging from a com-
putational perspective. To alleviate this computational bottleneck,
we suggest the following natural two-step process: use a very ef-
ficient algorithm to select a single representative itemset of inter-
mediate size that caters to the tastes of all users, and then generate
individual (smaller) user summaries from this representative set us-
ing more resource-intensive techniques. Since user preferences are
typically very diverse, it is important that the intermediate itemset
contains a diverse set of items covering the entire range of user in-
terests. Therefore, our techniques for selecting a diverse itemset



are useful even for applications such as news feeds in social net-
working websites that involve a high degree of personalization.

Note that it is important to be simultaneously diverse in all di-
mensions; in our program committee example, for instance, no
amount of diversity in national origin will rescue the hapless com-
mittee constituted entirely of experts in itemset discovery. Sim-
ilarly, geographical diversity of news feeds in a news aggregator
website will not compensate for lack of diversity in the topics spanned
by the articles. Hence, while we will discuss other metrics, our re-
sults will focus on maximizing the worst-case coverage over all
features.

Further, in most web/internet based applications, the system must
make a commitment to certain items before other items are avail-
able for consideration. This may occur because candidates truly
arrive in an online manner over time, or because a large dataset
is to be processed in a streaming manner, or more commonly, be-
cause each page of results must be produced at the lowest possi-
ble latency. A user should be provided with a diverse experience
over many pageviews, and perhaps even many sessions, but the
first response must be committed before future requests are known.
Hence, an algorithm that operates purely in an offline context may
not extend naturally to each successive request.

This variant of the problem arises in content recommendation,
news feeds applications on news websites, search-type interfaces
for web search, e-commerce search (as atamazon.com), item
search (as atebay.com), and so forth. We are primarily moti-
vated by the problem of providing a stream of interesting content,
where the items need to be presented in a timely manner with con-
sideration for a variety of attribute features, each of which could
have varying ranges and densities. Therefore (irrevocable) deci-
sions on whether new items should be shown or skipped need to be
made in an online manner.

We abstract this problem as follows. A stream of items, each
decorated with features, arrives over time. As each item arrives,
the algorithm must accept or decline it. The algorithm must select
as many items as specified by a budget, and its score is the coverage
of the least populous feature in the final set.

The content recommendation problem by which we are moti-
vated differs from the abstract formulation in few key ways; we
recap these differences here. First, the diversifier will typically
have access to constant-size batches of input, rather than individual
items. However, the asymptotic behavior of our problem is un-
changed in this case, so we may focus our attention on the simpler
variant. Next, the diversifier is required to “trade off” diversity with
the quality of items selected into the result set. There are several
natural mechanisms to incorporate item quality into the formula-
tion, which we describe later. Finally, we study coverage of the
worst feature, but in certain settings it may be important to study
other variants, such as the average feature. We survey the results
for other norms, and also present empirical results analyzing our
algorithms with respect to low-performing features other than the
worst.

Our Contributions. We now give a high-level overview of the
contributions of this paper.

1. We formalize the problem of online diversification on multi-
dimensional featured items. In our problem formulation, the
objective is to maximize the minimum coverage over all fea-
tures, but we also present simple results for other variants of
this formulation, both in the offline and the online settings
(cf. Sections 2 and 3).

2. We theoretically analyze our problem formulation by show-
ing hardness results for specific small-coverage and adver-

sarial input instances. We then present a novel algorithm for
the diversification problem. As the main theoretical result of
our paper (Theorem 6), we prove that the algorithm achieves
an approximation ratio of 50% on the objective function, pro-
vided the optimum coverage is large enough, and the items
are drawnindependentlyand identically (i.i.d.) from some
probability distribution (that is unknown to the algorithm).
The theoretical analysis and techniques presented here are
novel, and the main algorithm is simple, easy to implement,
and lightweight, and therefore potentially applicable to a very
wide range of scenarios (cf. Section 4).

3. We perform comprehensive experimental evaluation on real-
world data obtained from a commercial news feed generator,
as well as several synthetically generated data sets. The ex-
perimental results not only conclusively corroborate our the-
oretical findings but also show that our algorithm performs
significantly better than its analytical guarantees on all data
sets. In fact, the performance of the algorithm is close to op-
timal for the minimum coverage feature and very good even
for subsequent low-coverage features (cf. Section 5). Fur-
ther, the algorithm outperforms a set of natural and intuitive
algorithms for the diversification problem by a wide margin.

2. DIVERSIFICATION FUNCTIONS
As described in the introduction, our high-level objective is to se-

lect a small collection of items that are diverse with respect to their
constituent features or dimensions, from a large corpus of multi-
dimensional items. In this section, we discuss multiple variants of
the problem, all of which represent the high-level goal of diversifi-
cation, and ultimately converge to a particular problem formulation
that we focus on for the rest of the paper.

First, we establish some notation that we will use throughout the
paper. LetF be the set ofn features. As described in the intro-
duction, the input consists of a setU of m items, where each item
j ∈ U consists of a subset of featuresFj ⊆ F . The diversifica-
tion algorithm needs to select a representative subsetS of at most
B items, whereB is a given budget, from the input setU . The
coverageof featurei ∈ F in the selected subsetS, denoted byCi,
is defined as the number of items inS that have featurei. Each
feature also has atarget Ti which is the desired coverage for the
feature. Thefractional coverageof featurei is the fraction of its
target coverage that has been achieved by the selected set of items,
i.e. ci = Ci/Ti. Let c be the vector of fractional coverages, i.e.
c = (ci : i ∈ F ); then the objective is to select a subsetS that
maximizes the value ofD(c), whereD is the diversification func-
tion of interest.

We consider two versions of the diversification problem depend-
ing on whether the entire setU is available to the algorithm be-
fore it starts selecting the items inS. For example, in selecting
a program committee from a set of researchers, the entire set of
researchers is known to the program committee chairs before any
selection decision is taken. We call this theoffline version of the
problem. On the other hand, consider the diversification problem
in generating news feeds. In this case, the diversification algorithm
needs to select news items as they arrive, i.e. without having access
to the entire input set of items. We call this theonlineversion of the
problem. Thus, in the online model, on the arrival of an itemj, the
algorithm must immediately either select or discard it, subject to
the constraint that the total number of selected items cannot exceed
B. We assume that each item in the online input stream is drawn
i.i.d. from some probability distribution on a set of features that is
unknownto the algorithm.



Perhaps the simplest objective functionD that one can aim for
while selecting a representative subset from a large set of items is
to maximize the sum of fractional coverages of all the features, i.e.

D(c) =
X

i∈F

ci.

However, observe that this function fails to distinguish between a
subset of items that achieves large coverage on a few features but
very small coverage on the remaining features, and a different sub-
set of items that achieves uniform moderate coverage on all fea-
tures. Intuitively, the second subset is clearly more diverse, and
hence should be preferred. A diversification function that reflects
this intuition is

D(c) =
X

i∈F

pi,

wherepi = 1 if ci > 0, andpi = 0 otherwise. This function
clearly distinguishes between the two subsets of items described
above, but has the shortcoming that it treats all non-zero coverage
values identically. In fact, these two functions are the extreme ends
of a continuum of candidate functions

Dα(c) =
X

i∈F

cα
i , 0 ≤ α ≤ 1

that represents the classical trade-off between maximizingmagni-
tude(cf. the first function, i.e.α = 1) and ensuringfairness(cf.
the second function, i.e.α = 0).

By a slight abuse of notation, let us also denote the value of the
function Dα on the coverage achieved by a set of selected items
S asDα(S). It can be shown that all such functionsDα(S) (for
0 ≤ α ≤ 1) aremonotonically increasing submodular1 functions.
Consider agreedyalgorithm that repeatedly selects the item that
yields the maximum increase in the value of the objective until the
entire budget has been used up. It is well-known that this algo-
rithm has an approximation factor of(1 − 1/e) for the problem of
maximizing any monotonically increasing submodular function.

THEOREM 1. For anyα between0 and1, the greedy algorithm
has an approximation factor of(1−1/e) for maximizingDα in the
offline setting.

In the online setting, if the optimal value of objective function
is known, then a standard thresholding technique yields an algo-
rithm with a constant competitive ratio2. On the other hand, if the
optimum is unknown, then we can guess its value using a standard
doubling technique. The key property that we exploit in this guess-
ing scheme is that the input stream is drawn i.i.d., and therefore
only a small fraction of the budget is used in obtaining a good esti-
mate of the optimum. (The proof of this theorem is deferred to the
full version of the paper.)

THEOREM 2. For anyα between0 and1, there exists an algo-
rithm that has a constant competitive ratio for maximizingDα in
the online setting, if the input is drawn i.i.d.
1A functionf defined on all subsets of a ground setX is said to be
monotonically increasingif for any A ⊆ B,

f(A) ≤ f(B),

and is said to besubmodularif for any A ⊆ B and for anyx ∈ X,

f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B).

2For a maximization problem, an online algorithm has a competi-
tive ratio ofβ if the objective value in the solution produced by the
algorithm is at leastβ-times the offline optimum.

We now focus on another natural candidate function for diversifi-
cation, where the objective is to maximize the minimum fractional
coverage all features. That is,

D(c) = min
i∈F

ci

Observe that this function achieves the twin objectives ofmagni-
tude and fairnessof feature coverage. This function isnot sub-
modular, and therefore, the techniques described above cannot be
used to solve this problem.

Let cOPT be the optimal value ofD and

ρOPT = cOPT min
i∈F

Ti.

The next theorem (proof deferred to the full version) shows that the
problem does not admit an algorithm with a finite approximation
ratio even in the offline setting, ifρOPT = o(log n).

THEOREM 3. Under standard complexity-theoretic assumptions,
there exists no algorithm that obtains a finite approximation ratio
for offline instances of the diversification problem whereρOPT =
o(log n).

The above theorem implies that we need to assume that the opti-
mal solution satisfiesρOPT = Ω(log n), in order to obtain a finite
approximation ratio. (In fact, this assumption holds for most real
data sets, as verified later in the experimental section.) If this prop-
erty is satisfied by an offline instance of the problem, then a simple
algorithm that employs randomized rounding of the natural linear
programming formulation of the problem gives the following the-
orem. (The proof of this theorem is deferred to the full version of
the paper.)

THEOREM 4. For the problem of maximizingD in the offline
setting, there is a PTAS3 if the optimum isΩ(log n).

Now, we focus on the online version of the problem. The next
theorem (proof deferred to the full version) shows that we need to
assume that the input stream is not adversarial in order to obtain a
sub-polynomial competitive ratio for this problem.

THEOREM 5. For an adversarial input stream, the competitive
ratio of any algorithm for maximizingD in the online setting is
Ω(n).

To overcome the barrier imposed by the above theorem, we assume
that the input is drawn i.i.d. from a probability distribution that is
unknown to the algorithm.

3. PROBLEM FORMULATION
As described in the previous section, we focus on the following

problem formulation, which we call the DIVERSIFIER problem.

Let F be a set of features andTi be the target coverage for
featurei ∈ F . An input setU of m items arrives online,
where the set of featuresFj ⊆ F in each itemj ∈ U is
drawn i.i.d. from a probability distribution on subsets of
F that is unknown to the algorithm. The algorithm must
decide, on the arrival of itemj, whether to select or discard
it. The overall goal is to select a subsetS of at mostB
items that maximizesmini∈F ci = mini∈F

Ci

Ti
, whereCi

is the number of items inS that contain featurei.

3A Polynomial-time Approximation Scheme(or PTAS) for a maxi-
mization problem is an algorithm that has an approximation factor
of (1 − ǫ) for any arbitrarily small constantǫ > 0. (The running
time of the algorithm depends on the choice ofǫ.)



Main Result. We give an online algorithm for the DIVERSIFIER

problem which proves the next theorem.

THEOREM 6. There is a deterministic online algorithm for the
DIVERSIFIER problem that has a competitive ratio of1

2
− δ for

any δ > 0 with probability (over the input distribution) at least
1 − 1/n, provided the input is drawn i.i.d. from an (unknown)
probability distribution on feature sets satisfying the property that
the expected value ofρOPT ≥

24 ln n
δ2 .

Our Techniques.Consider the special case where all targetsTi are
equal to the budgetB. Further, assume that we have the guarantee
that the expected value ofρOPT = cOPTB = Ω(log2 n) (which is
stronger than that required by Theorem 6). Then, we can partition
the input intolog n epochs, where in each epoch, the algorithm
selects at mostB/ log n subsets from an input stream containing
m/ log n items, and aims at achieving an expected minimum cov-
erage ofλ = Ω( ρOPT

log n
).

Now, instead of achieving a coverage ofλ for each feature, let us
change our goal in any epoch to achieving a cumulative coverage
of Ω(nλ) over all features, where the contribution of any single
feature to this sum is at mostλ, i.e.

P

i∈F min(Ci, λ) = Ω(nλ).
This can be achieved by using a thresholding algorithm that selects
an itemif and only ifit contains at leastΩ

`

nλ log n
B

´

featuresi ∈ F
with current coverageCi < λ. This immediately implies, via an
averaging argument, that some constant fraction of features have
achieved a coverage ofΩ(λ). We discard these features in the next
epoch and recurse. Since the number of retained features decreases
by a constant factor in every epoch, the coverage on every feature
is Ω(λ) at the end oflog n epochs. Therefore, this algorithm yields
a competitive ratio ofO(log n).

To transform the algorithm described above to an algorithm that
proves Theorem 6, we need to make the following improvements:

• Improve the competitive ratio of the algorithm to a constant.

• Generalize the algorithm to handle arbitrary targetsTi.

• Relax the constraint on the expected value ofρOPT fromΩ(log2 n)
to Ω(log n).

The previous algorithm can be interpreted in terms of a reward
function which gives a reward of 1 every time a feature is cov-
ered until the feature has been coveredλ times, at which point the
reward on covering the feature drops to 0. The algorithm then es-
sentially sets a threshold proportional to the ratio of the remaining
rewards to the remaining budget, and selects an item if it meets this
reward threshold. However, observe that the algorithm fails to dif-
ferentiate between covering a feature that already has a large cov-
erage (but less thanλ), and a feature that has smaller coverage. To
make this distinction, we introduce a smoother reward function in
the next section, and show that this simple thresholding algorithm
for the new reward function achieves all the three goals outlined
above.

4. THE DIVERSIFICATION ALGORITHM
In this section, we describe the diversification algorithm, and use

analytical techniques to show that it proves Theorem 6. The al-
gorithm uses the expected optimal value of the objective function
denoted bycOPT. If cOPT is not known, we can guesscOPT, and up-
date our guess repeatedly by doubling, as outlined in the previous
section. Since the input stream of items is drawn i.i.d. from some
(unknown) probability distribution, it can be shown that the com-
petitive ratio of the algorithm remains a constant even if the ex-
pected optimal value of the objective function is not known to the

X

S⊆F :i∈S

wSpS ≥
cOPTTi

m
∀ i ∈ F

X

S⊆F

wSpS ≤
B

m

0 ≤ wS ≤ 1 ∀ S ⊆ F

Figure 1: A linear program for the DIVERSIFIER problem.

algorithm. However, for the sake of simplicity, we assume through-
out that we knowcOPT.

As sketched in the previous section, our algorithm uses a reward
functionφ defined as

φ(k) = n−α(k/cOPT),

whereα is a constant that we will fix later. We also define

Φ̄(k) =

Z ∞

j=k

φ(j)dj.

If the current collection of selected items has fractional coverageci

for some featurei ∈ Fj for the current itemj, then the rewardrij

of itemj due to featurei is defined asφ(ci). The overall rewardrj

of itemj is defined as the sum of rewards of its constituent features,
i.e. rj =

P

i∈Fj
rij . At any stage of the algorithm, the remaining

reward for featurei is

Φ̄i = Φ̄(ci),

and the overall remaining reward is

Φ̄ =
X

i∈F

Φ̄i.

The online algorithm selects the current itemj if and only if

rj ≥
Φ̄ ln n

γB
,

whereγ is a constant we will fix later. The algorithm terminates
when either the input stream has been exhausted or the algorithm
has already selectedB items.

Analysis. First, we state a property of the reward function that we
will use later in the analysis of the algorithm.

FACT 1. For anyk ≥ 0, Φ̄(k) =
`

cOPT

α ln n

´

φ(k).

Now, consider the linear program (LP) for the DIVERSIFIER prob-
lem in Fig. 1. Here,pS denotes the probability of itemj in the input
stream havingFj = S for any j, andws is the fraction to which
such an item is chosen in the optimal fractional (offline) solution.
Since the expected optimal value of the objective iscOPT, this LP is
feasible.

Recall thatρOPT = cOPT mini∈F Ti. For simplicity of notation,
let us also denote the expected value ofρOPT by ρOPT itself in the rest
of this section. The next lemma lower bounds the probability that
an item is chosen by our algorithm if it has not already exhausted
its budget.

LEMMA 1. At any stage of the algorithm, the expected decrease

in Φ̄ for the next item in the input stream is at least
“

α − 1
γ

”

Φ̄ ln n
m

.

Further, the probability that the next item in the input stream is

selected by the algorithm is at least
“

1 − 1
αγ

”

ρOPT

m
.



PROOF. Consider a hypothetical algorithm that chooses itemj
having a feature setFj = S with probability wS . The expected
decrease of̄Φ for this algorithm at any stage is

X

S⊆F

pSwS

X

i∈S

φ(ci)

Ti

=

„

α ln n

cOPT

«

X

i∈F

Φ̄i

Ti

X

S⊆F :i∈S

wSpS

≥

„

α ln n

cOPT

«

X

i∈F

Φ̄i

Ti

„

cOPTTi

m

«

=

„

α ln n

m

«

X

i∈F

Φ̄i

=

„

α ln n

m

«

Φ̄.

Let

yS =
X

i∈S

φ(ci)

Ti

and

zS = pSwS(m/B).

Then, we have
X

S⊆F

ySzS ≥

„

α ln n

B

«

Φ̄

X

S⊆F

zS ≤ 1.

By standard convexity arguments, we can conclude that

X

S⊆F :yS≥ Φ̄ ln n
γB

ySzS ≥

„

α −
1

γ

«

Φ̄ ln n

B
,

which implies that the expected decrease inΦ̄ due to the next item
in the input stream is

X

S⊆F :yS≥ Φ̄ ln n
γB

wSpSyS ≥

„

α −
1

γ

«

Φ̄ ln n

m
.

Further, the maximum decrease inΦ̄ due to a single item is

max
S⊆F

X

i∈S

φ(ci)

Ti
≤

X

i∈F

φ(ci)

Ti
=

„

α ln n

cOPT

«

X

i∈F

Φ̄i

Ti
≤

„

α ln n

ρOPT

«

Φ̄.

SincewS ≤ 1 for all S ⊆ F ,
X

S⊆F :yS≥ Φ̄ ln n
γB

pS ≥
X

S⊆F :yS≥ Φ̄ ln n
γB

pSwS ≥

„

1 −
1

αγ

«

ρOPT

m
.

The above lemma implies that if the algorithm has not selectedB
items already, then the next item in the input stream is selected with
probability

p ≥

„

1 −
1

αγ

«

ρOPT

m
,

and if the next item is selected, then the value ofΦ̄ decreases to at
most

„

1 −
1

p

„

α −
1

γ

«

ln n

m

«

Φ̄ ≤ n
−

α−

1

γ
pm Φ̄.

The next lemma asserts that ifρOPT = Ω(ln n) and the algorithm
does not selectB items, then the value of̄Φ when the algorithm
terminates is small.

LEMMA 2. Suppose the algorithm does not selectB items. Fur-
ther, let ρOPT ≥ 3 ln n

ǫ2
“

1− 1

αγ

” . Then, the value of̄Φ when the al-

gorithm terminates is at mostn1−(1−ǫ)
“

α− 1

γ

”

with probability at
least1 − 1/n.

PROOF. The expected number of items selected by the algo-
rithm is

pm ≥

„

1 −
1

αγ

«

ρOPT ≥
3 ln n

ǫ2
.

Therefore, by Chernoff bounds [10], the value ofΦ̄ when the algo-
rithm terminates is at most

n
−

 

α−

1

γ
pm

!

(1−ǫ)pm

· n = n
1−(1−ǫ)

“

α− 1

γ

”

with probability at least1 − 1/n.

Finally, we consider the case when the algorithm uses up its entire
budget, i.e. selectsB items.

LEMMA 3. If the algorithm selectsB items, then the value of

Φ̄ when the algorithm terminates is at mostn
1− 1

γ .

PROOF. When the algorithm selects an item, the value ofΦ̄ de-
creases to at most

„

1 −
ln n

γB

«

Φ̄ ≤ n
− 1

γB .

Therefore, the value of̄Φ when the algorithm terminates after se-
lectingB items is at most

n−1/γ · n = n
1− 1

γ .

We now setγ = 2−ǫ
(1−ǫ)α

which lets us summarize the above two
lemmas in the following lemma.

LEMMA 4. If ρOPT ≥
3(2−ǫ) ln n

ǫ2
, then the value of̄Φ when the

algorithm terminates is at mostn1−α( 1−ǫ
2−ǫ ) with probability at least

1 − 1/n.

The next lemma bounds the competitive ratio of the algorithm.

LEMMA 5. If ρOPT ≥ 3(2−ǫ) ln n

ǫ2
, then the competitive ratio of

the algorithm is at most
“

1−ǫ
2−ǫ

”

− 1
α

with probability at least1 −

1/n.

PROOF. Suppose not, and letimin be the feature with the mini-
mum fractional coverage at the end of the algorithm. Then,

Φ̄ ≥ Φ̄imin
= n−α( 1−ǫ

2−ǫ
− 1

α ) > n1−α( 1−ǫ
2−ǫ ),

which violates Lemma 4.

Observe that sinceǫ < 1,

1 − ǫ

2 − ǫ
>

1

2
− ǫ.

We now obtain Theorem 6 by settingǫ = δ/2 andα = 2/δ.



5. EXPERIMENTS
We perform experiments on both real-world and synthetically

generated data sets and compare our diversification algorithm with
several natural and intuitive alternative algorithms for the problem.
Our experimental evaluation compares the performance of these
algorithms measured in terms of feature coverage by varying mul-
tiple parameters. We first describe the data sets used in our experi-
ments; next we describe the alternative algorithms we compare our
algorithm against; and finally we describe the experiments that we
perform and interpret the results we obtain in these experiments.

5.1 Description of Data Sets

Real-world news feeds.This dataset is obtained from the stream
of items received by a commercial news feed generator, from which
it selects a news feed for individual users. Each item considered has
several features associated with it, such as the source of the item,
the broad category it belongs to, the types of contents in it etc. We
extracted 18 features such that each item has a binary value asso-
ciated with each feature (that is, either has or does not have the
feature). This feature set includes a variety of dense (i.e. present in
a large fraction of items) as well as sparse features such as whether
the item has an embedded video, is in English language, is about
Politics or Sports, and so on. The selection of these 18 features was
aimed at capturing multiple kinds of dependencies: e.g., hierarchi-
cal dependency (i.e. a feature occurs always with another feature),
exclusivity (an item can have only one of a set of features), dense
features, or very sparse features. These features were chosen in
a careful manner so as to test the performance of the diversifica-
tion algorithm on dependencies, on sparse features (i.e. even when
the optimum is small), on very commonly occurring features, etc.
We ran our experiments on 100 such different data sets, each con-
taining about a million items with feature vectors along these 18
dimensions.

Synthetically generated data.In addition to the real data set, we
also test our algorithm on various carefully chosen synthetically
generated data sets. In each of these data sets, we again generated
items with 18 features and tested the algorithms on data sets of one
million items each. The synthetic data sets we tested on are the
following.

• Independent. In this data set, each entry (that is each fea-
ture for every item) is independently set to1 or 0 (that is item
either has or does not have the feature) with probability half
each. Notice that this generates a data set where, in expec-
tation, each item has nine features. Further, in expectation,
each feature is contained in half of all the items.

• Parity. In this data set, initially we fix a bit vector of length
18 (where each bit is set to1 or 0 independently and with
equal probability) and then for each item, we pick a1 or 0
independently and with equal probability, and XOR it with
the bit vector. Observe that this results in a very strong de-
pendence between different features, and the whole data set
contains only two kinds of items.

• Dependent Mixed. This data set is generated in a manner
very similar to parity, but in addition, after each item has
been generated, each of the feature bits is flipped indepen-
dently and with a small probability (set to0.1). This results
in a milder dependence between the item features.

• Dependent.The dependent data set is similar to the depen-
dent mixed data set. The only difference is that the initial bit

vector is set to all1’s. Therefore, there is uniform correlation
between all item features.

5.2 Algorithms
We now describe all the algorithms that we compare in our ex-

periments.

Diversifier. This is the diversification algorithm in Section 4.

Diversifier (Uniform Coverage). This algorithm is the same as the
diversifier presented previously with a small difference that the re-
ward functionφ is not decreasing; in particular, the reward function
is fixed atφ(k) = 1. Comparing with this algorithm highlights the
importance of the decreasing reward function in the diversification
algorithm.

Fixed Threshold. The fixed threshold algorithm is a naïve base-
line algorithm where a specific threshold is fixed at the beginning
(between1 and18, the number of features). Subsequently, when
items arrive online, every item that has at least as many features as
the threshold is picked, until the budget is exhausted. We compare
our diversification algorithm against this fixed threshold algorithm
for different thresholds. We performed experiments with all possi-
ble thresholds between1 and18 but present only a representative
set of results, for thresholds3, 6, 9, 12, 15. The performance of
the fixed threshold algorithm with other thresholds is similar to the
ones we show.

Simple Random. In this algorithm, items are selected randomly
based on the number of features they contain, in such a way that the
expected number selected items equals the budgetB. The proba-
bility that an item containingk features is picked is determined by
optimally solving a linear program that aims to maximize the cov-
erage on every feature. This algorithm performs two passes over
the input stream of items: in the first pass, it computes frequency
counts of features and uses them to obtain the probability of se-
lecting an item withk features. In the second pass, it uses these
probabilities to actually select the items.

5.3 Description of the Experiments
Sorted Coverage.In this experiment, we evaluate the performance
of each of the algorithms on the coverage achieved on the features.
Recall that our objective is to maximize the minimum coverage
over all features. In addition to the minimum coverage, we also
look at the performance of the algorithms on the 2nd to 6th least
covered features as well. The specific goal of the diversifier is to
maximize minimum coverage, but at the same time, it is desirable
that the coverage be substantial on other features as well. This ex-
periment highlights that even though the specific goal of the diver-
sification algorithm is to maximize minimum coverage, it achieves
substantial coverage on other features as well (particularly for fea-
tures where a larger coverage is attainable without compromising
on the minimum coverage achieved).

Varying Budgets. We perform a series of experiments by varying
the available budget to the algorithms, to see if the performance of
the diversification algorithm scales with larger budgets. We also
perform experiments for low budgets to test whether the algorithm
is able to achieve reasonable coverage on each of the features (even
on the sparse ones). These experiments show that the diversifica-
tion algorithm performs admirably for a variety of budgets.

In all our experiments, the total number of features is18 and
the number of items in each data set is around1M . Also, when
we plot sorted coverage, the default value of the budget is set to
20K (which is roughly 2% of the data set), and the targets for all
the features are set to the budget itself. For the plots where we
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(a) Higher range of budgets between 0.5% and 8%
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Figure 2: The average minimum coverage achieved by various
algorithms over 100 real world data sets of1M items each.

vary budgets on thex-axis, the coverage plotted on they-axis is the
minimum over all the18 features (which is the objective function
of the diversification algorithm).

Note that the budgets are too large for individual news feeds.
However, as we noted earlier, our algorithm is useful for generat-
ing a single itemset of intermediate size that contains relevant items
for all users, from which individual personalized news feeds can be
generated using more resource-intensive techniques. Our experi-
ments can be viewed as generating these intermediate itemsets.

As stated in Theorem 6, our diversification algorithm achieves a
1
2
− δ-approximation ratio as long as the expected optimum cover-

age is at least24 ln n
δ2 . In all our experiments, the minimum cover-

age on any feature (for both real and synthetic data sets) is at least
900, out of around1M items. Further, since we are dealing with
n = 18 features,ln n ≈ 2.89. Note that900 ≥ 24 ln n

δ2 for values
of δ ≥ 0.28. As we note in the experiments shortly, the perfor-
mance of the diversification algorithm is significantly better than
the theoretical guarantee.

5.4 Description of plots
Our first set of plots (Figure 2) compare the minimum coverage

achieved by various algorithms, averaged over the 100 real data sets
of 1M items each, with budgets varying from 0.1% to 8% of the
input. Observe that the Diversifier significantly outperforms all the
other algorithms for any budget between 0.1% and 4%. The mini-
mum coverage achieved by the Diversifier levels off at a value be-
tween 900 and 1000 beyond a budget of 1% since there are features
in our dataset that occur in fewer than 1000 items (and therefore the
Diversifier has already achieved an almost optimal solution). Once
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 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1  2  3  4  5  6

Diversifier
Fixed threshold of 3
Fixed threshold of 6
Fixed threshold of 9

Fixed threshold of 12
Fixed threshold of 15

Simple Random
Diversifier (Uniform Coverage)
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Figure 4: Experimental results for the Independent data set

the budget reaches 4%, the Diversifier (Uniform Coverage) also
achieves optimal performance. All the other algorithms fair signif-
icantly worse, especially for smaller budgets. Notice that the other
algorithms however require a budget of at least40K to achieve any
reasonable performance. In fact the minimum coverage achieved
by the Diversifier increases linearly with the budget thereby con-
firming scalability of the algorithm.

For our next set of plots (Figure 3) we show the coverage achieved
by the various algorithms on the least covered features. These ex-
periments are performed on the real data set for six fixed budgets
varying from 0.1% to 4%. Throughout these plots, we see a consis-
tent trend of the Diversifier performing extremely well for the lesser
covered features while the other algorithms are able to perform well
only on the features that get higher coverage. In other words, these
algorithms fail to perform well at the specific task of diversifica-
tion which requires spreading out the coverage uniformly. Observe
that in the plot for the comparatively high budget of 4%, the other
algorithms also perform well for features that receive lesser cov-
erage. This is because even the optimal solution can only attain a
coverage of about as much obtained by these algorithms. However,
for small budgets, the diversifier significantly outperforms all other
algorithms.

Now, we describe the experimental results obtained for synthet-
ically generated data sets. The plots for the experiments described
above performed on the independent data set are given in Figure 4.
In Figure 4 part (a), we see that the performance of the Diversi-
fier rapidly improves with increasing budget while the other algo-
rithms do not scale as well. This highlights that our algorithm is
able to quickly adapt to varying coverages across features and as-
sign importance to features that suffer from low coverage. On the



 0

 20

 40

 60

 80

 100

 120

 140

 1  2  3  4  5  6

C
ov

er
ag

e

Features in sorted order of increasing coverage

Diversifier
Fixed threshold of 3
Fixed threshold of 6
Fixed threshold of 9

Fixed threshold of 12
Fixed threshold of 15

Simple Random
Diversifier (Uniform Coverage)

(a) Budget = 0.1%
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(c) Budget = 0.4%
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Figure 3: The coverage achieved on the least covered features onthe real world data set by various algorithms.

other hand, the other algorithms continue to select items oblivious
to previously selected items and therefore suffer from lower values
of minimum coverage. In Figure 4 part (b), we again observe that
the Diversifier performs well on the features with low coverage,
i.e. it is able to balance out the coverage along different features
and obtain a large minimum coverage, while other algorithms fail
to do so.

Very similar trends are seen for the same experiments performed
on the parity data set Figure 5 part (a). The diversifier does signifi-
cantly better throughout, and the contrast is particularly noticeable
as the budgets are increased. Observe that in the plot for sorted cov-
erage in the parity data set (Figure 5 part (b)), the Diversifier does
significantly better than all other algorithms. In fact, the Diversifier
is very close to the optimum in this case as well, and therefore per-
forms much better than guaranteed by Theorem 6. All these plots
are horizontal because the data set contains only two kinds of items.

Finally, we show plots for the minimum coverage achieved for
the different algorithms on the dependent and dependent-mixed
data sets for varying budgets (Figure 6). In these plots, we notice
that some of the other algorithms also perform well; in fact the ran-
domized algorithm even outperforms the Diversifier for the depen-
dent data set. Further, we observe that some of the fixed threshold
algorithms perform well for large budgets. This is not surprising
given that the features are very rigidly dependent on each other -
therefore an algorithm that chooses the right threshold performs
well on all features. Of course, note that we are comparing against
an algorithm that somehow knows this threshold value, which is
not feasible in practice. The takeaway here therefore is that the di-
versifier loses a bit in learning what threshold to use in an online
fashion, but is then able to adapt and obtain a good coverage.

5.5 Summary
To summarize the experiments, we have seen that the diversi-

fier performs extremely well on a wide range of parameters, and in

particular, does significantly better than all the other algorithms we
implemented on the real data set. The real data set comprised of
several kinds of features with varying densities among items, hier-
archical dependence, exclusive dependence etc., and yet the diver-
sifier performs really well on the coverage for all budget ranges.
The algorithm is fairly general, extremely simple to implement,
low cost and efficient, provably approximate, and performs near-
optimally even at large scales. Therefore these ideas and techniques
may be useful in a wide range of other settings and applications.

6. RELATED WORK
Diversification has been studied in a variety of different contexts

so we only mention some of the references here. Among them
search result diversification has arguably received the most atten-
tion (e.g. [11, 8, 16, 15, 14, 13, 12]). In particular, Gollapudi and
Sharma [8] adopt an axiomatic approach and specify a set of rules
that must be adhered to in any reasonable definition of diversifica-
tion in the context of search results. A different approach is adopted
by Slivkinset al [16] who employ learning theoretic techniques for
diversification of rankings. For some recent work in diversification,
the reader is referred to [15, 14].

Search diversification is different from our context in a couple of
fundamental ways. First, the primary motivation for search result
diversification is keyword disambiguation, and the intent is usually
to provide the user with a set of result webpages such that includes
at least one s/he is looking for. However, in our context, the goal
is to ensure that the user is presented with a set of items that satis-
fies her cumulatively. Second, in the search architecture, one nor-
mally has access to all the (meta data related to) webpages stored
on disk, and for efficiency reasons, one may need to perform on-
line/streaming decisions on the documents, or quickly prune them
to a candidate set; however, making irrevocable online decisions
is not a necessity. This consideration makes our context a signifi-
cantly harder one.
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Figure 5: Experimental results for the Parity data set

The diversification problem has also been considered extensively
in the context of recommender systems (see e.g. [19, 18, 9]). Sev-
eral other works on diversification have been undertaken. For ex-
ample, Agrawalet al [1] propose a maximum likelihood based di-
versification objective for finding relevant documents given the cat-
egorical information of queries and documents. Other papers on
topical diversification and information retrieval include [21, 20].
Vee et al [17] consider diversification for online shopping, while
Drosou and Pitoura [5, 6] have done work on diversity over con-
tinuous data such as in the context of publish/subscribe systems.
Diversification for re-ranking documents and producing summaries
has been considered by Carbonell and Goldstein [3]. The problem
of selecting a diverse, representative set of posts in the blogosphere
was considered by El-Ariniet al [7]. Their approach is similar to
ours in that they model the task of selecting a representative set as
a covering problem. However, one key difference with our prob-
lem is that the entire set of blog posts is available to the algorithm
before it makes any selection, i.e. their problem is offline. In addi-
tion, they consider a linear objective function, which is submodular
unlike our objective function of minimum coverage. We also refer
the reader to the references of these papers for further work in any
specific context.

Significant algorithmic research has previously focused onre-
source allocationproblems, where the goal is to allocate a set of
resources in a manner that maximizes rewards. Our algorithm also
falls in this broad framework, where we haveB resources in the
form of the items that we can opt to select, and the reward for a set
of selected items is given by the minimum coverage on any feature.
However, while we have a single-dimensional budget and multi-
dimensional profit, recent work on this problem (see [4] and refer-

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5000  10000  20000  40000  80000

M
in

im
um

 C
ov

er
ag

e

Budget

Diversifier
Fixed threshold of 3
Fixed threshold of 6
Fixed threshold of 9

Fixed threshold of 12
Fixed threshold of 15

Simple Random
Diversifier (Uniform Coverage)
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(b) Dependent Mixed data set

Figure 6: The coverage achieved on the least covered features
for various budgets by all algorithms on the Dependent and De-
pendent Mixed data sets.

ences therein) has largely focused on the scenario where the profit
function is single-dimensional but the budgets are multi-dimensional.
Another related set of resource allocation problems that have a
multi-dimensional profit function are theSanta Claus problems(see
[2] and subsequent work), where the goal is to allocate a set of
items among a set of agents so as to maximize the reward of the
least satisfied agent. However, this problem typically differs from
our problem in two ways: first, each item can be allocated to only
one agent and therefore earns rewards in only one dimension; and
second, this problem is typically considered in the offline setting
where all the items and their valuations by the agents are known to
the algorithm.

7. DISCUSSIONS
In this paper, we considered the problem of selecting a diverse

and representative subset from a large corpus of items. We mod-
eled each item as being decorated by a set of features, and the goal
was to ensure that the selected subset of items achieved large cov-
erage on all features. We discussed various problem formulations
representing this goal, and studied both the online and offline ver-
sions of the problem. Our key technical contribution was an easily
implementable and scalable online algorithm for this problem. We
analyzed this algorithm using theoretical techniques and showed
that it achieves an approximation ratio of (roughly) 50%. We also
performed wide-scale experiments on a variety of real-world and
synthetically generated data sets and concluded that the algorithm
performs even better than its theoretical guarantees in practice, and



also confirmed that it outperforms several natural and intuitive al-
gorithms for this problem by a wide margin.

In fact, our algorithm adapts well to several real-world compli-
cations. For example, consider a data set that hasoutliers, i.e. some
features that are very sparse. Our experimental results on the sorted
coverage values show that in such cases, not only is the algorithm
able to obtain near-optimal minimum coverage, but also does well
on all features that have low coverage. This is crucial in situations
where we do not want to maximize minimum coverage only, but
also want to ensure that the algorithm performs well with respect
to more relaxed notions of diversity, e.g. the coverage on the bot-
tom 10% of features. This was in fact the case with our real data
set, and here the diversifier algorithm performed particularly well.
The algorithm is also extremely efficient and at each online stage,
it only needs time proportional to the number of features to com-
pute if a threshold is satisfied by the new arriving item; since it is
very efficient, we do not plot graphs with running times, but the al-
gorithm clearly scales to extremely large data sets as shown in our
experiments.

In real-world applications, it is often the case that all items are
not of identicalquality, and while we wish to select a set of items
that are diverse in terms of their feature coverage, we would also
like to ensure that that these selected items have high overall qual-
ity. In such situations, we may interpret the quality of items as an
additional feature on which we also want to meet a given quality
target. Alternatively, we may opt to set a quality threshold on items
and not select any item that does not meet this threshold irrespective
of the coverage it achieves on the set of features. Other applications
may have more complicated quality requirements, and an interest-
ing direction of future research is to investigate the impact of item
quality on the diversification problem.

In some other situations, items cover their constituent features
to different degrees that may be represented bycoverage weights
(typically in the range[0, 1]). It can be shown that the same ap-
proximation guarantees hold from a theoretical perspective for this
more general situation by using a slightly modified algorithm (for
simplicity we omit these details). Even from an experimental stand-
point, since the algorithm does well on features that are sparsely
populated, it is expected to handle data sets with weighted cover-
ages without a significant degradation in performance. However,
further experimental work in this direction is desirable.

Yet another possibility is that features not only have a target cov-
erage that we would like to achieve, but also an upper limit on cov-
erage. Such two-sided errors can be handled by pretending to dupli-
cate each feature by adding a compliment with the corresponding
complemented coverage target.

Finally, in certain situations, the coverage function on a feature
may not be additive, i.e. the overall coverage obtained by a set of
items on a feature may be different from the sum of their individ-
ual coverage weights for the feature. An open problem is to design
algorithms that are capable of handling such general coverage func-
tions.
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