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ABSTRACT
We present a detailed study of network evolution by analyzing four
large online social networks with full temporal information about
node and edge arrivals. For the first time at such a large scale,
we study individual node arrival and edge creation processes that
collectively lead to macroscopic properties of networks. Using a
methodology based on the maximum-likelihood principle, wein-
vestigate a wide variety of network formation strategies, and show
that edge locality plays a critical role in evolution of networks. Our
findings supplement earlier network models based on the inherently
non-local preferential attachment.

Based on our observations, we develop a complete model of net-
work evolution, where nodes arrive at a prespecified rate andselect
their lifetimes. Each node then independently initiates edges ac-
cording to a “gap” process, selecting a destination for eachedge ac-
cording to a simple triangle-closing model free of any parameters.
We show analytically that the combination of the gap distribution
with the node lifetime leads to a power law out-degree distribution
that accurately reflects the true network in all four cases. Finally,
we give model parameter settings that allow automatic evolution
and generation of realistic synthetic networks of arbitrary scale.

Categories and Subject Descriptors:H.2.8 [Database Manage-
ment]: Database applications—Data mining

General Terms: Measurement, Experimentation

Keywords: Social networks, Graph generators, Network evolu-
tion, Graph mining, Maximum likelihood

1. INTRODUCTION
In recent years a wide variety of models have been proposed

for the growth of complex networks. These models are typically
advanced in order to reproduce statistical network properties ob-
served in real-world data. They are evaluated on the fidelitywith
which they reproduce these global network statistics and patterns.
In many cases, the goal is to define individual node behaviorsthat
result in a global structure such as power law node degree distri-
butions; in other cases, the goal is to match some other network
property such as small diameter.

Part of this work was done while the first and second authors were
visiting Yahoo! Research.
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For example, the observation of heavy-tailed degree distribu-
tions [10] led to hypothesis about edge creation processes (e.g.,
preferential attachment [1]) that could lead to this observation. In
fact, there are several edge creation processes that all lead to heavy-
tailed degree distributions and it is not clear which among them
captures reality best.

Here we take a different approach. Instead of only focusing on
the global network structure and then hypothesizing what kind of
microscopic node behavior would reproduce the observed macro-
scopic network structure, we focus directly on the microscopic node
behaviorper se. For the first time at such a large scale, we study a
sequence of millions of individual edge arrivals, which allows us to
directly evaluate and compare microscopic processes that give rise
to global network structure.

Evaluation based on likelihood. Given that the microscopic be-
havior of nodes solely determines the macroscopic network proper-
ties, a good network model should match real-world data on global
statistics, while maximizing the likelihood of the low-level pro-
cesses generating the data. Towards this goal, we propose the use
of model likelihood of individual edges as a way to evaluate and
compare various network evolution models.

Likelihood has not been considered to date in the analysis of
evolution of large social networks mainly due to lack of dataand
computational issues. Many early network datasets contained only
a single or a small number of snapshots of the data, making like-
lihood computations for evolutionary models infeasible. We study
four large social networks withexact temporal information about
individual arrivals of millions of edges. We are therefore able to
consider edge-by-edge evolution of networks, and hence efficiently
compute the likelihood that a particular model would have pro-
duced a particular edge, given the current state of the network.
In contrast to previous work on evolution of large networks that
used a series of snapshots to consider patterns at global scale, we
study the exact edge arrival sequence, which means we are able to
directly observe and model the fine-grained network evolutionary
processes that are directly responsible for global networkpatterns
and statistics.

A likelihood-based approach has several advantages over ap-
proaches based purely on global statistics:

(1) Models may be compared directly in a unified way, rather
than arguing whether faithful reproduction of, e.g., diameter is more
important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improves, the
evaluation criterion, i.e., likelihood, remains unchanged while the
generative models improve to incorporate the new understanding.
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on as-yet-
undiscovered properties of real-world data.



Data and model structure. We consider four large online social
network datasets — FLICKR (flickr.com, a photo-sharing web-
site), DELICIOUS (del.icio.us, a collaborative bookmark tag-
ging website), YAHOO! A NSWERS (answers.yahoo.com, a
knowledge sharing website), and LINKED IN (linkedin.com, a
professional contacts website) — where nodes represent people and
edges represent social relationships. These networks are large with
up to millions of nodes and edges, and the time span of the data
ranges from four months to almost four years. All the networks
are in early stages of their evolution with the connected component
being small and the clustering coefficient increasing over time.

We consider models that can be decomposed into three core pro-
cesses, namely, the node arrival process (governs the arrival of new
nodes into the network), the edge initiation process (determines for
each node when it will initiate a new edge), and the edge destina-
tion selection process (determines the destination of a newly initi-
ated edge). Our networks do not include removal of nodes or edges,
so we do not model deletion (although we do model the “death” of
a node in the sense that it ceases producing new edges).

Our results. We begin with a series of analyses of our four net-
works, capturing the evolution of key network parameters, and eval-
uation of the extent to which the edge destination selectionprocess
subscribes to preferential attachment. We show that the inherently
non-local nature of preferential attachment is fundamentally unable
to capture important characteristics in these networks. Tothe best
of our knowledge, this is the first direct large-scale validation of the
preferential attachment model in real networks.

Next, we provide a detailed analysis of the data in order to con-
sider parsimonious models for edge destination selection that incor-
porate locality. We evaluate a wide variety of such models using
the maximum-likelihood principle and choose a simple triangle-
closing model that is free of parameters. Based on the findings, we
then propose a complete network evolution model that accurately
captures a variety of network properties. We summarize our model
based on the three processes listed earlier.

Node arrival process.We find large variation in node arrival rates
over the four networks, ranging from exponential to sub-linear growth.
Thus we treat node arrival rate as input to our model.

Edge initiation process.Upon arrival, a node draws its lifetime
and then keeps adding edges until reaching its lifetime, with edges
inter-arrival rate following a power law with exponential cut-off
distribution. We find that edge initiations areaccelerating with
node degree (age), and prove that this leads to power law out degree
distributions. The model produces accurate fits and high likelihood.

Edge destination selection process.We find that most edges (30%–
60%) are local as they close triangles, i.e., the destination is only
two hops from the source. We consider a variety of triangle-closing
mechanisms and show that a simple scheme, where a source node
chooses an intermediate node uniformly from among its neighbors,
and then the intermediate node does the same, has high likelihood.

Our model is easy to implement, and we give parameter settings
that allow others to generate networks at arbitrary scale that simu-
late any of our four input networks. We show that our model pro-
duces realistic social network evolution following the true evolu-
tion of network properties such as clustering coefficient and diame-
ter; our purely local model gives rise to accurate global properties.

2. RELATED WORK
Many studies on online social networks, world wide web, and bi-

ological networks focused on macroscopic properties of static net-
works such as degree distributions, diameter, clustering coefficient,
communities, etc; work in this area includes [10, 21, 2, 18, 8, 7].
Similarly, macroscopic properties of network evolution, like densi-
fication and shrinking diameters, were examined [11, 19, 16,13].

Given that the classical Erdös–Rényi model cannot capture the
above characteristics, a number of alternate network models have
been proposed. The copying [14] and the preferential attachment
[1] models belong to this category. The forest-fire model [16] at-
tempts to explain the densification and decreasing-diameter phe-
nomena observed in real networks. See [6] for a survey.

Recently, researchers examined the finer aspects of edge creation
by focusing on a small set of network snapshots. The role of com-
mon friends in community formation was analyzed by Backstrom
et al. [3]. Kleinberg and Liben-Nowell [17] studied the predictabil-
ity of edges in social networks. The role of triangle closurein so-
cial networks was long known to sociologists. Simmel theorized
that people with common friends are more likely to create friend-
ships and Krackhardt and Handcock [12] applied this theory to ex-
plain the evolution of triangle closures. A network model based on
closed triangles was proposed by Shi et al. [20].

The maximum-likelihood principle has been typically used to
estimate network model parameters [15, 22, 23] or for model se-
lection [4], which often requires expensive computations of high
dimensional integrals over all possible node arrival sequences. In
contrast, we use the likelihood in a much more direct way to evalu-
ate and compare different modeling choices at a microscopiclevel.

3. PRELIMINARIES

Datasets. For each of our four large network datasets, we know
the exact time of all the node/edge arrivals. Table 1 gives the ba-
sic statistics of the four networks. All the networks slowlydensify
with a densification exponent [?] ρ ≈ 1.2. All the networks, ex-
cept DELICIOUS, have shrinking diameter. In FLICKR, ANSWERS,
and LINKED IN, the effective diameter reaches the maximum value
of 10 when the network has around 50,000 nodes, and then slowly
decreases to the around 7.5; in DELICIOUS, the diameter is prac-
tically constant. Also, in all the networks, a majority of edges are
bidirectional (columnEb). The reciprocity is 73% in FLICKR, 81%
in DELICIOUS, and 58% in ANSWERS; L INKED IN is undirected,
but we know the edge initiator. The fraction of nodes that belongs
to the largest weakly connected component is 69% in FLICKR, 72%
in DELICIOUS, 81% in ANSWERS, and 91% in LINKED IN.

Notation. Let N, E, and T denote the total number of nodes,
edges, and the span of the data in days. LetGt be a network com-
posed from the earliestt edges,e1, . . . , et for t = 1, . . . , E. Let
t(e) be the time when the edgee is created, lett(u) be the time
when the nodeu joined the network, and lettk(u) be the time when
thek-th edge of the nodeu is created. Letat(u) = t − t(u) de-
note the age of the nodeu at timet. Let dt(u) denote the degree
of the nodeu at timet andd(u) = dT (u). We use[·] to denote a
predicate (takes value of 1 if expression is true, else 0).

Maximum-likelihood principle. The maximum-likelihood esti-
mation (MLE) principle can be applied to compare a family of pa-
rameterized models in terms of their likelihood of generating the
observed data, and as a result, pick the “best” model (and parame-
ters) to explain the data. To apply the likelihood principle, we con-
sider the following setting: we evolve the network edge by edge,



Network T N E Eb Eu E∆ % ρ κ
FLICKR (03/2003–09/2005) 621 584,207 3,554,130 2,594,078 2,257,211 1,475,345 65.631.32 1.44

DELICIOUS (05/2006–02/2007) 292 203,234 430,707 348,437 348,437 96,387 27.66 1.15 0.81
ANSWERS(03/2007–06/2007) 121 598,314 1,834,217 1,067,021 1,300,698 303,858 23.36 1.25 0.92
L INKED IN (05/2003–10/2006) 1294 7,550,955 30,682,028 30,682,028 30,682,028 15,201,596 49.55 1.14 1.04

Table 1: Network dataset statistics.Eb is the number of bidirectional edges,Eu is the number of edges in undirected network,E∆ is
the number of edges that close triangles,% is the fraction of triangle-closing edges,ρ is the densification exponent (E(t) ∝ N(t)ρ),
and κ is the decay exponent (Eh ∝ exp(−κh)) of the number of edgesEh closingh hop paths (see Figure 4).
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Figure 1: Probability pe(d) of a new edgee choosing a destina-
tion at a node of degreed.

and for every edge that arrives into the network, we measure the
likelihood that the particular edge endpoints would be chosen under
some model. The product of these likelihoods over all edges will
give the likelihood of the model. A higher likelihood means a“bet-
ter” model in the sense that it offers a more likely explanation of
the observed data. For numerical purposes, we use log-likelihoods.

4. PREFERENTIAL ATTACHMENT
In this section we study the bias in selection of an edge’s source

and destination based on the degree and age of a node.

4.1 Edge attachment by degree
The preferential attachment (PA) model [1] postulates thatwhen

a new node joins the network, it creates a constant number of edges,
where the destination node of each edge is chosen proportional to
the destination’s degree. Using our data, we compute the probabil-
ity pe(d) that a new edge chooses a destination node of degreed;
pe(d) is normalized by the number of nodes of degreed that exist
just before this step. We compute:

pe(d) =

∑

t[et = (u, v) ∧ dt−1(v) = d]
∑

t |{u : dt−1(u) = d}|
.

First, Figure 1(a) showspe(d) for the Erd̋os–Rényi [9] random
network,Gnp, with p = 12/n. In Gnp, since the destination node
is chosen independently of its degree, the line is flat. Similarly,
in the PA model, where nodes are chosen proportionally with their
degree, we get a linear relationshippe(d) ∝ d; see Figure 1(b).
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Figure 2: Average number of edges created by a node of agea.

Next we turn to our four networks and fit the functionpe(d) ∝
dτ . In FLICKR, Figure 1(c), degree 1 nodes have lower probability
of being linked as in the PA model; the rest of the edges could be
explained well by PA. In DELICIOUS, Figure 1(d), the fit nicely fol-
lows PA. In ANSWERS, Figure 1(e), the presence of PA is slightly
weaker, withpe(d) ∝ d0.9. L INKED IN has a very different pattern:
edges to the low degree nodes do not attach preferentially (the fit is
d0.6), whereas edges to higher degree nodes are more “sticky” (the
fit is d1.2). This suggests that high-degree nodes in LINKED IN get
super-preferential treatment. To summarize, even though there are
minor differences in the exponentsτ for each of the four networks,
we can treatτ ≈ 1, meaning, the attachment is essentially linear.

4.2 Edges by the age of the node
Next, we examine the effect of a node’s age on the number of

edges it creates. The hypothesis is that older, more experienced
users of a social networking website are also more engaged and
thus create more edges.

Figure 2 plots the fraction of edges initiated by nodes of a certain
age. Thene(a), the average number of edges created by nodes of
agea, is the number of edges created by nodes of agea normalized
by the number of nodes that achieved agea:

e(a) =
|{e = (u, v) : t(e) − t(u) = a}|

|{t(u) : tℓ − t(u) ≥ a}|
,

wheretℓ is the time when the last node in the network joined.
Notice a spike at nodes of age 0. These correspond to the people

who receive an invite to join the network, create a first edge,and
then never come back. For all other ages, the level of activity seems
to be uniform over time, except for LINKED IN, in which activity of
older nodes slowly increases over time.

4.3 Bias towards node age and degree
Using the MLE principle, we study the combined effect of node

age and degree by considering the following four parameterized
models for choosing the edge endpoints at timet.



D: dt(v)τ DR: τ · dt(v) + (1 − τ ) · 1/N(t) A: at(v)τ DA: dt(v) · at(v)τ
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Figure 3: Log-likelihood of an edge selecting its source anddestination node. Arrow denotesτ with highest likelihood.

D: The probability of selecting a nodev is proportional to its
current degree raised to powerτ : dt(v)τ .

DR: With prob. τ , the nodev is selected preferentially (propor-
tionally to its degree), and with prob.(1−τ ), uniformly at random:
τ · dt(v) + (1 − τ ) · 1/N(t).

A: The probability of selecting a node is proportional to its age
raised to powerτ : at(v)τ

DA: The probability of selecting a nodev is proportional the
product of its current degree and age raised to powerτ : dt(v)·
at(v)τ .

Figure 3 plots the log-likelihoods under different models,as a
function ofτ . The red curve plots the log-likelihood of selecting a
source node and the green curve for selecting the destination node
of an edge.

In FLICKR, notice that the selection of destination is purely pref-
erential: modelD achieves the maximum likelihood atτ = 1, and
model DA is very biased to modelD, i.e., τ ≈ 1. Model A has
worse likelihood but modelDA improves the overall log-likelihood
by around 10%. Edge attachment in DELICIOUS seems to be the
most “random”: modelD has worse likelihood than modelDR.
Moreover the likelihood of modelDR is maximum atτ = 0.5 sug-
gesting that about 50% of the DELICIOUS edges attach randomly.
ModelA has better likelihood than the degree-based models, show-
ing edges are highly biased towards young nodes. For ANSWERS,
modelsD, A, andDR have roughly equal likelihood (at the optimal
choice ofτ ), while modelDA further improves the log-likelihood
by 20%, showing some age bias. In LINKED IN, age-biased models
are worse than degree-biased models. We also note strong degree
preferential bias of the edges. As in FLICKR, modelDA improves
the log-likelihood by 10%.

We notice that selecting an edge’s destination node is harder than
selecting its source (the green curve is usually below the red). Also,
selecting a destination appears more random than selectinga source
— the maximum likelihoodτ of the destination node (green curve)
for modelsD andDR is shifted to the left when compared to the
source node (red), which means the degree bias is weaker. Simi-
larly, there is a stronger bias towards young nodes in selecting an
edge’s source than in selecting its destination. Based on the obser-
vations, we conclude that PA (modelD) performs reasonably well
compared to more sophisticated variants based on degree andage.

5. LOCALITY OF EDGE ATTACHMENT
Even though our analysis suggests that PA is a reasonable model

for edge destination selection, it is inherently “non-local” in that
edges are no more likely to form between nodes who already share
other friends in common. In this section we perform a detailed
study of the locality properties of edge destination selection.

We first consider the following notion of edge locality: for each
new edge(u, w), we measure the number of hops it spans, i.e.,
the length of the shortest path between nodesu andw immediately
before the edge was created. In Figure 4 we study the distribution of
these shortest path values induced by each new edge forGnp (with
p = 12/n), PA, and the four social networks. (The isolated dot
on the left counts the number of edges that connected previously
disconnected components of the network.)

For Gnp most new edges span nodes that were originally six
hops away, and then the number decays polynomially in the hops.
In the PA model, we see a lot of long-range edges; most of them
span four hops but none spans more than seven. The hop distribu-
tions corresponding to the four real-world networks look similar to
one another, and strikingly different from bothGnp and PA. The
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Figure 4: Number of edgesEh created to nodesh hops away.
h = 0 counts the number of edges that connected previously
disconnected components.

number of edges decays exponentially with the hop distance be-
tween the nodes (see Table 1 for fitted decay exponentsκ). This
means that most edges are created locally between nodes thatare
close. The exponential decay suggests that the creation of alarge
fraction of edges can be attributed to locality in the network struc-
ture, namely most of the times people who are close in the network
(e.g., have a common friend) become friends themselves.

These results involve counting the number of edges that link
nodes a certain distance away. In a sense, this overcounts edges
(u, w) for which u andw are far away, as there are many more
distant candidates to choose from — it appears that the number of
long-range edges decays exponentially while the number of long-
range candidates grows exponentially. To explore this phenomenon,
we count the number of hops each new edge spans but then nor-
malize this count by the total number of nodes ath hops. More
precisely, we compute

pe(h) =

∑

t[et connects nodes at distanceh in Gt−1]
∑

t(# nodes at distanceh from the source node ofet)
.

First, Figures 5(a) and (b) show the results forGnp and PA mod-
els. (Again, the isolated dot ath = 0 plots the probability of a
new edge connecting disconnected components.) InGnp, edges
are created uniformly at random, and so the probability of linking
is independent of the number of hops between the nodes. In PA,
due to degree correlations short (local) edges prevail. However, a
non-trivial amount of probability goes to edges that span more than
two hops. (Notice the logarithmicy-axis.)

Figures 5(c)–(f) show the plots for the four networks. Notice
the probability of linking to a nodeh hops away decays double-
exponentially, i.e.,pe(h) ∝ exp(exp(−h)), since the number of
edges ath hops increases exponentially withh. This behavior is
drastically different from both the PA andGnp models. Also note
that almost all of the probability mass is on edges that closelength-
two paths. This means that edges are most likely to close triangles,
i.e., connect people with common friends.
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Figure 5: Probability of linking to a random node at h hops
from source node. Value ath = 0 hops is for edges that connect
previously disconnected components.

Figure 6: Triangle-closing model: nodeu creates an edge by
selecting intermediate nodev, which then selects target nodew
to which the edge(u, w) is created.

ColumnE∆ in Table 1 further illustrates this point by presenting
the number of triangle-closing edges. FLICKR and LINKED IN have
the highest fraction of triangle-closing edges, whereas ANSWERS

and DELICIOUS have substantially less such edges. Note that here
we are not measuring the fraction of nodes participating in trian-
gles. Rather, we unroll the evolution of the network, and forevery
new edge check to see if it closes a new triangle or not.

5.1 Triangle-closing models
Given that such a high fraction of edges close triangles, we aim

to model how a length-two path should be selected. We consider
a scenario in which a source nodeu has decided to add an edge to
some nodew two hops away, and we are faced with various alter-
natives for the choice of nodew. Figure 6 illustrates the setting.
Edges arrive one by one and the simplest model to close a trian-
gle (edge(u, w) in the figure) is to haveu select a destinationw
randomly from all nodes at two hops fromu.

To improve upon this baseline model we consider various models
of choosing nodew. We consider processes in whichu first selects
a neighborv according to some mechanism, andv then selects a
neighborw according to some (possibly different) mechanism. The
edge(u, w) is then created and the triangle(u, v, w) is closed. The
selection of bothv andw involves picking a neighbor of a node. We
consider five different models to pick a neighborv of u, namely,
nodev is chosen



FLICKR random deg0.2 com last−0.4 comlast−0.4

random 13.6 13.9 14.3 16.1 15.7
deg0.1 13.5 14.2 13.7 16.0 15.6
last0.2 14.7 15.6 15.0 17.2 16.9
com 11.2 11.6 11.9 13.9 13.4

comlast0.1 11.0 11.4 11.7 13.6 13.2

DELICIOUS random deg0.3 com last−0.2 comlast−0.2

random 11.7 12.4 13.8 13.2 15.1
deg0.2 12.2 12.8 14.3 13.7 15.6

last−0.3 13.8 14.6 16.0 15.3 17.2
com 13.6 14.4 15.8 15.2 17.1

comlast−0.2 14.7 15.6 16.9 16.3 18.2

ANSWERS random deg0.3 com last−0.2 comlast−0.2

random 6.80 10.1 11.8 9.70 13.3
deg0.2 7.18 10.5 12.2 10.1 13.7

last−0.3 9.95 13.4 15.0 12.8 16.4
com 6.82 10.3 11.8 9.80 13.4

comlast0.2 7.93 11.5 12.9 10.9 14.5

L INKED IN random deg0.1 com last−0.1 comlast−0.1

random 16.0 16.5 18.2 17.2 18.5
deg0.1 15.9 16.4 18.0 17.0 18.4

last−0.1 19.0 19.5 21.1 20.0 21.4

Table 2: Triangle-closing models. First pick intermediatenode
v (fix column), then target nodew (fix row). The cell gives per-
cent improvement over the log-likelihood of picking a random
node two hops away (baseline).

random: uniformly at random,
degτ : proportional to degreed(v)τ ,
com: prop. to the number of common friendsc(u, v) with u,
last: proportional to the time passed sincev last created an edge,
comlastτ : proportional to the product of the number of common

friends withu and the time of last activity, raised to the powerτ .

As we stated before, we can compose any two of these basic
models to choose a two-hop neighbor, i.e., a way to close the tri-
angle. For instance, thelast0.1-com model will work as follows:
u will employ the last0.1 model to select nodev, v will employ
the com model to select nodew, and thenu will add an edge to
w, closing the triangle(u, v, w). We consider all 25 five possible
composite models for selecting a two-hop neighbor and evaluate
them by the likelihood that the model generated all the edgesthat
closed length-two paths in the real network.

Table 2 shows the percent improvement of various triangle-closing
models over the log-likelihood of choosing a two-hop neighbor uni-
formly at random as a destination of the edge (the baseline).The
simplest model,random-random, works remarkably well and has
has many desirable properties. It gives higher probabilityto nodes
with more length-two paths, discounting each path by roughly 1/d(v).
Moreover, it is also biased towards high-degree nodes, as they have
multiple paths leading towards them.

Thedeg1.0-random model weighs each nodew by roughly the
number of length-two paths betweenu andw. However, we find
that it performs worse thanrandom-random. For the more gen-
eral degτ -random, the optimal value ofτ varies from0.1 to 0.3
over all the four networks, and this model provides meaningful im-
provements only for the ANSWERSnetwork.

Thecom model considers the strength of a tie betweenu andv,
which we approximate by the number of common friendsc(u, v) of
nodesu andv; the larger the value, the stronger the tie. By selecting
v with probability proportional toc(u, v), we get a substantial gain
in model likelihood. A factor that further improves the model is the
recency of activity byv, captured bylastτ . By selecting nodes that
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Figure 7: Exponentially distributed node lifetimes.

have recently participated in a new edge with higher probability,
we get another sizable improvement in the model likelihood.These
two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the networks,
the random-random model gives a sizable chunk of the perfor-
mance gain over the baseline (10%). Due its simplicity, we choose
this as the triangle-closing model for the rest of the paper.

Note that the above methodology could be extended to edge
creations other than triangle-closing. We chose to focus onthe
triangle-closing edges for two reasons. First, a high fraction of all
edges created fall into this category, and hence an understanding of
triangle-closing edges is an important first step towards understand-
ing the overall network evolution. Second, with the exception of
quite simplistic models, it is computationally infeasibleto compute
the likelihood at a distance greater than two hops as the number of
nodes and possible paths increases dramatically.

6. NODE AND EDGE ARRIVAL PROCESS
In this section we turn our focus to the edge initiation process

that determines which node is responsible for creating a newedge
(Section 6.1), and then to the process by which new nodes arrive
into the network (Section 6.2).

6.1 Edge initiation
In the following we assume that the sequence and timing of node

arrivals is given, and we model the process by which nodes initiate
edges. We begin by studying how long a node remains active in the
social network, and then during this active lifetime, we study the
specific times at which the node initiates new edges.

6.1.1 Node lifetime
To avoid truncation effects, we only consider those nodes whose

last-created edge is in the first half of all edges in the data.Recall
that the lifetime of a nodeu is a(u) = td(u)(u) − t1(u). We
evaluate the likelihood of various distributions and observe that
node lifetimes are best modeled by an exponential distribution,
pℓ(a) = λ exp(−λa). Figure 7 gives the plot of the data and the
exponential fits, where time is measured in days. In Table 5, the
row corresponding toλ gives the values of fitted exponents. We
note that the exponential distribution does not fit well the nodes
with very short lifetimes, i.e., nodes that are invited intothe net-
work, create an edge and never return. But the distribution provides
a very clean fit for nodes whose lifetime is more than a week.



degreed power power law log stretched
law exp. cutoff normal exp.

1 9.84 12.50 11.65 12.10
2 11.55 13.85 13.02 13.40
3 10.53 13.00 12.15 12.59
4 9.82 12.40 11.55 12.05
5 8.87 11.62 10.77 11.28

avg.,d ≤ 20 8.27 11.12 10.23 10.76

Table 3: Edge gap distribution: percent improvement of the
log-likelihood at maximum-likelihood estimate over the expo-
nential distribution.
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Figure 8: Edge gap distribution for a node to obtain the second
edge,δ(1), and MLE power law with exponential cutoff fits.

6.1.2 Time gap between the edges
Now that we have a model for the lifetime of a nodeu, we must

model that amount of elapsed time between edge initiations from
u. Let δu(d) = td+1(u) − td(u) be the time it takes for the node
u with current degreed to acquire its(d + 1)-st out-edge; we call
δu(d) theedge gap. Again, we examine several candidate distribu-
tions to model edge gaps. Table 3 shows the percent improvement
of the log-likelihood at the MLE over the exponential distribution.
The best likelihood is provided by a power law with exponential
cutoff: pg(δ(d);α, β) ∝ δ(d)−α exp(−βδ(d)), whered is the
current degree of the node. (Note that the distribution is neither
exponential nor Poisson, as one might be tempted to assume.)We
confirm these results in Figure 8, in which we plot the MLE esti-
mates to gap distributionδ(1), i.e., distribution of times that it took
a node of degree 1 to add the second edge. In fact, we find that
all gaps distributionsδ(d) are best modeled by a power law with
exponential cut-off (Table 3 gives log-likelihoods ford = 1, . . . , 5
and the average ford = 1, . . . , 20.)

Figure 9 shows the evolution of the parametersα andβ of the
gap distribution, as a function of the degreed of the node. The
power law exponentα(d) remains constant as a function ofd, at
almost the same value for all four networks. On the other hand,
the exponential cutoff parameterβ(d) increases linearly withd in
all cases, and varies by an order of magnitude across networks;
this variation models the extent to which the “rich get richer” phe-
nomenon manifests in each network. Nodes add their(d + 1)-st
node faster than theird-th node. This means that nodes start to cre-
ate more and more edges (sleeping times get shorter) as they get
older. So, based on Figure 9, the overall gap distribution can be
modeled bypg(δ|d; α, β) ∝ δ−α exp(−βdδ).

Given the above observation, a natural hypothesis would be that
nodes that will attain high degree in the network correspondto
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Figure 9: Evolution of the α and β parameters with the current
node degreek. α remains constant, andβ linearly increases
with node degree.
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Figure 10: Number of nodes over time.

“more social” people who would inherently tend to have shorter
gap times and enthusiastically invite friends at a higher rate than
others, attaining high degree quickly due to their increased activity
level. However, this phenomenon does not occur in any of the net-
works. We computed the correlation coefficient betweenδ(1) and
the final degreed(u). The correlation values are−0.069 for DELI-
CIOUS, −0.043 for FLICKR, −0.036 for ANSWERS, and−0.027
for L INKED IN. Thus, there is almost no correlation, showing that
the gap distribution is virtually independent of a node’s final degree.
This justifies our modeling assumption that node’s final degree de-
pends only on its lifetime.

6.2 Node arrivals
Finally, we turn to the question of modeling node arrivals into the

system. Figure 10 shows the number of users in each of our net-
works over time, and Table 4 captures the best fits. FLICKR grows
exponentially over much of our network, while the growth of other
networks is much slower. DELICIOUSgrows slightly superlinearly,
L INKED IN quadratically, and ANSWERSsublinearly. Given these
wild variations we conclude the node arrival process needs to be
specified in advance as it varies greatly across networks dueto ex-
ternal factors.

Network N(t)
FLICKR exp(0.25t)

DELICIOUS 16t2 + 3000t + 40000
ANSWERS −284t2 + 40000t − 2500
L INKED IN 3900t2 + 76000t − 130000

Table 4: Node arrival functions.



7. A NETWORK EVOLUTION MODEL
We first take stock of what we have measured and observed so

far. In Section 6.2, we analyzed the node arrival rates and showed
that they are network-dependent and can be succinctly represented
by a node arrival functionN(t) that is either a polynomial or an
exponential. In Section 6.1, we analyzed the node lifetimesand
showed they are exponentially distributed with parameterλ. In
Section 4.1, we argued that the destination of the first edge of a
node is chosen proportional to its degree (i.e., preferentially at-
tached). In Section 6.1, we analyzed the time gaps between edge
creation at a node and showed they can be captured by a power
law with exponential cutoff, with parametersα, β. In Section 5,
we showed that most of the edges span two hops, and the simple
random-random triangle-closing model works well.

Motivated by these observations, we now present a complete net-
work evolution model. Our model is parameterized byN(·), λ, α, β,
and operates as follows.

1. Nodes arrive using the node arrival functionN(·).
2. Nodeu arrives and samples its lifetimea from the exponen-

tial distributionpℓ(a) = λ exp(−λa).
3. Nodeu adds the first edge to nodev with probability propor-

tional to its degree.
4. A nodeu with degreed samples a time gapδ from the distri-

bution pg(δ|d; α, β) = (1/Z)δ−α exp(−βdδ) and goes to
sleep forδ time steps.

5. When a node wakes up, if its lifetime has not expired yet, it
creates a two-hop edge using therandom-random triangle-
closing model.

6. If a node’s lifetime has expired, then it stops adding edges;
otherwise it repeats from step 4.

The values ofN(·) for the four networks are given in Table 4
and the values ofα, β, λ are given in Table 5.

Note that one could also use more sophisticated edge placement
techniques, like random surfer model [5] or other triangle-closing
techniques as discussed in Section 5.1. For example, in step5, a
nodeu can pick a sequence of nodes(u = w0, w1, . . . , wk = w),
where eachwi is picked uniformly from the neighbors ofwi−1, and
the sequence lengthk is chosen from the distribution in Figure 4.
Nodeu then links tow.

7.1 Gaps and power law degree distribution
We now show that our model produces power law out-degree

distribution.

THEOREM 1. The out-degrees are distributed according to a
power law with exponent 1 + λΓ(2−α)

βΓ(1−α)
.

PROOFSKETCH. We first compute the normalizing constantZ
of the gap distributionpg(δ|d; α, β):

Z =

∫

∞

0

δ−αe−βdδdδ =
Γ(1 − α)

(βd)1−α
. (1)

Let a be the lifetime sampled from the exponential distribution
pℓ(a) = λ exp(−λa). Recall the edge creation process: a node
adds its first edge and samples the next gapδ(1) according topg(·),
sleeps forδ(1) time units, creates the second edge, samples a new
gapδ(2) according topg(·), sleeps forδ(2) units, and so on until
it uses up all of its lifetimea. This means that for a nodeu with
lifetime a = a(u) and final degreeD = d(u), we have

D
∑

d=1

δ(k) ≤ a. (2)

FLICKR DELICIOUS ANSWERS L INKED IN

λ 0.0092 0.0052 0.019 0.0018
α 0.84 0.92 0.85 0.78
β 0.0020 0.00032 0.0038 0.00036

true 1.73 2.38 1.90 2.11
predicted 1.74 2.30 1.75 2.08

Table 5: Predicted vs true degree exponents.

Analogous to (1), we obtain the expected time gapE(δ|d; α, β) for
a node of degreed:

E(δ|d;α, β) =
Γ(2 − α)

Γ(1 − α)
(βd)−1. (3)

Combining (2) and (3), we relate the lifetimea and the expected
final degreeD of a node:

D
∑

d=1

Γ(2 − α)

Γ(1 − α)
(βd)−1 =

Γ(2 − α)

Γ(1 − α)
β−1

D
∑

d=1

d−1 ≤ a. (4)

Notice that
∑D

d=1 d−1 = Θ(lnD). From (4), the final degreeD
of a node with lifetimea is

D ≈ exp
(Γ(1 − α)

Γ(2 − α)
βa

)

.

Thus,D is an exponential function of the agea, i.e.,D = r(a) =

exp(µa), whereµ = Γ(1−α)
Γ(2−α)

β. Since node lifetimes are exponen-
tially distributed with parameterλ, we now compute the distribu-
tion of D as a function ofλ andµ as follows:

D ∼ pℓ(r
−1(D))

∣

∣

∣

dr−1(D)

dD

∣

∣

∣
=

λ

µD
e−(λ/µ) log D =

λD−(1+λ/µ)

µ
.

Thus, the degree distribution in our gap model follows a power law
with exponent1 + λ/µ, completing the proof.

Validation of the model. We first empirically measure the true
power law degree exponents of the four networks. We then em-
pirically obtain theα, β, λ parameter values for each network and
apply Theorem 1, which yields the degree exponents as predicted
by our model. Table 5 shows the results. Note that the predicted
degree exponents remarkably agree with the true exponents,vali-
dating our model to some extent.

7.2 Unfolding network evolution
To further our understanding of the network evolution, espe-

cially the edge creation process, we perform the following semi-
simulation. We consider the real networkGT/2 and evolve it from
t = T/2, . . . , T using therandom-random model to obtain a net-
work G′

T . At the end of the evolution, we compare the macroscopic
properties ofG′

T andGT . For completeness, we also study the ef-
fect of using the vanilla PA model instead of therandom-random
model.

More precisely, we evolveGT/2 by considering all the edges
that were created after timeT/2 between the nodes inGT/2. (We
do not allow new nodes to joinGT/2.) We consider two different
processes to place these new edges. In the first process (PA),we
select two nodes preferentially, with probabilities proportional to
their degrees, and add an edge. In the second process (RR), weuse
the random-random triangle-closing model, i.e., we first select a
node preferentially and then pick a node two hops away using the
random-random model.
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Figure 11: We take FLICKR network at half of its evolution,
evolve it using our model and PA for the second half, and com-
pare the final networks. Notice our model fits evolution better.

Figure 11 shows results for FLICKR: clustering coefficient, de-
gree distribution, and pairwise distance histogram for thetrue data,
and the two simulations. Therandom-random model matches the
true network well and outperforms than the PA process. Similar re-
sults also hold for other networks; we omit these plots for brevity.

8. CONCLUSIONS
In this paper we present a microscopic analysis of the edge-by-

edge evolution of four large online social networks. The useof the
maximum-likelihood principle allows us to quantify the bias of new
edges towards the degree and age of nodes, and to objectivelycom-
pare various models such as preferential attachment. In fact, our
work is the first to quantify the amount of preferential attachment
that occurs in networks.

Our study shows that most new edges span very short distances,
typically closing triangles. Motivated by these observations, we de-
velop a complete model of network evolution, incorporatingnode
arrivals, edge initiation, and edge destination selectionprocesses.
While node arrivals are mostly network-specific, the edge initia-
tion process can be captured by exponential node lifetimes and a
“gap” model based on a power law with exponential cutoff. We
arrive at an extremely simple yet surprisingly accurate description
of the edge destination selection in real networks. Our model of
network evolution can be used to generate arbitrary-sized synthetic
networks that closely mimic the macroscopic characteristics of real
social networks.
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