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ABSTRACT

We present a detailed study of network evolution by anatyfiur
large online social networks with full temporal informatiabout
node and edge arrivals. For the first time at such a large,scale
we study individual node arrival and edge creation procefisat
collectively lead to macroscopic properties of networkssing a
methodology based on the maximume-likelihood principle,inse
vestigate a wide variety of network formation strategiesl show
that edge locality plays a critical role in evolution of netks. Our
findings supplement earlier network models based on theenkig
non-local preferential attachment.

Based on our observations, we develop a complete model-of net
work evolution, where nodes arrive at a prespecified ratesatedtt
their lifetimes. Each node then independently initiategesdac-
cording to a “gap” process, selecting a destination for eslge ac-
cording to a simple triangle-closing model free of any pastars.

We show analytically that the combination of the gap disititm
with the node lifetime leads to a power law out-degree diation
that accurately reflects the true network in all four casesalfy,
we give model parameter settings that allow automatic éoviu
and generation of realistic synthetic networks of arbytisrale.

Categories and Subject DescriptorsH.2.8[Database Manage-
ment]: Database applicationsBata mining

General Terms: Measurement, Experimentation

Keywords: Social networks, Graph generators, Network evolu-
tion, Graph mining, Maximum likelihood

1. INTRODUCTION

In recent years a wide variety of models have been proposed
for the growth of complex networks. These models are typical
advanced in order to reproduce statistical network prégerb-
served in real-world data. They are evaluated on the fidelity
which they reproduce these global network statistics artigipes.

In many cases, the goal is to define individual node behatfiats
result in a global structure such as power law node degrég-dis
butions; in other cases, the goal is to match some other nletwo
property such as small diameter.

Part of this work was done while the first and second authors we
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For example, the observation of heavy-tailed degree distri
tions [10] led to hypothesis about edge creation processes, (
preferential attachment [1]) that could lead to this obagon. In
fact, there are several edge creation processes thatatdémavy-
tailed degree distributions and it is not clear which amdment
captures reality best.

Here we take a different approach. Instead of only focusimg o
the global network structure and then hypothesizing whad kif
microscopic node behavior would reproduce the observedanac
scopic network structure, we focus directly on the micrpscaode
behaviorper se. For the first time at such a large scale, we study a
sequence of millions of individual edge arrivals, whicloal$ us to
directly evaluate and compare microscopic processes itrtige
to global network structure.

Evaluation based on likelihood. Given that the microscopic be-
havior of nodes solely determines the macroscopic netwangr-
ties, a good network model should match real-world data ohail
statistics, while maximizing the likelihood of the low-kvpro-
cesses generating the data. Towards this goal, we propeses¢h
of model likelihood of individual edges as a way to evaluatd a
compare various network evolution models.

Likelihood has not been considered to date in the analysis of
evolution of large social networks mainly due to lack of datel
computational issues. Many early network datasets cazdaomly
a single or a small number of snapshots of the data, makieg lik
lihood computations for evolutionary models infeasiblee ¥tudy
four large social networks withxact temporal information about
individual arrivals of millions of edges. We are therefotdeato
consider edge-by-edge evolution of networks, and henaaeaftly
compute the likelihood that a particular model would have- pr
duced a particular edge, given the current state of the mktwo
In contrast to previous work on evolution of large networkatt
used a series of snapshots to consider patterns at globbel aea
study the exact edge arrival sequence, which means we a¢oabl
directly observe and model the fine-grained network evolutionary
processes that are directly responsible for global netywatterns
and statistics.

A likelihood-based approach has several advantages over ap
proaches based purely on global statistics:

(1) Models may be compared directly in a unified way, rather
than arguing whether faithful reproduction of, e.g., ditenés more
important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improvés t
evaluation criterion, i.e., likelihood, remains unchamgehile the
generative models improve to incorporate the new undetdtgn
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on &s-ye
undiscovered properties of real-world data.



Data and model structure. We consider four large online social
network datasets —IFCKR (f | i ckr. com a photo-sharing web-
site), DeLicious(del . i ci 0. us, a collaborative bookmark tag-
ging website), XHOO! ANSWERS(answer s. yahoo. com a
knowledge sharing website), andNKEDIN (I i nkedi n. com a
professional contacts website) — where nodes represeplegaiod
edges represent social relationships. These networkargewith
up to millions of nodes and edges, and the time span of the data
ranges from four months to almost four years. All the network
are in early stages of their evolution with the connectedament
being small and the clustering coefficient increasing ovee t

We consider models that can be decomposed into three core pro
cesses, namely, the node arrival process (governs thalafimew
nodes into the network), the edge initiation process (datess for
each node when it will initiate a new edge), and the edge riesti
tion selection process (determines the destination of dynievti-
ated edge). Our networks do not include removal of nodesgesd
so we do not model deletion (although we do model the “deatth” o
a node in the sense that it ceases producing new edges).

Our results. We begin with a series of analyses of our four net-
works, capturing the evolution of key network parametensd,eval-
uation of the extent to which the edge destination selegiioness
subscribes to preferential attachment. We show that therémitly
non-local nature of preferential attachment is fundanigntaable

to capture important characteristics in these networksth&dest

of our knowledge, this is the first direct large-scale valwaof the
preferential attachment model in real networks.

Next, we provide a detailed analysis of the data in order te co
sider parsimonious models for edge destination seledtatrinicor-
porate locality. We evaluate a wide variety of such modelsgus
the maximume-likelihood principle and choose a simple gian
closing model that is free of parameters. Based on the fisding
then propose a complete network evolution model that atelyra
captures a variety of network properties. We summarize adah
based on the three processes listed earlier.

Node arrival processWe find large variation in node arrival rates
over the four networks, ranging from exponential to suledingrowth.
Thus we treat node arrival rate as input to our model.

Edge initiation processUpon arrival, a node draws its lifetime
and then keeps adding edges until reaching its lifetimeh ailges
inter-arrival rate following a power law with exponentialiteoff
distribution. We find that edge initiations asecelerating with
node degree (age), and prove that this leads to power laneguee
distributions. The model produces accurate fits and higtifikod.

Edge destination selection proce¥ée find that most edges (30%—
60%) are local as they close triangles, i.e., the destinasi@nly

two hops from the source. We consider a variety of triangpsing
mechanisms and show that a simple scheme, where a source nod
chooses an intermediate node uniformly from among its roeigh

and then the intermediate node does the same, has higlndkeli

Our model is easy to implement, and we give parameter sstting
that allow others to generate networks at arbitrary scaledimu-
late any of our four input networks. We show that our model pro
duces realistic social network evolution following theegrevolu-
tion of network properties such as clustering coefficieit diame-
ter; our purely local model gives rise to accurate globapprtes.

2. RELATED WORK

Many studies on online social networks, world wide web, aind b
ological networks focused on macroscopic properties dicshet-
works such as degree distributions, diameter, clusteefficient,
communities, etc; work in this area includes [10, 21, 2, 187]8
Similarly, macroscopic properties of network evolutidkeldensi-
fication and shrinking diameters, were examined [11, 19138,

Given that the classical Erdds—Rényi model cannot caphee t
above characteristics, a number of alternate network radu®le
been proposed. The copying [14] and the preferential atieck
[1] models belong to this category. The forest-fire model [@t6
tempts to explain the densification and decreasing-dianpdte-
nomena observed in real networks. See [6] for a survey.

Recently, researchers examined the finer aspects of edgjeare
by focusing on a small set of network snapshots. The role wf-co
mon friends in community formation was analyzed by Backstro
et al. [3]. Kleinberg and Liben-Nowell [17] studied the piedbil-
ity of edges in social networks. The role of triangle closireo-
cial networks was long known to sociologists. Simmel thesdi
that people with common friends are more likely to createnf-
ships and Krackhardt and Handcock [12] applied this theoext
plain the evolution of triangle closures. A network modeddon
closed triangles was proposed by Shi et al. [20].

The maximum-likelihood principle has been typically used t
estimate network model parameters [15, 22, 23] or for model s
lection [4], which often requires expensive computatiohsigh
dimensional integrals over all possible node arrival sages. In
contrast, we use the likelihood in a much more direct way &dev
ate and compare different modeling choices at a microsdepét.

3. PRELIMINARIES

Datasets. For each of our four large network datasets, we know
the exact time of all the node/edge arrivals. Table 1 givesbir

sic statistics of the four networks. All the networks slowlgnsify
with a densification exponen?] p ~ 1.2. All the networks, ex-
cept DELICIOUS, have shrinking diameter. InNLFCKR, ANSWERS

and LINKEDIN, the effective diameter reaches the maximum value
of 10 when the network has around 50,000 nodes, and thenyslowl
decreases to the around 7.5; iEDcious, the diameter is prac-
tically constant. Also, in all the networks, a majority ofges are
bidirectional (column&}). The reciprocity is 73% in HCKR, 81%

in DELICIOUS, and 58% in AISWERS LINKEDIN is undirected,
but we know the edge initiator. The fraction of nodes thabbgé

to the largest weakly connected component is 69%.ilckR, 72%

in DELICIOUS, 81% in ANSWERS and 91% in LNKEDIN.

Notation. Let N, E, and T denote the total number of nodes,
edges, and the span of the data in days.@ebe a network com-
posed from the earliestedgeses, ..., e fort = 1,... E. Let
t(e) be the time when the edgeis created, let(u) be the time
when the node joined the network, and Ief, (u) be the time when
Ehe k-th edge of the node is created. Leti:(u) = ¢t — t(u) de-
note the age of the nodeat time¢. Letd:(u) denote the degree
of the nodeu at timet¢ andd(u) = dr(u). We use[-] to denote a
predicate (takes value of 1 if expression is true, else 0).

Maximume-likelihood principle. The maximum-likelihood esti-
mation (MLE) principle can be applied to compare a family af p
rameterized models in terms of their likelihood of genemtihe
observed data, and as a result, pick the “best” model (arahpzr
ters) to explain the data. To apply the likelihood princjple con-
sider the following setting: we evolve the network edge bgesd



Network | T N E £y E, Ea % p K
FLICKR (03/2003-09/2005) | 621 584,207 3,554,130 2,594,078 2,257,211 1,475,345 651632 1.44
DELICIOUS (05/2006—-02/2007) 292 203,234 430,707 348,437 348,437 96,387 2766 115 0.81
ANSWERS(03/2007-06/2007)| 121 598,314 1,834,217 1,067,021 1,300,698 303,858 23.385 10.92
LINKEDIN (05/2003-10/2006)| 1294 7,550,955 30,682,028 30,682,028 30,682,028 15261,519.55 1.14 1.04

Table 1: Network dataset statistics.E}, is the number of bidirectional edges,E.,, is the number of edges in undirected network Fa is
the number of edges that close triangles’ is the fraction of triangle-closing edgesy is the densification exponent £(t) « N(t)”),
and « is the decay exponentF, « exp(—rh)) of the number of edgesE), closingh hop paths (see Figure 4).
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Figure 1: Probability p.(d) of a new edges choosing a destina-
tion at a node of degreed.

and for every edge that arrives into the network, we measwee t
likelihood that the particular edge endpoints would be enashder
some model. The product of these likelihoods over all edgéds w
give the likelihood of the model. A higher likelihood mearn®at-
ter” model in the sense that it offers a more likely explaoatdf
the observed data. For numerical purposes, we use loghliazs.

4. PREFERENTIAL ATTACHMENT

In this section we study the bias in selection of an edge’scgou
and destination based on the degree and age of a node.

4.1 Edge attachment by degree

The preferential attachment (PA) model [1] postulates wian
a new node joins the network, it creates a constant numbeigeise
where the destination node of each edge is chosen propalrtion
the destination’s degree. Using our data, we compute theapib
ity p.(d) that a new edge chooses a destination node of degree
pe(d) is normalized by the number of nodes of degdethat exist
just before this step. We compute:

Ylet = (w,v) Ade—1(v) = d]
Yo Huidioa(u) =dy|

First, Figure 1(a) shows,(d) for the Erdds—Rényi [9] random
network,Grp, With p = 12/n. In G, since the destination node
is chosen independently of its degree, the line is flat. Sirtyil
in the PA model, where nodes are chosen proportionally viair t
degree, we get a linear relationshig(d) « d; see Figure 1(b).

pe(d) =

10

10

1k B

01|

Avg. no. of created edges, e(a)

Avg. no. of created edges, e(a)

0.01 L L L L L L L
0 5 10 15 20 25 30 35 40
Node age (weeks), a

(b) DELICIOUS

s B B B B B B

0.01 [ [
0 20 40 60 80 100 120 140

Node age (weeks), a

(a) FLICKR

10 T T

T,

o606 oo
[ T A E R R S s Gl
0 2 4 6 8 10 12 14 16

Node age (weeks), a

(c) ANSWERS

Avg. no. of created edges, e(a)
-
asa
|

Avg. no. of created edges, e(a)

T B R Y N
0 20 40 60 80 100120140160 180
Node age (weeks), a

0.01

(d) LINKEDIN
Figure 2: Average number of edges created by a node of age

Next we turn to our four networks and fit the functipn(d) o
d”. In FLICKR, Figure 1(c), degree 1 nodes have lower probability
of being linked as in the PA model; the rest of the edges coeld b
explained well by PA. In BLIclous, Figure 1(d), the fit nicely fol-
lows PA. In ANSWERS Figure 1(e), the presence of PA is slightly
weaker, withp. (d) o d”-°. LINKEDIN has a very different pattern:
edges to the low degree nodes do not attach preferentib#yfitis
d%%), whereas edges to higher degree nodes are more “sticky” (th
fitis d'-?). This suggests that high-degree nodes iRKEDIN get
super-preferential treatment. To summarize, even thoogtetare
minor differences in the exponentdor each of the four networks,
we can treat = 1, meaning, the attachment is essentially linear.

4.2 Edges by the age of the node

Next, we examine the effect of a node’s age on the number of
edges it creates. The hypothesis is that older, more expede
users of a social networking website are also more engaged an
thus create more edges.

Figure 2 plots the fraction of edges initiated by nodes ofrtaae
age. There(a), the average number of edges created by nodes of
agea, is the number of edges created by nodes ofeagermalized
by the number of nodes that achieved age

o(a) = o= (w0 te) — t(w) = a}|
{t(u) s te —t(u) 2 a}|

wheret, is the time when the last node in the network joined.

Notice a spike at nodes of age 0. These correspond to thegpeopl
who receive an invite to join the network, create a first edgel
then never come back. For all other ages, the level of agseiems
to be uniform over time, except fonlhKEDIN, in which activity of
older nodes slowly increases over time.

4.3 Bias towards node age and degree

Using the MLE principle, we study the combined effect of node
age and degree by considering the following four paramesdri
models for choosing the edge endpoints at time
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Figure 3: Log-likelihood of an edge selecting its source andestination node. Arrow denotesr with highest likelihood.

D: The probability of selecting a node is proportional to its We notice that selecting an edge’s destination node is htrde
current degree raised to powerd;(v)". selecting its source (the green curve is usually below ttie Adso,

DR: With prob. 7, the nodev is selected preferentially (propor-  selecting a destination appears more random than selecsiogrce
tionally to its degree), and with prol — 7), uniformly at random: — the maximum likelihood- of the destination node (green curve)
T di(v)+ (1 —7)-1/N(). for modelsD andDR is shifted to the left when compared to the

A: The probability of selecting a node is proportional to iteag source node (red), which means the degree bias is weaker: Sim
raised to power: a:(v)” larly, there is a stronger bias towards young nodes in seteein

DA: The probability of selecting a node is proportional the edge’s source than in selecting its destination. Basedenltker-
product of its current degree and age raised to powed;(v)- vations, we conclude that PA (mode) performs reasonably well
at(v)7. compared to more sophisticated variants based on degresgand

Figure 3 plots the log-likelihoods under different models,a

function of 7. The red curve plots the log-likelihood of selecting a 5. LOCALITY OF EDGE ATTACHMENT

source node and the green curve for selecting the destinatide Even though our analysis suggests that PA is a reasonablel mod
of an edge. for edge destination selection, it is inherently “non-léda that

In FLICKR, notice that the selection of destination is purely pref- edges are no more likely to form between nodes who alreadg sha
erential: modeD achieves the maximum likelihood at= 1, and other friends in common. In this section we perform a detiaile
model DA is very biased to moddD, i.e., 7 ~ 1. Model A has study of the locality properties of edge destination séect
worse likelihood but moddDA improves the overall log-likelihood We first consider the following notion of edge locality: fadh
by around 10%. Edge attachment irEDCIOUS seems to be the new edge(u,w), we measure the number of hops it spans, i.e.,
most “random”: modeD has worse likelihood than modé&R. the length of the shortest path between nadesdw immediately
Moreover the likelihood of moddDR is maximum at- = 0.5 sug- before the edge was created. In Figure 4 we study the distibof

gesting that about 50% of theEDicious edges attach randomly.  these shortest path values induced by each new edge fofwith
Model A has better likelihood than the degree-based models, show-p = 12/n), PA, and the four social networks. (The isolated dot

ing edges are highly biased towards young nodes. RGBWRERS on the left counts the number of edges that connected prgyiou
modelsD, A, andDR have roughly equal likelihood (at the optimal  disconnected components of the network.)
choice ofr), while modelDA further improves the log-likelihood For G, most new edges span nodes that were originally six

by 20%, showing some age bias. INKEDIN, age-biased models  hops away, and then the number decays polynomially in the.hop
are worse than degree-biased models. We also note strongedeg In the PA model, we see a lot of long-range edges; most of them
preferential bias of the edges. As inIEKR, modelDA improves span four hops but none spans more than seven. The hop ulistrib
the log-likelihood by 10%. tions corresponding to the four real-world networks loakifar to

one another, and strikingly different from bofh,, and PA. The
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Figure 4: Number of edgesFE}, created to nodesh hops away. Figure 5: Probability of linking to a random node at h hops
h = 0 counts the number of edges that connected previously  from source node. Value ath = 0 hops is for edges that connect
disconnected components. previously disconnected components.

number of edges decays exponentially with the hop distaeee b
tween the nodes (see Table 1 for fitted decay exponentd his
means that most edges are created locally between nodesréhat
close. The exponential decay suggests that the creatioaofe
fraction of edges can be attributed to locality in the netgtruc-
ture, namely most of the times people who are close in theatktw  Figure 6: Triangle-closing model: nodeu creates an edge by
(e.g., have a common friend) become friends themselves. selecting intermediate nodey, which then selects target nodev
These results involve counting the number of edges that link to which the edge(u, w) is created.
nodes a certain distance away. In a sense, this overcougés ed
(u,w) for which v andw are far away, as there are many more  ColumnEa in Table 1 further illustrates this point by presenting
distant candidates to choose from — it appears that the nuaibe  the number of triangle-closing edges.IEKR and LNKEDIN have
long-range edges decays exponentially while the numbesnaf-| the highest fraction of triangle-closing edges, whereasWers
range candidates grows exponentially. To explore this pimemon, and DELIcIous have substantially less such edges. Note that here
we count the number of hops each new edge spans but then norwe are not measuring the fraction of nodes participatingiant
malize this count by the total number of nodeshatops. More gles. Rather, we unroll the evolution of the network, andeieery

precisely, we compute new edge check to see if it closes a new triangle or not.
P(0) = S aodes at deancerom e sowcanode ) L _Thangle-closing models
¢ Given that such a high fraction of edges close triangles, ime a
First, Figures 5(a) and (b) show the results@y, and PA mod- to model how a length-two path should be selected. We conside
els. (Again, the isolated dot & = 0 plots the probability of a a scenario in which a source nodéas decided to add an edge to
new edge connecting disconnected components.§7.Jp, edges some nodev two hops away, and we are faced with various alter-
are created uniformly at random, and so the probability rikifig natives for the choice of node. Figure 6 illustrates the setting.

is independent of the number of hops between the nodes. In PA,Edges arrive one by one and the simplest model to close a trian
due to degree correlations short (local) edges prevail. d¥ew a gle (edge(u, w) in the figure) is to have: select a destinatiow
non-trivial amount of probability goes to edges that spanentioan randomly from all nodes at two hops from
two hops. (Notice the logarithmig-axis.) To improve upon this baseline model we consider various tsode
Figures 5(c)—(f) show the plots for the four networks. Netic of choosing nodev. We consider processes in whigtiirst selects
the probability of linking to a nodé hops away decays double- a neighborv according to some mechanism, andhen selects a
exponentially, i.e.p.(h) o exp(exp(—h)), since the number of  neighborw according to some (possibly different) mechanism. The
edges at hops increases exponentially with This behavior is edge(u, w) is then created and the triandle, v, w) is closed. The
drastically different from both the PA an@,, models. Also note selection of bothy andw involves picking a neighbor of a node. We
that almost all of the probability mass is on edges that diersgth- consider five different models to pick a neighhoof «, namely,
two paths. This means that edges are most likely to closegiga, nodew is chosen
i.e., connect people with common friends.



FLICKR random deg®2 com last=%% comlast—04
random 13.6 13.9 14.3 16.1 15.7
deg?-t 13.5 14.2 13.7 16.0 15.6
last0-2 14.7 156  15.0 17.2 16.9
com 11.2 11.6 11.9 13.9 13.4
comlast®-t 11.0 11.4 11.7 13.6 13.2
DeLicious | random deg®® com last=92 comlast—9-2
random 11.7 12.4 13.8 13.2 15.1
deg?-2 12.2 12.8 14.3 13.7 15.6
last—0-3 13.8 146  16.0 15.3 17.2
com 13.6 14.4 15.8 15.2 17.1
comlast—0-2 14.7 156  16.9 16.3 18.2
ANSWERS | random deg®3 com last=92 comlast—0-2
random 6.80 10.1 11.8 9.70 13.3
deg?-2 7.18 10.5 12.2 10.1 13.7
last—0-3 9.95 134 150 12.8 16.4
com 6.82 10.3 11.8 9.80 13.4
comlast-2 7.93 115 129 10.9 14.5
LINKEDIN | random deg®! com last=%1 comlast—9-!
random 16.0 16.5 18.2 17.2 18.5
deg?-t 15.9 16.4  18.0 17.0 18.4
last~0-1 19.0 195 211 20.0 21.4

Table 2: Triangle-closing models. First pick intermediatenode
v (fix column), then target nodew (fix row). The cell gives per-
cent improvement over the log-likelihood of picking a randan
node two hops away (baseline).

random: uniformly at random,

deg™: proportional to degreé(v)”,

com: prop. to the number of common friend&:, v) with u,

last: proportional to the time passed sinckast created an edge,

comlast™: proportional to the product of the number of common
friends withu and the time of last activity, raised to the power

As we stated before, we can compose any two of these basic

models to choose a two-hop neighbor, i.e., a way to closerithe t
angle. For instance, tHast’'-com model will work as follows:
u will employ thelast’! model to select node, v will employ
the com model to select node, and thenu will add an edge to
w, closing the triangléw, v, w). We consider all 25 five possible
composite models for selecting a two-hop neighbor and aw@lu
them by the likelihood that the model generated all the edggts
closed length-two paths in the real network.

Table 2 shows the percent improvement of various triantgisiug
models over the log-likelihood of choosing a two-hop nehimi-
formly at random as a destination of the edge (the baselifieg.
simplest modelrandom-random, works remarkably well and has
has many desirable properties. It gives higher probatiityodes
with more length-two paths, discounting each path by ropgiti(v).
Moreover, it is also biased towards high-degree nodes egdhidve
multiple paths leading towards them.

Thedeg'°-random model weighs each node by roughly the
number of length-two paths betweerandw. However, we find
that it performs worse tharandom-random. For the more gen-
eraldeg”-random, the optimal value of- varies from0.1 to 0.3
over all the four networks, and this model provides meanihigf-
provements only for the ASWERSnetwork.

Thecom model considers the strength of a tie betwaeandv,
which we approximate by the number of common frieads v) of
nodesu andv; the larger the value, the stronger the tie. By selecting
v with probability proportional te(u, v), we get a substantial gain
in model likelihood. A factor that further improves the mbidehe
recency of activity by, captured byast™. By selecting nodes that
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Figure 7: Exponentially distributed node lifetimes.

have recently participated in a new edge with higher prdtgbi
we get another sizable improvement in the model likelihodtese
two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the netkso
the random-random model gives a sizable chunk of the perfor-
mance gain over the baseline (10%). Due its simplicity, weoske
this as the triangle-closing model for the rest of the paper.

Note that the above methodology could be extended to edge
creations other than triangle-closing. We chose to focushen
triangle-closing edges for two reasons. First, a high foacdf all
edges created fall into this category, and hence an undeistpof
triangle-closing edges is an important first step towardetstand-
ing the overall network evolution. Second, with the excaptof
quite simplistic models, it is computationally infeasibbecompute
the likelihood at a distance greater than two hops as the aunfb
nodes and possible paths increases dramatically.

6. NODE AND EDGE ARRIVAL PROCESS

In this section we turn our focus to the edge initiation pssce
that determines which node is responsible for creating aetdye
(Section 6.1), and then to the process by which new nodegearri
into the network (Section 6.2).

6.1 Edge initiation

In the following we assume that the sequence and timing of nod
arrivals is given, and we model the process by which nod¢istai
edges. We begin by studying how long a node remains activesin t
social network, and then during this active lifetime, wedstthe
specific times at which the node initiates new edges.

6.1.1 Nodelifetime

To avoid truncation effects, we only consider those nodesseh
last-created edge is in the first half of all edges in the datall
that the lifetime of a node: is a(u) = tqu)(u) — t1(u). We
evaluate the likelihood of various distributions and olsethat
node lifetimes are best modeled by an exponential distabut
pe(a) = Xexp(—Aa). Figure 7 gives the plot of the data and the
exponential fits, where time is measured in days. In Tablé, t
row corresponding to\ gives the values of fitted exponents. We
note that the exponential distribution does not fit well tloeles
with very short lifetimes, i.e., nodes that are invited itie net-
work, create an edge and never return. But the distributioviges
a very clean fit for nodes whose lifetime is more than a week.



degreed power  power law log stretched

law  exp. cutoff normal exp.

1 9.84 12.50 11.65 12.10

2 11.55 13.85 13.02 13.40

3 10.53 13.00 12.15 12.59

4 9.82 12.40 11.55 12.05

5 8.87 11.62 10.77 11.28
avg.,d <20 | 8.27 11.12 10.23 10.76

Table 3: Edge gap distribution: percent improvement of the
log-likelihood at maximum-likelihood estimate over the eypo-
nential distribution.
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Figure 8: Edge gap distribution for a node to obtain the secod
edge,i(1), and MLE power law with exponential cutoff fits.

6.1.2 Time gap between the edges

Now that we have a model for the lifetime of a nogewve must
model that amount of elapsed time between edge initiaticoms f
u. Letd,(d) = tat1(u) — tqa(u) be the time it takes for the node
u with current degreé to acquire it§(d + 1)-st out-edge; we call
0. (d) theedge gap. Again, we examine several candidate distribu-
tions to model edge gaps. Table 3 shows the percent imprateme
of the log-likelihood at the MLE over the exponential diktriion.
The best likelihood is provided by a power law with exponainti
cutoff: pg(d(d);a, B) o 6(d)™ exp(—B4(d)), whered is the
current degree of the node. (Note that the distribution ithee
exponential nor Poisson, as one might be tempted to assWige.)
confirm these results in Figure 8, in which we plot the MLE -esti
mates to gap distributiof(1), i.e., distribution of times that it took
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Figure 9: Evolution of the o and 3 parameters with the current
node degreek. « remains constant, andg linearly increases
with node degree.
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Figure 10: Number of nodes over time.

“more social” people who would inherently tend to have shiort
gap times and enthusiastically invite friends at a highes than
others, attaining high degree quickly due to their incrdassivity
level. However, this phenomenon does not occur in any of éte n
works. We computed the correlation coefficient betwégn and
the final degreé (). The correlation values are0.069 for DELI-
clous, —0.043 for FLICKR, —0.036 for ANSWERS and—0.027
for LINKEDIN. Thus, there is almost no correlation, showing that
the gap distribution is virtually independent of a node’sffihegree.
This justifies our modeling assumption that node’s final degte-
pends only on its lifetime.

6.2 Node arrivals
Finally, we turn to the question of modeling node arrivats ithe

a node of degree 1 to add the second edge. In fact, we find thatsystem. Figure 10 shows the number of users in each of our net-

all gaps distributiong(d) are best modeled by a power law with
exponential cut-off (Table 3 gives log-likelihoods for=1,...,5
and the average fat =1, ...,20.)

Figure 9 shows the evolution of the parameterand 5 of the
gap distribution, as a function of the degréef the node. The
power law exponenty(d) remains constant as a function @f at
almost the same value for all four networks. On the other hand
the exponential cutoff parametg(d) increases linearly witld in
all cases, and varies by an order of magnitude across netyork
this variation models the extent to which the “rich get richghe-
nomenon manifests in each network. Nodes add théi 1)-st
node faster than theil-th node. This means that nodes start to cre-
ate more and more edges (sleeping times get shorter) as ¢hey g
older. So, based on Figure 9, the overall gap distribution lwa
modeled byp,(d|d; o, B) xx §~* exp(—/3d0).

Given the above observation, a natural hypothesis woulthdte t
nodes that will attain high degree in the network corresptnd

works over time, and Table 4 captures the best fitsCKR grows
exponentially over much of our network, while the growth tier
networks is much slower. ELiciousgrows slightly superlinearly,
LINKEDIN quadratically, and AsweRssublinearly. Given these
wild variations we conclude the node arrival process needset
specified in advance as it varies greatly across networks$ader-
ternal factors.

Network | N(t)

FLICKR exp(0.25¢)
DELICIOUS 16t% + 3000t + 40000
ANSWERS | —284¢% + 40000t — 2500
LINKEDIN | 3900t% + 76000t — 130000

Table 4: Node arrival functions.



7. ANETWORK EVOLUTION MODEL

We first take stock of what we have measured and observed so

far. In Section 6.2, we analyzed the node arrival rates and/sth
that they are network-dependent and can be succinctlysepred
by a node arrival functiorV(t) that is either a polynomial or an
exponential. In Section 6.1, we analyzed the node lifetiared
showed they are exponentially distributed with parameterin
Section 4.1, we argued that the destination of the first edge o
node is chosen proportional to its degree (i.e., prefeabytat-
tached). In Section 6.1, we analyzed the time gaps betwegs ed

FLICKR DELICIOUS ANSWERS LINKEDIN
A 0.0092 0.0052 0.019 0.0018
e 0.84 0.92 0.85 0.78
Jé; 0.0020 0.00032 0.0038 0.00036
true 1.73 2.38 1.90 211
predicted| 1.74 2.30 1.75 2.08

Table 5: Predicted vs true degree exponents.

Analogous to (1), we obtain the expected time g&p |d; «, 3) for

creation at a node and showed they can be captured by a powera node of degreg:

law with exponential cutoff, with parameters 3. In Section 5,

we showed that most of the edges span two hops, and the simple

random-random triangle-closing model works well.

Motivated by these observations, we now present a compégte n
work evolution model. Our model is parameterized¥ft), A, «, 3,
and operates as follows.

1. Nodes arrive using the node arrival functidi-).

2. Nodeu arrives and samples its lifetimefrom the exponen-
tial distributionp¢(a) = A exp(—Aa).

3. Nodeu adds the first edge to nodewith probability propor-
tional to its degree.

4. A nodeu with degreed samples a time gapfrom the distri-
bution py(d|d; a, B) = (1/2)6™ “ exp(—Bdd) and goes to
sleep fors time steps.

5. When a node wakes up, if its lifetime has not expired yet, it
creates a two-hop edge using tia@dom-random triangle-
closing model.

6. If a node’s lifetime has expired, then it stops adding sdge
otherwise it repeats from step 4.

The values ofN(-) for the four networks are given in Table 4
and the values af, 3, \ are given in Table 5.

Note that one could also use more sophisticated edge plateme
techniques, like random surfer model [5] or other trianglesing
techniques as discussed in Section 5.1. For example, irbstap
nodew can pick a sequence of nod@s = wo, wi, ..., wr = w),
where eachw; is picked uniformly from the neighbors af;—, and
the sequence lengthis chosen from the distribution in Figure 4.
Nodew then links tow.

7.1 Gaps and power law degree distribution

We now show that our model produces power law out-degree

distribution.

THEOREM 1. The out-degrees are distributed according to a

power law with exponent 1 + 3Z=24.

PROOFSKETCH. We first compute the normalizing constant
of the gap distributiom, (|d; «, 5):

Z :/ 5% s =
0

r'l— o)

(ﬁd)lfa :
Let a be the lifetime sampled from the exponential distribution
pe(a) = Nexp(—Aa). Recall the edge creation process: a node
adds its first edge and samples the next@@ap according tg,(-),

@)

INC
'l —ao)

Combining (2) and (3), we relate the lifetinacand the expected
final degreeD of a node:

D
d=1

Notice thaty" 2, d~*
of a node with lifetimen is

D =~ exp (%ﬂa).

E(8|d;a, B) = (Bd)~". ®)

re2-ow 1
T

T2—a) , 1=,
mﬁ 1dz::ld1§a- (4)

O(In D). From (4), the final degreP

Thus, D is an exponential function of the agei.e., D = r(a)
exp(pa), wherep = £5=23 3. Since node lifetimes are exponen-
tially distributed with parametek, we now compute the distribu-
tion of D as a function of\ andy as follows:

6D) A e _ 2D
dD uD 1

Thus, the degree distribution in our gap model follows a pdess
with exponentl + A\/u, completing the proof. [

. (14+X/ )
D~ pe(r~ (D)) :

Validation of the model. We first empirically measure the true
power law degree exponents of the four networks. We then em-
pirically obtain thea, 3, A parameter values for each network and
apply Theorem 1, which yields the degree exponents as peedic
by our model. Table 5 shows the results. Note that the predlict
degree exponents remarkably agree with the true exponaits,
dating our model to some extent.

7.2 Unfolding network evolution

To further our understanding of the network evolution, espe
cially the edge creation process, we perform the followiagis
simulation. We consider the real netwafk-,» and evolve it from
t=1T/2,...,T using therandom-random model to obtain a net-
work G7-. At the end of the evolution, we compare the macroscopic
properties o7, andGr. For completeness, we also study the ef-
fect of using the vanilla PA model instead of ttemdom-random
model.

More precisely, we evolvé& /. by considering all the edges
that were created after tinie/2 between the nodes ifi/,. (We

sleeps ford(1) time units, creates the second edge, samples a newdo not allow new nodes to joi6ir/».) We consider two different

gapd(2) according tapy(-), sleeps fori(2) units, and so on until
it uses up all of its lifetime:. This means that for a node with
lifetime a = a(u) and final degred® = d(u), we have

D
S 6(k) < a. @
d=1

processes to place these new edges. In the first processweA),
select two nodes preferentially, with probabilities prafmmal to
their degrees, and add an edge. In the second process (RR3ewe
the random-random triangle-closing model, i.e., we first select a
node preferentially and then pick a node two hops away usieg t
random-random model.
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Figure 11: We take FLICKR network at half of its evolution,
evolve it using our model and PA for the second half, and com-
pare the final networks. Notice our model fits evolution bette

Figure 11 shows results forLickR: clustering coefficient, de-
gree distribution, and pairwise distance histogram fortthe data,
and the two simulations. Thandom-random model matches the
true network well and outperforms than the PA process. @imd-
sults also hold for other networks; we omit these plots fewty.

8. CONCLUSIONS

In this paper we present a microscopic analysis of the egige-b
edge evolution of four large online social networks. The afsthe
maximum-likelihood principle allows us to quantify the biaf new
edges towards the degree and age of nodes, and to objectraly
pare various models such as preferential attachment. tndac
work is the first to quantify the amount of preferential alttaent
that occurs in networks.

Our study shows that most new edges span very short distances

typically closing triangles. Motivated by these obsewasi, we de-
velop a complete model of network evolution, incorporatitgie
arrivals, edge initiation, and edge destination selecpimtesses.
While node arrivals are mostly network-specific, the edgdgain
tion process can be captured by exponential node lifetimdsaa

“gap” model based on a power law with exponential cutoff. We

arrive at an extremely simple yet surprisingly accuratedpsgon
of the edge destination selection in real networks. Our rotle
network evolution can be used to generate arbitrary-sigethstic
networks that closely mimic the macroscopic charactessif real
social networks.
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