
Connectivity Structure of Bipartite Graphs via the
KNC-Plot

Ravi Kumar Andrew Tomkins Erik Vee
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089.

{ravikumar,atomkins,erikvee}@yahoo-inc.com

ABSTRACT
In this paper we introduce the k-neighbor connectivity plot,
or KNC-plot, as a tool to study the macroscopic connectiv-
ity structure of sparse bipartite graphs. Given a bipartite
graph G = (U, V, E), we say that two nodes in U are k-
neighbors if there exist at least k distinct length-two paths
between them; this defines a k-neighborhood graph on U
where the edges are given by the k-neighbor relation. For ex-
ample, in a bipartite graph of users and interests, two users
are k-neighbors if they have at least k common interests.
The KNC-plot shows the degradation of connectivity of the
graph as a function of k. We show that this tool provides
an effective and interpretable high-level characterization of
the connectivity of a bipartite graph.

However, naive algorithms to compute the KNC-plot are
inefficient for k > 1. We give an efficient and practical al-
gorithm that runs in sub-quadratic time O(|E|2−1/k) and is
a non-trivial improvement over the obvious quadratic-time
algorithms for this problem. We prove significant improve-
ments in this runtime for graphs with power-law degree dis-
tributions, and give a different algorithm with near-linear
runtime when V grows slowly as a function of the size of the
graph.

We compute the KNC-plot of four large real-world bipar-
tite graphs, and discuss the structural properties of these
graphs that emerge. We conclude that the KNC-plot repre-
sents a useful and practical tool for macroscopic analysis of
large bipartite graphs.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; H.2.8 [Data Management]: Database Applica-
tions—Data Mining ; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Computations on discrete structures; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Clustering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’08, February 11–12, 2008, Palo Alto, California, USA.
Copyright 2008 ACM 978-1-59593-927-9/08/0002 ...$5.00.

General Terms
Algorithms, Experimentation, Measurement

Keywords
bipartite graphs, connectivity, connected components

1. INTRODUCTION
The use of graph-theoretic tools and techniques to study

massive data has been tremendously successful in improv-
ing our understanding of the latent properties of the data.
Graphs have been applied to modeling a wide range of phe-
nomena, ranging from the internet and the world wide web
to social networks and protein interactions. Depending on
the application domain, an appropriate type of graph must
be selected to model the data. In this paper we focus on bi-
partite graphs in which the nodes of the graph may be split
into two groups and the edges must connect a member of
one group to a member of the other group. Bipartite graphs
have been employed to capture the relationships between
users and groups, terms and queries, web pages and topics,
as well as many others.

Once data has been modeled as a graph, two forms of
analysis may be applied. In microscopic analysis, the goal
is to discover interesting structures in the graph, such as
directed bipartite cliques [17], dense subgraphs [14], or lo-
calized communities [12, 2]. Typically, the existence of such
an object may be proven by simply exhibiting the object,
meaning that witnesses for microscopic structures are very
small. In macroscopic analysis, on the other hand, the goal
is to uncover high-level properties of the entire graph, such
as its connectivity structure [5], clustering coefficient [19], or
degree distribution [3]. These analyses often seek to bring a
global understanding of the data. There are no commonly-
applied high-level macroscopic analyses that make strong
use of the structure of bipartite graphs. We attempt in this
paper to provide such an analysis.

We begin with an analogy. For directed graphs, the bow
tie model [5] breaks the graph into four regions. First, the
SCC of the graph is the largest strongly connected compo-
nent; that is, the largest set of nodes such that each pair
is connected in both directions. Second, there are regions
called IN and OUT, which correspond to all nodes that can
reach the SCC, or be reached from the SCC, respectively.
Finally, the remaining nodes are classified as TENDRILS or
in degenerate cases, DISCONNECTED. Broder et al. [5]
show that for a large crawl of the web graph, these regions
capture almost all the pages and have roughly equal size.

This simple and succinct model is a useful tool in thinking
about the web graph. For example, it is clear from the model
that about half the graph is not reachable from a web crawler
that begins with well-known seed pages. Also, it is clear that
for a uniformly chosen start and end node, the probability
that a path exists between them is around 1/4, which is
much smaller than we might guess. Similarly, the bow tie
makes it clear that it is not possible to add self-loops and
a few edges to the graph in order to make it ergodic. Such
a model helps us to think about high-level properties of the
data, and hence is successful as a macroscopic analysis.

In attempting to map this model to bipartite graphs, we
immediately encounter difficulties. For most natural bipar-
tite graphs, edges are either undirected or are directed from
one bipartition to the other. Thus, the component struc-
ture is trivial — almost all nodes participate in a single giant
component, and there is no meaningful notion of strong con-
nectivity. To generate a macroscopic picture of a bipartite
graph, we must look elsewhere.

For general graphs, there are notions of the extent to
which two nodes are connected, but these notions fall into
two categories. First, there are clean combinatorial defini-
tions such as k-connectivity, but for k > 1, these are infea-
sible to compute for large graphs. And second, there are
continuous notions of connectivity based on random walks
or flows [18, 2], but these require large global computations
and are somewhat difficult to interpret in a simple way.

For bipartite graphs, however, we argue that there is a
natural notion of two nodes being connected more or less
strongly. Consider a bipartite graph with users on the left
and interests on the right. We claim that two users who
share interests in photography, renaissance baking, and ran-
dom walks are more strongly connected than two users who
share an interest in photography alone. In this paper we
adopt the cleanest form of this definition: users with k in-
terests in common are more strongly connected than those
with k− 1 interests in common. It is possible to extend our
model to more nuanced versions of connectivity that take
into account the relative prevalence of different interests in
the general population.

k-neighborhood graph. We therefore propose the fol-
lowing model. We say that two nodes in a bipartition are
k-neighbors if they share at least k neighbors; that is, two
users are k-neighbors if they have at least k interests in com-
mon. We define the k-neighborhood graph Gk on the nodes
of one bipartition as follows: two nodes have an edge in Gk

if and only if they are k-neighbors in the original bipartite
graph. We expect the following behavior. G1 should be a
very highly connected graph with high edge density. G2,
defined on the same nodes, may be less well connected, and
will have a subset of the edges of G1. For larger k, Gk

will become increasingly sparse, and its connectivity struc-
ture will begin to deteriorate, until it becomes completely
disconnected. By analyzing Gk, we can tell whether the
amount of shared interests between two users is common
or not, and perhaps more importantly, whether restricting
to this level of connectivity would result in a graph with
many well-connected users, or a large number of tiny is-
lands, which would imply that our two users should be seen
as well-connected relative to other users in the graph. Thus,
we argue that the structure of Gk is a useful tool in think-
ing about the nature of a bipartite graph. We define the k-
neighborhood connectivity plot, or KNC-plot, as the graph

showing some measure of the connectivity of Gk as a func-
tion of k. In the results that follow, we will plot the size
of the largest component (decreasing) and the number of
components (increasing), but we could also include the en-
tropy of the component distribution, the size of the second
component, and so forth.

Notice that this approach reflects the asymmetry in naturally-
occurring bipartite graphs. One can define the neighbor
graphs Gk on users, or on interests (two interests are neigh-
bors if many users share both interests). The KNC-plot
in each case may be completely different, and may unearth
different aspects of the data.

Given this simple model, the technical challenge is to com-
pute the KNC-plot in an efficient manner. Surprisingly, even
for k = 2 the problem is nontrivial, and for large graphs, the
natural approaches are ineffective. In this paper we study
approaches to this problem that have good asymptotic per-
formance for all graphs, but that provably perform very effi-
ciently for commonly-occurring graphs including those with
power law degree sequences.

Technical contributions. Our main contribution is the
definition of the KNC-plot as a tool to understand the macro-
scopic structure of a bipartite graph, and the development
of an efficient and practical algorithm to compute the KNC-
plot. Specifically, we present an algorithm that can compute
the KNC-plot in time Õ(m2−1/k), where m is the number of
edges in the underlying bipartite graph. This sub-quadratic
running time is a non-trivial improvement over the naive
quadratic algorithms for this problem. Furthermore, our al-
gorithm is simple and the constants in the Õ(·) small enough
to permit an extremely efficient implementation in practice.

Technically, our algorithm is developed by carefully com-
bining two relatively simpler algorithms for the problem.
The first algorithm works well when the total number of
edges in the graph is small, regardless of the maximum de-
gree of the nodes. The second algorithm works well when the
maximum degree of nodes on the left-hand side is bounded.
By choosing an appropriate degree threshold to implicitly
decompose the k-neighborhood graph, we run the two algo-
rithms in tandem on the two decompositions and combine
the results of these independent runs to ascertain the con-
nected components of the entire k-neighborhood graph.

We also provide much improved algorithms for two special
cases that are of practical interest. The first is when the
degree of the nodes are distributed according to a power
law. In this case we show that the running time of our
algorithm improves favorably with an increased skewness of
the power law. The second is when the right-hand side of
the bipartite graph is relatively small. In this case using a
completely different approach, we obtain a near-linear time
algorithm for the problem.

We apply our algorithm to generate the KNC-plot of four
large real-world bipartite graphs. The first is a subgraph of
the user–interests relation from the LiveJournal blogspace.
The second is a subgraph of the user–queries relation from
queries performed on Yahoo! web search. The third is a
subgraph of the page–ads relation from the Yahoo! content
match data. The fourth is a subgraph of the photo–tags rela-
tion from Flickr. The experiments show that our algorithm
is extremely practical, and its efficient running time makes
it even possible to study the KNC-plot of these large graphs.
We also implement the naive algorithm to demonstrate the
actual running time improvements.

Organization. Section 2 discusses the related work. Sec-
tion 3 contains the formal problem description and the basic
notation used throughout the paper. Section 4 presents the
development of our main algorithm and its proof. It also
presents improvements to the main algorithm for two spe-
cial cases. Section 5 contains the experimental results on two
large real-world bipartite graphs. Finally, Section 6 contains
concluding remarks.

2. RELATED WORK
Perhaps the closest family of work related to this paper

is those on understanding massive graphs that arise in the
context of the internet and the world-wide web. In a semi-
nal paper, Faloutsos et al [10] studied the internet topology
and discovered that the indegrees of nodes were distributed
according to a power law. This phenomenon was also ob-
served subsequently in the web graph, i.e., directed graph
corresponding to hyperlinks on the world-wide web [5, 3].
As mentioned earlier, Broder et al. [5] tried to characterize
the web graph via the bow tie model. Dill et al. [8] refined
this model to account for the self-similar nature of various
logical sections of the web graph.

Another line of work that is related to ours is that of find-
ing dense subgraphs in massive graphs. Kumar et al. [17]
studied the problem of finding dense communities in the
web graph. To this end, they developed efficient heuristic
algorithms to quickly identify dense bipartite subgraphs in
the web graph; see also [13]. Flake et al. [12] adopted a
network flow approach to the problem of identifying com-
munities. Gibson et al. [14] developed a technique using
hashing and shingling to identify large dense subgraphs in
massive graphs, later extended by Dourisboure et al. [9]. For
a more theoretical treatment of the dense subgraph problem,
see the paper by Charikar [6].

A third line of work related to our paper is the problem of
partitioning and representing a graph into bipartite cliques
or other succinct representations. This problem was con-
sidered by Feder and Motwani [11], who obtained a “com-
pressed” representation of the graph and used it to speed up
basic graph algorithms for matching, node connectivity, edge
connectivity, and shortest paths. A slightly different notion
of graph compression was studied by Kao et al. [15]. Agar-
wal et al. studied the problem of representing the visibility
graph of line segments as a union of cliques and bipartite
cliques [1]. For more references and a survey of the area,
see the thesis by Bezakova [4]. Our problem is also some-
what related to the bit vector intersection problem studied
by Karp et al. [16], where given a large collection of sparse
bit vectors, the goal is to find all the pairs with at least k
ones in common, for a given parameter k. The assume that
the number of ones common to any two vectors is signif-
icantly smaller than k, except for an unknown set that is
linear in the size of the collection.

3. PRELIMINARIES
Let G = (U, V, E) be a bipartite graph with set of nodes

U on the left-hand side, and a different set of nodes V on
the right-hand side. Let n = |U | be the number of nodes in
U and let m = |E| be the number of edges. For simplicity,
we will assume that |V | = O(n) and m = n · poly log(n).

The goal of this work is to understand the connectivity
structure of this bipartite graph, parametrized by a connec-

tivity requirement quantity, namely, k. First, we establish a
notion of connectivity that we use throughout the paper.

Definition 1 (k-neighbor). Given a bipartite graph
G = (U, V, E) and k ≥ 1, the pair of nodes (u, u′) ∈ U
in G are said to be k-neighbors in G if there are distinct
nodes v1, . . . , vk ∈ V such that (u, vi) ∈ E and (u′, vi) ∈ E
for every i = 1, . . . , k.

In other words, the two nodes u and u′ are k-neighbors
if there exists at least k distinct length-two paths between
them. By definition, k-neighbor is a symmetric relation.

Definition 2 (k-neighborhood graph). Given a bi-
partite graph G = (U, V, E) and k ≥ 1, the k-neighborhood
graph Gk = (U, Ek) is a graph such that (u, u′) ∈ Ek if and
only if (u, u′) are k-neighbors in G.

Figure 1 shows an example of k-neighborhood graphs of
a particular bipartite graph. Notice that Gk is by definition
undirected. The KNC-plot shows statistics of the compo-
nent structure of Gk as a function of k; in the following
section, we give efficient algorithms to produce this plot.

Notation. For a node w ∈ U ∪ V , let Γ(w) = {w′ ∈ U ∪
V | (w, w′) ∈ E} be the set of nodes adjacent to w. Let
deg(w) = |Γ(w)| be the degree of the node w.

For a subset S ⊆ U , let Gk,S = (U, Ek \ (S × S)) be the
node-induced subgraph of Gk and let Gk,S = (S, Ek ∩ (S ×
S)). In words, if S is a subset of nodes, then Gk,S contains
the edges that are incident on at least one node in the subset
and Gk,S contains only the edges between nodes not in the
subset. It is easy to see that Gk,S and Gk,S fully determine
Gk and so the connected components of Gk can be inferred
easily from the connected components of Gk,S and Gk,S .

Clique cover view. An alternate view of the problem
setting is the following. Let U = {u1, . . . , un} denote the
nodes of an undirected graph. Let C = {C1, . . . , C`}, where
Ci ⊆ U ; here, the subset Ci is to be thought of as implicitly
defining a clique on the nodes of Ci. Given a parameter
k, we define a graph Gk implicitly in the following way:
an edge (u, u′) in the graph GC,k is given by the predicate
|{i | u, u′ ∈ Ci}| ≥ k. In other words, the edge (u, u′) is
present in Gk if and only if at least k distinct cliques in C
contain both u and u′. There is a natural correspondence
between the bipartite view and this clique cover view. Given
a bipartite graph, set ` = |V | and C = {Cv} where Cv = {u |
(u, v) ∈ E}. The goal now is to obtain efficient algorithms
for computing the connectivity of Gk, for instances, without
explicitly enumerating all the edges in all the cliques in C.

4. ALGORITHMS
In this section we develop efficient and practical algo-

rithms for finding the connected components and connectiv-
ity structure of the k-neighborhood graph for k ≥ 1. At first
blush, this problem looks easy since this can be solved by ex-
plicitly constructing Gk and then performing a breadth-first
search on Gk. However, this is not efficient since this algo-
rithm will take time Ω(n2), even to implicitly construct Gk.
We seek algorithms that run in time o(mn); since we assume

m = Õ(n), this amounts to running times that are o(m2).

We use Õ(·) notation to ignore factors that are logarithmic
in m and n.

Figure 1: Example figure showing a bipartite graph G and its k-neighborhood graphs for k = 1, 2, 3.

In Section 4.1, we state our main result, which is a sub-
quadratic algorithm for finding the connected components in
Gk. Our result is built upon two simple quadratic-time algo-
rithms for the problem described in Section 4.2 and Section
4.3. Using these algorithms, we develop the sub-quadratic
time algorithm in Section 4.4 and prove a bound on its run-
ning time. We then consider two special cases that are of
interest in practice. First, suppose the degree distribution
for the nodes on the left-hand side conforms to a power law.
In Section 4.5, we provide a sharper analysis of our algorithm
in terms of the exponent of this power law. Second, suppose
the right-hand side is logarithmically smaller compared to
the left-hand side. In Section 4.6, we provide an (entirely
different) algorithm that runs in almost linear time.

4.1 Main result
First if k = 1, then the problem becomes easy. The only

observation is that there is a bijection between the con-
nected components of G and the connected components of
G1. Hence by running a breadth-first search on G, it is easy
to compute its connected components and hence that of G1.
The time taken is O(m+n), which is linear in the input size.
The difficulty in the problem arises in the case of k > 1.

We show the following result.

Theorem 3. There is an algorithm to compute the con-
nected components of Gk, k > 1 that runs in time Õ(m2−1/k).

Note that even though the running time approaches O(m2)
as k increases, it is still beneficial for large values of m (which
is of practical interest) even for reasonably moderate values
of k. A second advantage comes from the fact that we are
able to completely analyze the components of Gk for small
k. To obtain the components of Gk+1, we can run our al-
gorithm on each component from Gk. Although this does
not improve asymptotic running time in the worst case, it
appears to help for many graphs, since these components
can potentially be much smaller than the original graph.

Before proving this main result, we first develop two nat-
ural but naive algorithms for this problem.

4.2 First naive algorithm: Alg-Intersect

The first algorithm we consider, called Alg-Intersect,
works in the following manner.

The main idea is to see if the intersection size of the neigh-
borhood of two nodes is at least k, i.e., if an edge between

the two nodes exists in Gk. If this predicate can be com-
puted easily and on the fly, then the connectivity on Gk can
be solved by performing a breadth-first search on U with
edges in Ek accessed as needed.

To be useful later, we show the following more general
result. In this case we specify a subset S ⊆ U and the
goal is to obtain the connected components of Gk,S . So,
the question boils down to checking if the intersection of the
neighborhood of a node u ∈ S and another node u′ ∈ U is at
least k. We show how to do this efficiently. For each node
u ∈ S, we store Γ(u) as a hash table (or a Bloom filter).
Now for another node u 6= u′ ∈ U , we need to check if the
sets Γ(u) and Γ(u′) intersect in at least k places.

Lemma 4. Given G = (U, V, E), S ⊆ U , and any k >
1, the algorithm Alg-Intersect computes the connected
components of Gk,S in time O(|S| · |E|) and using space
O(|U |+ |E|).

Proof. The correctness of the algorithm is immediate.
We need to argue about the running time. Since Γ(u) is
stored as a hash table, checking if |Γ(u)∩ Γ(u′)| ≥ k can be
done in time |Γ(u′)| = deg(u′).

Over the entire run of the breadth-first search, the to-
tal time spent per node u is at most

P
u′∈U deg(u′) = |E|.

Therefore, this algorithm runs in time O(|S| · (|E| + |U |)).
Note that this is actually O(|S| · |E|) as long as there are
no isolated nodes in G. It is also easy to see that the space
used by the algorithm is O(|U |+ |E|).

Observe that the running time of the above algorithm is
independent of k. Also this simple algorithm is especially
appealing if the graph G has few nodes of very high degree
since the running time depends only on the number of nodes
of high degree and the sum of degrees. We will exploit this
fact later.

4.3 Second naive algorithm: Alg-Tuple

The second algorithm we consider, called Alg-Tuple,
works in the following manner.

The main idea is to perform a breadth-first search on an
implicitly defined bipartite graph whose right-hand side con-
sists of all possible k-tuples of V and whose edges represent
the adjacency of u to all the nodes of the k-tuple. Formally,
let G′

k = (U,Vk, E′
k) where Vk = {V ′ ⊆ V | |V ′| = k} and

(u, V ′) ∈ E′
k for V ′ = {v1, . . . , vk} if and only if (u, vi) ∈ E

for i = 1, . . . , k. Clearly, |Vk| =
`|V |

k

´
. It is easy to see that

u and v are in the same connected component in Gk if and
only if they are in the same connected component in G′

k.
An efficient way to implement this scheme would be to

construct a k-tuple of neighbors for every u ∈ U . Now,
by either sorting or hashing the tuples, we may determine
whether two nodes in U share a tuple and if so, identify
them in a single component.

Lemma 5. Given G = (U, V, E) and any k > 1, the al-
gorithm Alg-Tuple computes the connected components of
Gk in time Õ(

P
u∈U deg(u)k) and in space O(

P
u∈U deg(u)k)).

Proof. As before, the correctness is obvious and we need
to argue about the running time and space. Constructing
the k-tuple of neighbors for each u ∈ U takes time (and

space)
P

u

`
deg(u)

k

´
= O(

P
u deg(u)k). And identifying if

two nodes in U share a tuple or not can be done in time
Õ(

P
u deg(u)k) time.

The above algorithm is especially valuable if all the de-
grees in the graph are small. In particular, if the maximum
degree is at most c, then the running time of the algorithm
is roughly Õ(ck|U |); this can be substantially smaller than
O(|U | · |E|) if c is small. Again, we will exploit this factor
later.

Note that the naive implementation of Alg-Tuple given
in the proof above uses space O(

P
u∈U deg(u)k). It is pos-

sible to improve this space to O(km) by using the following
simple observation: the edges of Gk are a subset of edges of
Gk−1. Hence, for a given k, we can first pick a node in V ,
and consider only the subgraph induced by nodes in U that
are adjacent to v. We recursively solve the problem on this
induced subgraph for k − 1. Using the proper data struc-
tures, the running time is O(

P
u deg(u)k), while the space

drops to O(km).

4.4 Proof of the main result
In this section we establish the main result by providing

an algorithm Alg-Hybrid. Our algorithm will be a care-
ful combination of Alg-Intersect and Alg-Tuple. For
simplicity of exposition, we treat the running time of Alg-
Tuple to be O(

P
u∈U deg(u)k), i.e., we ignore the logarith-

mic terms. Let u1, . . . , un be the nodes in U sorted in de-
creasing order of the degrees.

The algorithm Alg-Hybrid first determines a break-point
b ∈ [0, n + 1) such that

bX
i=1

deg(ui)
k ≥ b ·m

and
nX

i=b+1

deg(ui)
k ≤ (b + 1) ·m.

Note that such a break-point always exists since ui’s are
sorted and the left-hand side term of the first inequality is
an increasing function of b while the left-hand side of the
second inequality is a decreasing function of b. For sake of
simplicity, we assume that b in fact satisfies the equality

nX
i=b

deg(ui)
k = b ·m, (1)

and let S = {u1, u2, . . . , ub}. By construction, S picks
out the highest degree nodes in U and the above equation

will help us balance the cost of Alg-Intersect and Alg-
Tuple.

Now, we run Alg-Intersect on Gk,S and Alg-Tuple
on Gk,S . The break-point b achieves a trade-off between the
number of edges in the graph supplied to Alg-Intersect,
which is its bottleneck, and the maximum degree in the
graph supplied to Alg-Tuple, which is its bottleneck. As
mentioned earlier, the connected components in Gk,S are
found by Alg-Intersect and the connected components in
Gk,S are found by Alg-Tuple. It is then straightforward
to merge these components. The total running time is

O(bm) + Õ(
X
u∈S

deg(u)k), (2)

which follows from Lemma 4 and Lemma 5.
The correctness of this algorithm is immediate. We need

to argue about the running time. To do this, we first make
the following simple yet crucial observation.

Lemma 6. For all i = 1, . . . , n, deg(ui) ≤ |E|/i.

Proof. This follows by a counting argument. Suppose
for some i we have deg(ui) > |E|/i. Then, we have the
following sequence of inequalities leading to a contradiction.

|E| =
nX

j=1

deg(uj) ≥
iX

j=1

deg(uj)
(a)
>

iX
j=1

|E|
i

= |E|.

Here, (a) follows since the nodes are sorted by the degrees
and by our assumption on deg(ui).

With this observation, the proof of the running time is
easy. We may now state the proof of Theorem 3.

Proof. Recall our choice of b in (1). From Lemma 6, we
know that deg(ui) ≤ m/i.

Suppose the equality holds, i.e.,

deg(ui) = m/i. (3)

In this case (1) leads to

mk
nX

i=b

1

ik
= b ·m.

Therefore,

b = O

„
m1−1/k

(k − 1)1/k

«
. (4)

From (2), we now obtain the final running time to be Õ(m2−1/k).
In case when (3) does not hold, it is easy to verify that

(4) still holds and the running time is still Õ(m2−1/k). In
other words, the worst case for the running time is attained
when deg(ui) = m/i.

4.5 Special case: Power law degrees
In this section we consider an interesting special case in

which the degrees of nodes in U are distributed according
to a power law with exponent α ≥ 1, i.e, the number of
nodes of degree i is roughly m/iα. (For ease of exposition,
we omit the normalizing constants.) We show the running
time of the algorithm as a function of the exponent α of this
power law. Specifically, we show the following corollary of
our main theorem.

Corollary 7. Suppose the degrees of U are distributed
according to a power law with exponent α ≥ 1. Then, there
is an algorithm to compute the connected components of
Gk, k > 1 that runs in time Õ(m1+(1−1/k)/α).

Proof. The proof mirrors that of Theorem 3. We com-
pute the appropriate break-point b using the expression

nX
i=b

“ m

iα

”k

= bm.

From this, we get

b =
m(1−1/k)/α

(αk − 1)1/(αk)
.

As before, using (2), the running time is Õ(m1+(1−1/k)/α).

Thus, if the degrees are skewed with α > 1, then the running
time of our algorithm is bounded away from being quadratic.

4.6 Special case: Small right-hand side
In this section we consider another interesting special case

when |V | ≤ log |U | = log n. We demonstrate a completely
different and almost linear time algorithm for the problem.
The running time of this algorithm is independent of the
value of k; in fact, it computes the components of Gk for
every k.

Lemma 8. Suppose |V | ≤ log n. Then, there is an algo-
rithm to compute the connected components of Gk, k > 1
that runs in time Õ(n).

Proof Sketch. The algorithm works on the lattice L of
bit vectors defined by all possible subsets of nodes of V ; the
lattice operations are defined by the bit-wise boolean AND
and OR. Since |V | ≤ log n, the size of this lattice is at most
n. Let |x| denote the Hamming weight of x ∈ L.

Now, each node u ∈ U maps to exactly one element of the
lattice depending on the characteristic vector of Γ(u). For
any lattice element x ∈ L, let W (x) denote the (possibly
empty) set of nodes in u that map to x. For any node
x ∈ L, let anc(x) denote the set of ancestors of x in L, i.e.,
anc(x) = {y ∈ L | |y| = |x|+ 1 ∧ ∀i, yi ≥ xi}.

Now, we scan this lattice in level order, starting from the
all ones element, which is the supremum. Let Bi = {x ∈
{0, 1}n | |x| = i} be the set of vectors at level i. For each
element x ∈ Bi, we update W (x)←W (x)∪

S
y∈anc(x) W (y).

Now, the connected components in Gk are given by the set
{W (x) | |x| = k}, with possible duplicates removed.

We claim that for every pair nodes u and v, we have u, v ∈
W (x) if and only if u and v are in the same component in
G|x|. This can be proved by induction; we omit the proof
in this version. It is also easy to see that this algorithm
can be implemented in essentially Õ(n) time, the overhead
above linear time being the time necessary to perform union–
find.

5. EXPERIMENTS AND RESULTS
In this section we generate the KNC-plot for four large

real bipartite graphs. We implemented Alg-Hybrid using
under 1000 lines of Java code. For each of the graphs, we run
our algorithm and compute the connected components. We
extract the size of the largest component and the number of
connected components in the graph Gk, as a function of k,

Dataset U V E
User–interests 897K 287K 13M
User–queries 95K 42K 3.9M
Page–ads 358K 313K 8.6M
Photo–tags 42K 19K 189K

Table 1: Statistics of data sets.

and plots the results in the KNC-plot. The shape of these
curves will be an indication of the bipartite structure of the
graph. Typically, we run our algorithms on bipartite graphs
with |U | roughly equal to 105 or 106. In some cases, the
original graphs may be larger than this, and so we employ a
form of downsampling, as follows. To generate a subgraph
of size s, we randomly select s nodes from U without re-
placement, and then select all edges incident to the selected
nodes, and all the associated elements of V .

There are two primary application domains for our algo-
rithm. The first is to provide a natural and easily-described
hierarchical clustering of the nodes of one bipartition. This
comes about because the components of Gk+1 are guaran-
teed to be subsets of the components of Gk, so a hierarchi-
cal clustering is induced. From this hierarchical clustering,
standard techniques may then be applied to derive affinity
measures between nodes in the graph, and so forth. The
second application is to produce the KNC-plot as a macro-
scopic summary of the graph, to be used for data forensics,
anomaly detection, and generating a high-level understand-
ing of the data set. In this section we will explore the sec-
ond application only — this application must introspect on
the properties of the various neighborhood graphs, and thus
provides a novel perspective.

We first describe the datasets we use, then give some in-
formation about the downsampled graphs we study.

User–interests in LiveJournal: Our first bipartite graph
is derived from the user–interest graph obtained from
the LiveJournal blogspace. LiveJournal is an online
blogging community where each user in the social has
a profile that may contain a self-reported list of inter-
ests. We use a crawl of the users of LiveJournal from
May 2006.

User–queries in Yahoo! query log: Our second graph is
derived from the query logs inside Yahoo! We obtained
query logs consisting of anonymized user ids and the
queries issued by the user over a 75 day period.

Page–ads graph in content match: Our third graph is
derived from the content match program at Yahoo!
Here, the data corresponds to which ads were shown
on which pages.

Photo–tags in Flickr: Our fourth graph is derived from
the Flickr data set. Flickr is an online photo sharing
site where each photo can be tagged with free text.

Table 1 shows the statistics for the downsampled graphs
studied in each of the four cases.

We now turn to some aggregated statistics that are very
helpful in understanding the nature of each of the bipartite
graphs. Recall that n = |U |. Table 2 shows for each data set
the value of k for which the largest component in Gk is n/2,

Dataset 50% 10% 1%
User–interests 5 14 36
User–queries 16 > 50 > 50
Page–ads 9 27 > 50
Photo–tags 3 4 6

Table 2: Values of k at which largest component in
each dataset represents 50%, 10%, and 1% of the
original graph.

Figure 2: KNC-plot of user-interests graph.

n/10 and n/100. We will give a more detailed discussion of
each dataset, with pointers back to this table.

Figure 2 shows the KNC-plot of the user–interests graph.
As Table 2 shows, the largest component of G14 has size
n/10, and that of G36 has size n/100. Thus, one should
imagine that the 1% of users who are connected together
by dint of sharing thirty-six distinct interests with others in
this group are in fact a highly unusual collection, with strong
affinity compared to others in the graph. Approaches that
connect users based on, say, six common interests should be
viewed with suspicion, as this level of connectivity is suffi-
cient to (transitively) interconnect half the population. Fi-
nally, the dynamic range of the graph is such that sharing
of interests ranging from a handful all the way to thirty or
more all represent meaningful levels of connectivity that can
be responsible for inducing nontrivial structure.

Figure 3 shows the KNC-plot of the user–queries graph.
Here, the story is very different. As Table 2 shows, 50% of
the users are connected in G16, and more than 10% (around
20%) are connected in G50. This bipartite graph shows a
very different structure from the user–interests graph. In a
sense, it should be viewed as “heavy-tailed,” meaning that
the level of connectivity between users based on shared queries
may meaningfully be expanded all the way from just a few
queries to in excess of fifty queries, with only a slow diminu-
tion of the number of connected users. This is surprising,
given that the average user issued only forty queries overall,
and the queries are highly diverse.

Figure 4 shows the KNC-plot of the page–ads graph. This
graph displays a third distinct pattern, in which five shared

Figure 3: KNC-plot of user-queries graph.

Figure 4: KNC-plot of page-ads graph.

ads says almost nothing about the level of connection be-
tween two pages, while six shared ads makes a much stronger
statement. In this example, unlike the previous two graphs,
there is a sharper threshold behavior, and then a heavy tail
in which 20% of the pages may be connected by six com-
mon ads, and half of this set remains connected even when
requiring twenty-seven common ads.

Finally, Figure 5 shows the KNC-plot of the photo–tags
graph. Once again, this graph shows yet a fourth pattern of
connectivity. As we construct G3, G4, and G5, the size of the
largest connected component drops aggressively, to the point
that requiring six common tags to connect two photos will
result in fewer than 1% of photos being connected. For this
graph, we may view the higher-level bipartite connectivity
as essentially non-existent.

5.1 Running times: k = 2, increasing n

To clearly illustrate the benefits of the algorithm in terms
of its improvement over a naive algorithm, we compare our
algorithm Alg-Hybrid with Alg-Intersect for k = 2.

Figure 5: KNC-plot of photo–tags graph.

Figure 6: Running time of Alg-Hybrid and Alg-
Intersect for k = 2 and different values of n.

Figure 6 shows the running times for various values of n;
the underlying subgraphs were sampled from the LiveJour-
nal graph. It is clear from the figure that even for moderate
values of n, the naive algorithm becomes infeasible whereas
Alg-Hybrid remains under five minutes even for n close to
106.

5.2 Running times: fixed n, increasing k

We next compare the performance of Alg-Hybrid with
Alg-Intersect for larger values of k. Table 3 shows the
running times of our experiments for k = 2, . . . , 50. From
the table, we see that even for this high value of k, Alg-
Hybrid does (in some cases, substantially) better than the
naive Alg-Intersect. This demonstrates the effectiveness
and efficiency of our algorithm, even as a function of k.

6. CONCLUSIONS
In this paper we studied the connectivity structure of mas-

sive bipartite graphs. We developed a notion two nodes be-

Dataset n m Alg-Hybrid naive
photo–tags 41,811 189,159 7.4m 39.6m
page–ads 35,920 845,112 1m34s 1m30s

user–interests 269,591 3,918,820 36m33s 62m51s
user-queries 95,399 3,874,271 20m23s 24m2s

Table 3: Comparative running times of the Alg-
Hybrid and Alg-Intersect for k = 2, . . . , 50.

ing k-neighbors if they have at least k disjoint length two
paths among them and used this notion to define the k-
neighborhood of a given bipartite graph. From this defini-
tion, we introduced the KNC-plot, showing falloff in connec-
tivity as a function of k. The KNC-plot sheds light on the
connectivity aspects of the bipartite graph and we believe
might be a valuable tool in understanding the macroscopic
properties of such graphs.

We developed efficient algorithms to compute the con-
nected components of the k-neighborhood graph, and hence
the KNC-plot. Our algorithms run in sub-quadratic time
and are extremely practical. We also study improved algo-
rithms and improved analysis for some commonly occurring
special cases. We apply our algorithms to four large bipartite
graphs, namely, the user–interest graphs from the LiveJour-
nal blogging community, the user–queries graph from Ya-
hoo! search, the page–ads graph from Yahoo! content match,
and the photo–tags in Flickr. Experiments show that our
algorithm is extremely practical, and its efficient running
time makes it possible to study the KNC-plot of these large
graphs.

Future work include improving the running time of our
current algorithms. Another interesting direction to pursue
is to develop a data stream version of our algorithms, where
we make one or more passes over the graph and output some
function of the connected components (say, the number of
connected components). The paper of Charikar et al. [7]
on counting distinct elements in a data stream might be
relevant in this case.

7. REFERENCES
[1] P. K. Agarwal, N. Alon, B. Aronov, and S. Suri. Can

visibility graphs be represented compactly? Discrete
and Computational Geometry, 12:347–365, 1994.

[2] R. Andersen and K. Lang. Communities from seed
sets. In Proc. 15th International Conference on the
World Wide Web, pages 223–232, 2006.

[3] A.-L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[4] I. Bezakova. Compact representation of graphs and
adjacency testing. Master’s thesis, Comenius
University, Bratislava, 2000.

[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer Networks,
33(1–6):309–320, 2000.

[6] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In Proc. 3rd
International Workshop on Approximation Algorithms
for Combinatorial Optimization, pages 84–95, 2000.

[7] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. 29th

International Colloquium on Automata, Languages,
and Programming, pages 693–703, 2002.

[8] S. Dill, R. Kumar, K. S. McCurley, S. Rajagopalan,
D. Sivakumar, and A. Tomkins. Self-similarity in the
web. In Proc. 27th International Conference on Very
Large Databases, pages 69–78, 2001.

[9] Y. Dourisboure, F. Geraci, and M. Pellegrini.
Extraction and classification of dense communities in
the web. In Proc. 16th International Conference on
the World Wide Web, pages 461–470, 2007.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. of the ACM SIGCOMM Conference on
Applications, Technology, Architectures, and Protocols
for Computer Communication, pages 251–262, 1999.

[11] T. Feder and R. Motwani. Clique partitions, graph
compression, and speeding-up algorithms. Journal of
Computing and System Sciences, 51(2):261–272, 1995.

[12] G. Flake, S. Lawrence, and C. L. Giles. Efficient
identification of web communities. In Proc. 6th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 150–160, 2000.

[13] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring
web communities from link topology. In Proc 9th
ACM Conference on Hypertext and Hypermedia, pages
225–234, 1998.

[14] D. Gibson, R. Kumar, and A. Tomkins. Extracting
large dense subgraphs in massive graphs. In Proc. 31st
International Conference on Very Large Data Bases,
pages 721–732, 2005.

[15] M.-Y. Kao, N. Occhiogrosso, and S.-H. Teng. Simple
and efficient graph compression schemes for dense and
complement graphs. Journal of Combinatorial
Optimization, 2(4):351–359, 1998.

[16] R. M. Karp, O. Waarts, and G. Zweig. The bit vector
intersection problem. In Proc. 36th IEEE Symposium
on Foundations of Computer Science, pages 621–630,
1995.

[17] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the web for emerging
cyber-communities. Computer Networks,
31(11-16):1481–1493, 1999.

[18] J. A. Tomlin. A new paradigm for ranking pages on
the world wide web. In Proc. the 12th International
Conference on the World Wide Web, pages 350–355,
2003.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442,
June 1998.

