On the Searchability of Electronic Ink

Daniel Lopresti Andrew Tomkins

Matsushita Information Technology Laboratory
Panasonic Technologies, Inc.
Two Research Way
Princeton, NJ 08540
USA

dpl@mitl.research.panasonic.com
andrewtOmitl.research.panasonic.com

January 9, 1997

Abstract

Pen-based computers and personal digital assistant’s (PDA’s) are new technologies that are
growing in importance. In previous papers, we have espoused a philosophy we call “Computing
in the Ink Domain” that treats ink as a first-class datatype.

One of the most important questions that arises under this model concerns the searching of
large quantities of previously stored pen-stroke data. In this paper, we examine the ink search
problem. We present an algorithm based on a known dynamic programming technique, and
examine its performance under a variety of circumstances.

Keywords: pen computing, approximate string matching, edit distance.

1 Introduction

Despite several early, high-profile “flops,” pen-based computers and personal digital assistants
(PDA’s) are important technologies that are now starting to find acceptance. This synthesis of new
hardware and software raises many systems-level issues, including the possibility of new paradigms
for human-computer interaction. In previous papers, we have espoused a philosophy we have come
to call “Computing in the Ink Domain” [3, 2, 4]. Here, the need for traditional handwriting recogni-
tion (HWX) is often deferred and sometimes even eliminated. Instead, the day-to-day functionality
that users require is realized by treating ink as a first-class datatype.

One of the most important questions that arises under this model concerns the searching of
large quantities of previously stored pen-stroke data. While efficient, well-known techniques exist
for matching simple text strings exactly (e.g., Knuth-Morris-Pratt, Boyer-Moore), with wild-cards
(e.g., Unix grep), and approximately (e.g., Levenshtein or edit distance), there is no comparable
body of work for the problem of matching ink strings. In this paper, we examine the following
question: Given an ink text and an ink pattern, is it possible to search through the text and find all
occurrences of the pattern without overwhelming the user with false “hits”?

As we have noted previously (e.g., [4]), ink search serves as the basis for a broad range of user-
oriented functionality. The concept is quite general, as illustrated by the following examples:

o Pages of handwritten notes can be searched for keywords.

e Pictographic filenames can be “looked-up” without having to scroll through long browsers.

e Handwritten e-mail addresses can be mapped to previously written and recognized addresses
using a translation cache.

e Pen-based commands, including simple gestures, can be matched against a dictionary of pos-
sible commands to simplify the user interface.

By not constraining pen-strokes to represent “valid” symbols over a small, fixed alphabet, a much
richer input language is made available to the user. This philosophy of recognition-on-demand is more
distinctly “human-centric” than traditional HWX, which reflects a “computer-centric” orientation.

2 Definitions

Ink is a sequence of time-stamped points in the plane:!

ink = (x1,y1,t1), (22, 92,12), .. ., (Tk, Y, tk) (1)

Given two ink sequences T and P (the text and the pattern), the ink search problem consists
of determining all locations in 7" where P occurs. This differs significantly from the exact string
matching problem in that we cannot expect perfect matches between the symbols of P and T'. No
one writes a word precisely the same way twice. Ambiguity exists at all levels of abstraction: points
can be drawn at slightly different locations; pen-strokes can be deleted, added, merged, or split;
characters can be written using any of a number of different “allographs,” etc. Hence, approximate
string matching is the appropriate paradigm for ink search.

A standard model for approximate matching is provided by edit distance, also known as the
“k-differences problem” in the literature. In the traditional case [9], the following three operations
are permitted:

1. delete a symbol,?
2. insert a symbol,

3. substitute one symbol for another.

Each of these is assigned a cost, cgeir, Cins, and c¢;sup, and the edit distance, d(P,T), is defined as
the minimum cost of any sequence of basic operations that transforms P into T'. This optimization
problem can be solved using a well-known dynamic programming algorithm. Let P = pi1ps...pm,
T =112 .. .1,, and define d; ; to be the distance between the first ¢ symbols of P and the first j
symbols of 7. Note that d(P,T) = dn, ». The initial conditions are:

doo = 0
dio = di—10+ caer(ps) I1<i<m (2)
doj = doj-1+ cCins(t;) 1<j<n

and the main dynamic programming recurrence is:

di—1j + caer(pi)
dij=ming dij1 + cinslty) 1<i<m, 1<j<n (3)
di—l,j—l + Csub(piatj)

! Pen-tip pressure is also sometimes available — in this paper we do not make use of this.
2The term “symbol” is often taken to mean a text character. Here we use it much more generally — a symbol could
also be a pen-stroke, for example.

When Equation 3 is used as the inner-loop step in an implementation, the time required is O(mn)
where m and n are the lengths of the two strings.

This formulation requires the two strings to be aligned in their entirety. The variation we use
for ink search is modified so that a short pattern can be matched against a longer text. We make
the initial edit distance 0 along the entire length of the text (allowing a match to start anywhere),
and search the final row of the edit distance table for the smallest value (allowing a match to end
anywhere). The initial conditions become:

doo = 0
dio = di—10+ cqe(pi) 1<i<m (4)
dO,j = 0

The inner-loop recurrence (i.e., Equation 3) remains the same.

Finally, we must define our evaluation criteria. It seems inevitable that any ink search algorithm
will miss true occurrences of P in T', and report false “hits” at locations where P does not really
occur. Quantifying the success of an algorithm under these circumstances is not simple. The field
of information retrieval concerns itself with a similar problem in a different domain, however, and
seems to have converged on the following two measures [7]:

Recall The percentage of the time P is found.
Precision The percentage of reported matches that are in fact true.

Obviously it is desirable to have both of these measures as close to 1 as possible. There is,
however, a fundamental trade-off between the two. By insisting on an exact match, the precision
can be made 1, but the recall will undoubtedly suffer. On the other hand, if we allow arbitrary
edits between the pattern and the matched portion of the text, the recall will approach 1, but the
precision will fall to 0. For ink to be searchable, there must exist a point on this trade-off curve
where both the recall and the precision are sufficiently high.

3 Approaches to Searching Ink

Ink can be represented at a number of levels of abstraction, as indicated in Figure 1. At the lowest
level, ink is a sequence of points. At the highest, ink is ASCII text.3 It is natural to assume that
ink search could take place at any given level, with its attendant advantages and disadvantages.

As can be seen from the figure, at each step ink is represented as a collection of higher-level
objects. Some of the earlier information is lost, and a new representation is created that (hopefully)
captures the relevant information from the previous level in a more concise form. So, for instance,
it may be impossible to know from the final word which allographs were used, or to know from the
feature vectors exactly what the ink looked like, etc. Each stage in the process can be viewed as a
recognition task (e.g., strokes from points, words from allographs), and introduces the possibility of
New errors.

An ink search algorithm could perform approximate matching at any level of representation. At
one end of the spectrum, the algorithm could attempt to match individual points in the pattern to
points in the text. At the other extreme, it could perform full HWX on both the pattern and the
text, and then apply “fuzzy” matching on the resulting ASCII strings (to account for recognition
errors).

3For concreteness, we assume HWX returns ASCII strings, but the reader may substitute any fixed character set
as appropriate.

Pattern Ink Text Ink
Y ey v

| Pre-Processing |<— Points 4>| Pre-Processing |
v : : v
| Normalization |<— Normalized Points—i>| Normalization |

M , , M
| Stroke Segmenation |<I—Point Sequences;I>| Stroke Segmenation |

| Feature Extraction —— Feature Vectors—f>| Feature Extraction |
v 5 ' v

| Vector Quantization |<— Stroke Types 4>| Vector Quantization |
v v

| Allograph Recognition |<~7 Characters%—>| Allograph Recognition |
v : E v

| Word Hypothesization F—%Wmdsﬂ Word Hypothesization |
v : : v

Matching Problem

Figure 1: Handwriting recognition stages and potential matching problems.

In Section 4, we consider the latter option by examining how randomly introduced “noise” affects
recall and precision for text searching. The point here is to gain some intuition about the performance
of ink search algorithms built on top of traditional handwriting recognition.

Section 5 presents the primary contribution of this paper: an in-depth examination of an algo-
rithm we call ScriptSearch that performs matching at the level of pen-strokes. This approach has
the advantage of allowing us to do quite well against a broad range of handwriting, including some
so bad that a human might find it illegible. ScriptSearch also allows the possibility of matching
between strings with no obvious ASCII representation, such as equations, drawings, doodles, etc.

4 Searching for Patterns in Noisy Text

In this section we assume that the text and pattern are both ASCII strings, but that characters have
been deleted, inserted, and substituted uniformly at random. This “simulation” has two purposes.
First, it allows us to apply the recall/precision formulation in a familiar domain to develop intuition
about acceptable values. Second, this model corresponds to the problem of matching ink that has
been translated into ASCIT by HWX with no manual intervention to correct recognition errors.
Of course, these values are only an approximation since HWX processes in general do not exhibit
uniform error behavior across all characters.

To illustrate the effects of noise on pattern matching, consider what happens when we search
for a number of keywords in Herman Melville’s novel Moby-Dick. Figure 2 tabulates average recall
and precision under a variety of scenarios. Here garble rate represents a uniformly random artificial
noise source that deletes, inserts, and substitutes characters in the pattern and the text. Note that
when there is some “fuzziness,” the precision can drop off rapidly if we require perfect recall. At
some point, the text is no longer searchable as too many false hits are returned to the user. This is
what we mean when we ask the question: Is ink searchable?

Another view of the data is to consider the precision realizable for a given recall rate. This is
shown in Figure 3. An intuitive interpretation of this figure is that no threshold is necessary if a

Edit Garble Rate

Distance 0% 10% 20%

Threshold || Recall | Precision | Recall | Precision | Recall | Precision
0 1.000 1.000 0.274 0.995 0.003 0.996
1 1.000 0.875 0.643 0.901 0.280 0.944
2 1.000 0.610 0.910 0.581 0.664 0.700
3 1.000 0.329 0.986 0.326 0.886 0.424
4 1.000 0.121 1.000 0.097 0.981 0.154
5 1.000 0.021 1.000 0.015 0.999 0.048
6 1.000 0.010 1.000 0.010 1.000 0.013

Figure 2: Searching for keywords in Moby-Dick (as a function of threshold).

Garble Rate
0% 10% 20%
Recall || Precision | Precision | Precision

0.1 1.000 0.950 0.901
0.2 1.000 0.950 0.901
0.3 1.000 0.950 0.896
0.4 1.000 0.950 0.771
0.5 1.000 0.928 0.678
0.6 1.000 0.909 0.616
0.7 1.000 0.814 0.564
0.8 1.000 0.744 0.408
0.9 1.000 0.604 0.289
1.0 1.000 0.102 0.018

Figure 3: Searching for keywords in Moby-Dick (as a function of recall rate).

ranked list of matches is returned to the user. In this case, for example, at a 10% garble rate, the
user will experience a precision of 0.928 in viewing 50% of the true hits for the pattern.

Of course, real text (without noise) is searchable using routines like Unix grep, etc. However,
handwriting is inherently “noisy” — it is not possible to say a priori that a given handwriting sample
is just as searchable as its textual counterpart. That is the purpose of this study.

5 The ScriptSearch Algorithm

As we noted above, representations for ink exist at various different levels of abstraction. In this
section we examine an algorithm for writer-dependent ink search at the stroke level. The algorithm
applies dynamic programming with a recurrence similar to that used for string edit distance, but
with a different set of operations and costs. The top-level organization of the ScriptSearch algorithm
is shown in Figure 4.

As can be seen from the figure, there are four phases to the algorithm. First, the incoming pen
points are broken into strokes. Next, the strokes are converted into vectors of descriptive features.

Pattern Ink
(x.y.0

|

| Stroke Segmenation |

Strokes

| Feature Extraction |

Feature Vectors

| Vector Quantization |

Stroke Types

| Edit Distance I Text Ink
i Stroke Types x,y,1)

Sequential list of “hits”
or
Matches in ranked order

Figure 4: Overview of the ScriptSearch algorithm.

Third, the feature vectors are classified according to writer-specific information. Finally, the resulting
sequence of classified strokes is matched against the text using approximate string matching over an
alphabet of “stroke classes.” We now describe the four phases in more detail.

Stroke Segmentation. We have investigated several common stroke segmentation algorithms from
handwriting recognition. Currently we break strokes at local minima of the y values. Figure 5 shows
a sample line of stroke-segmented text. The bounding boxes of all strokes are shown.

Feature Extraction. Rather than propose another new feature set, we have taken a set created
by Dean Rubine in the context of gesture recognition [6]. This particular feature set, which converts
each stroke into a real-valued 13-dimensional vector, seems to do well at discriminating single strokes,
and is efficient to update as new points arrive. For intuition, the feature set includes the length of
the stroke, total angle traversed, angle and length of bounding box diagonal, and so on.

Vector Quantization. In the vector quantization stage the complex 13-dimensional feature space

(00 e (ohad
Ll Ll

Figure 5: Example of pen-stroke segmentation.

is segmented or “quantized” into 64 clusters. From then on, instead of representing a feature vector
by the 13 real values of the features, we represent it instead by the index of the cluster to which
it belongs. Thus, instead of maintaining 13 real numbers, we maintain 6 bits. This technique is
common in speech recognition and many other pattern recognition domains. ([1]). The quantization
makes the remaining processing much more efficient, and seeks to choose clusters so that useful
semantic information about the strokes is retained by the 6 bits of the index. We now describe how
to build and use the clusters. First, we must describe how distances are calculated in feature space.

We collect a small sample of handwriting from each writer in advance. This is segmented into
strokes and each strokes is converted into a feature vector ¥ =< wi,va,...,v13 >7. We use the
sample to calculate the average u; of the it feature, and we use these averages to compute the
covariance matrix X defined by:

Yij = L [(vi — pi)(v; — pj)] (5)

Hence, for instance, the diagonal of ¥ contains the variances of the features. Instead of using
standard Euclidean distance we now define the Mahalanobis distance [8] that we will use upon the
space of feature vectors as follows:

7Ty1y (6)
|(7 — @) |m (7)

(i
d(7, %) =

We now have a suitable distance measure for feature space, and can proceed to describe our
vector quantization scheme. We cluster the feature vectors of the ink sample into 64 groups using
a well-known clustering algorithm from the literature known as the k-means algorithm [5]. The
feature vectors of the sample are processed sequentially. Each vector in turn is placed into a cluster,
which is then updated to reflect the new member. Each cluster is represented by its centroid, the
element-wise average of all vectors in the cluster.

The rule for classifying new feature vectors uses the centroids that define each cluster: a new
vector belongs to the cluster with the nearest centroid, under Mahalanobis distance. The 64 final
clusters can be thought of as “stroke types,” and the feature extraction and VQ phases can be
thought of as classifying strokes into stroke types.

After these phases of processing have been performed the text and pattern are represented as
sequences of quantized stroke types:

< stroke type 7 >< stroke type 42 >< stroke type 20 > . .. (8)

Recall that P = p1p2...pm and T' =11t5 .. .1,. From now on, we shall assume that the p;’s and ¢;’s
are vector-quantized stroke types.

The operations described above can be computed without significant overhead from the Ma-
halanobis distance metric. First, note that the inverse covariance matrix is positive definite (in
fact, any matrix defining a valid distance must be positive definite). So we perform a Cholesky
decomposition to write:

yl=AT4 (9)

This being the case, we note that the new distance represents simply a coordinate transformation
of the space:
'yt = (AT A7 = (FTAT) . (A7) = aT'@ (10)

where w = Av. Thus, once all points have been transformed, we can perform all future calcula-
tions in standard Euclidean space.

| Text || Strokes | Characters | Words | Lines | Style |

Writer A 34,560 23,262 | 4,045 625 | Cursive
Writer B 19,324 12,269 | 2,194 363 | Printed

Figure 6: The ink texts.

Edit Distance. Finally, we compute the similarity between the sequence of stroke types associated
with the pattern ink, and the pre-computed sequence for the document ink. We use dynamic
programming to determine the edit distance between the sequences. The cost of an insertion or
deletion is a function of the “size” of the ink being inserted or deleted, where size is defined to be
the length of the stroke type representing the ink, again using the Mahalanobis distance. The cost
of a substitution is the distance between the stroke types. We also add two additional operations:
two-to-one merges and one-to-two splits. This accounts for imperfections in the stroke segmentation
algorithm. We build a merge/split table that contains information of the form “an average stroke of
type 1 merged with an average stroke of type 4 results in a stroke of type 11.” The cost of a merge
or split from stroke a to strokes be is a function of the distance from a to merge(b, ¢). We compute
dynamic programming edit distance using these costs and operations to find the best match in the
document ink.

Again, recall that d;; represents the cost of the best match of the first ¢ symbols of P and
a substring of T ending at symbol j. The recurrence, modified to account for our new types of
substitutions (1:2 and 2:1), is as follows:

di_1; + caer(pi)
d; j-1 + cins(ty)
di,j = min di—l,j—l + Csubl:l(pi,tj) 1<i<m, 1<j<n (11)
di—1j-2 + csubr2(pitj—it;)
di—2j-1 + Ccsuv21(Pi-1pi, ;)

6 Experimental Data

In this section we describe our procedure for evaluating the algorithm. We asked two individuals to
hand-write a reasonably large amount of data. Figure 6 gives some statistics about the sizes of the
texts used. Both individuals wrote based on the beginning of the novel Moby-Dick. We refer to the
two copies as Writer A and Writer B.

We then asked each writer to write a sequence of 30 short words and 30 phrases of two or three
words, taken from the same passages of Moby-Dick. These are the “search strings,” which we refer
to as patterns, or queries. The short patterns ranged in length from 5 to 11 characters, with average
length 8. The long patterns ranged from 12 to 24 characters, with average length 16. We are
primarily interested in the results of searching the text drawn by a particular writer for the patterns
drawn by the same writer since the ScriptSearch algorithm is meant to be writer-dependent.

The task of the algorithm is to find all lines of the text that contain the pattern. For each writer
(A and B) we have an ASCII representation of the ink, augmented by hand with the locations of all
line breaks, which we refer to as the ASCII text. We also have an ASCII version of the patterns.

Thus, the ink text corresponds line-to-line with the ASCII text. Using exact matching techniques,
we find all occurrences of the ASCII patterns in the ASCII text, and note the lines on which all the
matches occur. The ink patterns must occur on the same lines of the ink text.

We then segment both ink texts into lines using simple pattern recognition techniques, and
associate each stroke of the ink text with a line number. Figure 7 shows an example of a page of

Figure 7: Estimation of line center-points.

ink with the center-points of the lines drawn in by the algorithm, and also gives an example of the
handwriting quality of the text.

Using ink search we find all matches of the ink pattern within the ink text, and from the line
segmentation information, we determine the lines of the ink text upon which matches have occurred.
Since the ASCII text corresponds line-to-line with the ink text, we now check to see which matches
are valid. From this information we compute the recall and precision of the ink search procedure.

7 Experimental Results and Discussion

As we mentioned previously, the system can be used in two different ways which yield two different
sets of recall /precision values. First, the hits can be returned in ranked order. Recall and precision
can be calculated by considering the number of spurious elements in the ranked list above a certain
recall point. Second, all hits that exceed a fixed threshold can be returned. Recall and precision can
then be calculated for a particular threshold by determining the total number of hits returned and
the number of valid hits returned.

There is a connection between the two modes of use. If a perfect threshold can be chosen for
each search then a system that returns all values above that threshold will have the same recall
and precision as a ranked system. If the threshold cannot be chosen perfectly then the performance
will decline. Thus, a ranked system represents an upper bound on the performance possible with
a thresholded system. In contrast, a thresholded system has the advantage that the ink can be
processed sequentially, returning hits as they become available, without waiting for the entire search
to complete. Also, certain automatic operations require thresholding. Thus, we give results for both

Writer A Writer B
Short Long All Short Long All
Recall || Patterns | Patterns | Patterns || Patterns | Patterns | Patterns
0.1 0.506 1.000 0.753 0.522 0.826 0.674
0.2 0.494 0.983 0.738 0.493 0.826 0.659
0.3 0.452 0.983 0.718 0.452 0.814 0.634
0.4 0.431 0.973 0.702 0.440 0.814 0.627
0.5 0.403 0.968 0.686 0.416 0.814 0.615
0.6 0.349 0.917 0.633 0.272 0.721 0.496
0.7 0.271 0.873 0.572 0.226 0.678 0.452
0.8 0.268 0.873 0.571 0.217 0.681 0.449
0.9 0.227 0.687 0.457 0.179 0.681 0.430
1.0 0.215 0.684 0.450 0.179 0.681 0.430
Figure 8: Ranked precision values for Writers A and B.
Writer A

Threshold || Short Patterns | Long Patterns | All Patterns

Rec Prec Rec Prec Rec | Prec

10 0.023 | 0.916 | 0.000 | 1.000 | 0.011 | 0.958

20 0.357 | 0.652 | 0.000 | 1.000 | 0.178 | 0.826

30 0.632 | 0.299 | 0.011 | 1.000 | 0.321 | 0.649

40 0.955 | 0.071 | 0.119 | 0.988 | 0.537 | 0.529

50 1.000 | 0.010 | 0.322 | 0.910 | 0.661 | 0.460

60 1.000 | 0.010 | 0.572 | 0.643 | 0.786 | 0.326

70 1.000 | 0.010 | 0.783 | 0.431 | 0.891 | 0.220

80 1.000 | 0.010 | 0.909 | 0.268 | 0.954 | 0.139

90 1.000 | 0.010 | 0.961 | 0.115 | 0.980 | 0.062

100 1.000 | 0.010 | 0.991 | 0.075 | 0.995 | 0.042

110 1.000 | 0.010 | 1.000 | 0.024 | 1.000 | 0.017

120 1.000 | 0.010 | 1.000 | 0.011 | 1.000 | 0.010

Figure 9: Recall and precision as a function of edit distance threshold for Writer A.

models.

Figure 8 shows the performance of the algorithm when returning ranked data. The figure shows
that the difference in pattern length is extremely important to the performance. For example, at
100% recall there is a 47% difference in average precision values for long and short patterns in Writer
A, and 50% difference in Writer B.

Figure 9 gives results for a system that does not give ranked output, for a wide variety of
thresholds on the final edit distance between the pattern and a subsequence of the text. The figure
shows recall and precision values for each threshold. Figure 10 shows the same information for
Writer B. These figures suggest that it might be possible to choose thresholds dynamically based on
properties of the pattern such as length.

In order to explore our intuition that stroke-based matching is not likely to be effective for
multiple writers, we asked three additional writers (C, D, and E) to write the entire set of 60
patterns. We then matched these patterns against Writer A. The results are shown in Figure 11 for
ranked recall and precision. As expected, the performance of the system is drastically worse than
the results given above. This implies that performing ink search at the stroke level will probably

10

Writer B

Threshold || Short Patterns | Long Patterns | All Patterns
Rec Prec Rec Prec Rec | Prec

10 0.041 | 0.973 | 0.000 | 1.000 | 0.020 | 0.986
20 0.215 | 0.677 | 0.000 | 1.000 | 0.107 | 0.834
30 0.539 | 0.383 | 0.017 | 1.000 | 0.278 | 0.691
40 0.757 | 0.094 | 0.075 | 1.000 | 0.416 | 0.547
50 0.946 | 0.041 | 0.195 | 0.948 | 0.570 | 0.494
60 1.000 | 0.010 | 0.500 | 0.679 | 0.750 | 0.344
70 1.000 | 0.010 | 0.626 | 0.398 | 0.813 | 0.204
80 1.000 | 0.010 | 0.914 | 0.304 | 0.957 | 0.157
90 1.000 | 0.010 | 0.931 | 0.103 | 0.965 | 0.062
100 1.000 | 0.010 | 1.000 | 0.039 | 1.000 | 0.024
110 1.000 | 0.010 | 1.000 | 0.006 | 1.000 | 0.008
120 1.000 | 0.010 | 1.000 | 0.005 | 1.000 | 0.007

Figure 10: Recall and precision as a function of edit distance threshold for Writer B.

Recall Writer C Writer D Writer E

Short | Long | All Short | Long | All Short | Long | All
0.1 0.024 | 0.027 | 0.025 || 0.033 | 0.070 | 0.052 || 0.048 | 0.099 | 0.073
0.2 0.022 | 0.014 | 0.018 || 0.032 | 0.041 | 0.037 || 0.032 | 0.028 | 0.030
0.3 0.013 | 0.014 | 0.013 || 0.031 | 0.042 | 0.036 || 0.032 | 0.024 | 0.028
0.4 0.013 | 0.015 | 0.014 || 0.029 | 0.023 | 0.026 || 0.033 | 0.021 | 0.027
0.5 0.013 | 0.015 | 0.014 || 0.030 | 0.022 | 0.026 || 0.034 | 0.021 | 0.028
0.6 0.010 | 0.013 | 0.011 || 0.018 | 0.016 | 0.017 || 0.018 | 0.018 | 0.018
0.7 0.010 | 0.013 | 0.011 || 0.017 | 0.015 | 0.016 || 0.018 | 0.018 | 0.018
0.8 0.010 | 0.013 | 0.011 || 0.017 | 0.014 | 0.016 || 0.016 | 0.017 | 0.017
0.9 0.010 | 0.012 | 0.011 || 0.017 | 0.013 | 0.015 || 0.015 | 0.017 | 0.016
1.0 0.010 | 0.012 | 0.011 || 0.017 | 0.013 | 0.015 || 0.015 | 0.016 | 0.016

Figure 11: Cross-writer query precision (text by Writer A).

restrict the pattern and text to be written by the same author, unless a more complex notion of
distance between strokes can be developed.

8 Conclusions and Future Research

In this paper we have given some approaches to the problem of searching through ink in an attempt
to determine the tractability of the problem. We have given some data to suggest that matching at
the character level after performing HWX might be a tractable option. We have also presented a
stroke-level matching algorithm that performs well for writer-dependent matching, in both ranked
and thresholded systems. We also showed results suggesting that the unmodified algorithm does not
perform well in writer-independent domains.

In the future it would be interesting to evaluate approaches to the problem that represent ink at
different levels of abstraction, such as at the allograph level, perhaps performing dynamic program-
ming on the adjacency graph to find the best match.

Further, since the amount of ink being searched is likely to become very large, especially for
multi-author techniques, it would be very interesting to investigate sub-linear techniques that use

11

more complex pre-processing of the ink text.

Also, we have not evaluated searches through parts of the ink domain other than English text. If
the VQ classes were trained with a more general set of strokes then the ScriptSearch algorithm could
run unchanged on drawings, figures, equations, other alphabets, and so on. It would be interesting
to evaluate its effectiveness in these domains, especially since HWX-based methods do not apply.

Finally, it would be interesting to examine extensions to writer independence at the stroke level
of matching. We sketch briefly an approach that we believe has potential for this problem:

Recall that, since the V@ codebooks of two authors may be different, this is no natural stroke-
to-stroke correspondence. Let us assume that by some approximate means it is possible put text
from two authors A and B into a rough correspondence, and then to determine for each of A’s
strokes a distribution of similarity with B’s strokes. We can describe these distributions for each
of A’s strokes in a Stroke Similarity Matriz S. The i'* row of such a matrix describes how A’s "
stroke corresponds to all of B’s strokes. Assume that the (i,)" entry of matrix Dg_,p gives the
Mahalanobis distance from writer B’s stroke ¢ to stroke j. We wish to compute D4_, g, the matrix
giving distances from each of writer A’s strokes to each of writer B’s strokes. We do so as follows:

Dasp=S-Dpsp (12)

That is, to compute the distance between the i*? stroke of A and the j** stroke of B we do the
following. Think of the i*? stroke of A as corresponding to various strokes of B with the weights
given in the i*” row of S. Now extract the distance from each of these strokes to B’s j* stroke, and
take the weighted sum of these distances. This is the inner product of the i*” row of S with the j'”
column of Dg_ g, as shown in Equation 12.

This approach gives a reasonable “cross-author” distance measure that we can substitute for the
Mahalanobis distance used above. The ScriptSearch algorithm can then be used without further
changes.

References

[1] Yoseph Linde, Andres Buzo, and Robert M. Gray. An algorithm for vector quantizer design.
IEEE Transactions on Communications, COM-28, No 1:84-95, 1980.

[2] Daniel Lopresti and Andrew Tomkins. Approximate matching of hand-drawn pictograms. In
Proceedings of the Third International Workshop on Frontiers in Handwriting Recognition, pages
102-111, May 1993.

[3] Daniel Lopresti and Andrew Tomkins. Pictographic naming. In Adjunct Proceedings of the 1993
Conference on Human Factors in Computing Systems (INTERCHI’93), pages T7-78, April 1993.

[4] Daniel Lopresti and Andrew Tomkins. Computing in the ink domain. Submitted for publication,
March 1994.

[5] J. MacQueen. Some methods for classification and analysis of multivariate observations. Pro-
ceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability, 1:281-296,
1967.

[6] Dean Rubine. The Automatic Recognition of Gestures. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1991.

[7] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., 1983.

12

[8] Robert Schalkoff. Pattern Recognition. Statistical, Structural and Neural Approaches. John Wiley
& Sons, Inc, 1992.

[9] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal of
the Association for Computing Machinery, 21(1):168-173, 1974.

13

