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ABSTRACT
We consider the problem of inferring choices made by users
based only on aggregate data containing the relative popu-
larity of each item. We propose a framework that models
the problem as that of inferring a Markov chain given a sta-
tionary distribution. Formally, we are given a graph and a
target steady-state distribution on its nodes. We are also
give a mapping from per-node scores to a transition matrix,
from a broad family of such mappings. The goal is to set the
scores of each node such that the resulting transition matrix
induces the desired steady state. We prove sufficient condi-
tions under which this problem is feasible and, for the feasi-
ble instances, obtain a simple algorithm for a generic version
of the problem. This iterative algorithm provably finds the
unique solution to this problem and has a polynomial rate
of convergence; in practice we find that the algorithm con-
verges after fewer than ten iterations. We then apply this
framework to choice problems in online settings and show
that our algorithm is able to explain the observed data and
predict the user choices much better than other competing
baselines across a variety of diverse datasets.

1. INTRODUCTION
The theory of Markov chains provides a beautiful alge-

braic formulation of the conditions under which a steady
state exists for a random walk, and the nature of that steady
state. Given a transition matrix of the Markov chain, one
may then determine whether it meets the conditions, and
compute the steady state if it exists.

In practice, however, it may be easier to observe the steady
state than the underlying transitions. Consider for exam-
ple a video sharing website that recommends a number of
follow-on videos to the viewer of a particular video, and also
displays the number of times each video has been viewed.
The popularity of each video is directly proportional to the
steady state distribution in the random walk defined by the
follow-on videos, but an outside observer does not know
which edges have been traversed to attain this steady state.
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Thus, rather than determining the steady state from the
matrix, we are often faced with the inverse problem:

Given the steady state, can we recover some prop-
erties of the underlying process?

Such a problem is highly under-constrained, as there are
numerous ways to set potentially quadratically-many tran-
sition probabilities so as to produce the desired steady state.
Our main result is a solution to this problem under a natural
set of constraints.

We will assume first that the graph of the Markov chain is
known. This is tantamount to assuming that certain transi-
tions are known to be zero, or equivalently, from any state,
there is a known set of available alternatives from which
the user must choose. In many situations, these alterna-
tives are present explicitly as a set of “related items” on
a page: related videos on youtube.com, related restau-
rants on yelp.com, various types of related products on
amazon.com, and so forth.

So far, the assumption is quite weak. We now introduce
a stronger axiom about the transition matrix, which some-
what surprisingly will in general result in a unique Markov
chain that produces the given steady state. Our axiom can
be described as follows.

First, we assume that each state i of the Markov process
has an unknown score si, and there is a known mapping
from the the scores to the full transition matrix. We require
further that this mapping is continuous, monotonic, and un-
bounded. That is, all else held constant, an increase in the
score of i will always increase the transition probability of
an edge to i (monotonicity), and as the score becomes suffi-
ciently high, this transition probability will become arbitrar-
ily close to 1 (unboundedness). Note that the most natural
mapping satisfying this condition makes the probability of
transition from a node to its neighbor be proportional to the
neighbor’s score. To the best of our knowledge, this kind of
inverse problem has not been considered in the literature
before; see Section 2.

Our main result states that in this setting, if a natural
condition on the graph of the Markov process holds with
respect to the given steady-state distribution, then:

1. For any desired steady state, there is an assignment of
scores to the nodes that attains this steady state.

2. The scores yielding a particular steady state are unique
up to scalar multiplication.

3. An efficient algorithm exists to find these scores.



Let us give a couple of examples to develop the intu-
ition for this model. First, consider a music recommen-
dation site that allows users to navigate from one song to
any of a set of related songs. We model that user’s like-
lihood of transitioning from song A to B as proportional
to similarity(A,B) · score(B), which is monotonic and un-
bounded, as long as the similarity scores are positive. If
we know the overall visit popularity of the songs, we can
therefore learn the scores that attain these visit popularities.
As another example, consider a user of a recommendation
site. The user picks a next object to consider from among a
known slate of candidates with probability proportional to
some (increasing and unbounded) function of the candidate
object’s overall score. The increasing function may be pos-
tulated or identified empirically from data. Our techniques
may then be applied to learn the score of each item.

We apply our framework to four diverse choice settings,
from choosing which link to follow in a Wikipedia article to
reach a particular webpage, to natural restaurant selection
problems, to deciding which comedy clip is funnier. We
show that by only considering the structure of the graph
and ignoring the metadata, the model can explain the data
and predict the individual user choices 10 to 40% better than
strong baselines based on popularity, pagerank, or maximum
entropy approaches (see below for a broader discussion of
related work).

2. RELATED WORK
To the best of our knowledge, the problem of inverting

a steady-state distribution has not been considered in the
literature before. Tomlin proposed a notion of Temperature
Rank [31], which is related to our work. In his model, we
are given the link structure on the web pages along with the
steady-state traffic on all the web pages and the goal is to
identify the transition probabilities on the edges by enforc-
ing flow conservation of the traffic. Since the optimization
problem is under-constrained, the idea is to use maximum-
entropy regularization and a practical heuristic based on it-
erative matrix scaling [29] to compute the probabilities. Im-
portantly, the transition probabilities do not depend on the
neighborhood of a node but depend only on the endpoints
of an edge. Even though at the end the method produces
a score for each node in the graph, it is a simple heuris-
tic with no provable guarantees. Our model, on the other
hand, is based on a concrete transition probability model
that takes the neighborhood of a node into account and does
not need any form of regularization since the number of pa-
rameters is exactly the number of nodes. Furthermore, our
algorithm is provably correct and has many additional desir-
able properties including uniqueness and a polynomial rate
of convergence. We will use Temperature Rank as one of
our baselines.

Markov chains have been studied in the literature for over
a century; see the books by Kemeny and Snell [17] and
Levin, Perese, and Wilmer [21]. Typical problems in Markov
chains include studying the stationary distribution and mix-
ing times. As we mentioned earlier, as far as we know, the
problem of steady-state inversion has not been directly ad-
dressed in the Markov chain literature.

PageRank [7, 28] popularized Markov chains in the web
search and data mining communities. PageRank postulates
a random surfer model in which a uniform random walk
is conducted on the link structure of the web graph, after

making it ergodic by adding a random teleportation step.
The stationary distribution of this random walk yields a
score, called PageRank, for each node in the graph. Our
method also yields a score for each node, but both our model
and goals are different from PageRank. In PageRank, the
random walk (modulo the teleportation) is uniform on the
neighborhood of a source node, whereas in our case, the walk
is weighted by the score of a destination node. Hence, the
“normalization” factor for the random walk in PageRank is
proportional to the size of the out-neighborhood of a source
node whereas in our case, it is the sum of the scores of all
nodes in the out-neighborhood of the source node. We will in
fact use PageRank as one of our baselines and show that the
more general score-based method better explains the data.
There have been several papers on PageRank computation
(e.g., [8, 13, 15, 16, 20, 22, 25]) and other link analysis
methods (e.g, [1, 5, 18, 27, 30]). For a detailed introduction
to PageRank and its related methods, see the surveys by
Berkhin [4], and Langville and Meyer [19].

Another work that is related in spirit to ours is the clas-
sical Metropolis–Hastings method [12, 26]. In this method,
we are given a graph and a desired stationary distribution
on the nodes of the graph and the goal is to design a random
walk (Markov chain) such that the stationary distribution of
this random walk is exactly the desired stationary distribu-
tion. This is achieved by carefully adjusting the transition
probabilities in the walk. Unlike our problem, the main goal
in Metropolis–Hastings is to compute the probabilities on
the edges to achieve the desired node probabilities. Even
though Metropolis–Hastings has been studied for more than
half a century, very little is known about it from a formal
point of view, especially, its mixing time and rate of con-
vergence. For more details, see the nice survey by Chib
and Greenberg [9]. In general, the problem of designing
transition probabilities (or more generally, edge weights) to
achieve a global objective has been studied in the optimiza-
tion community. For example, Ghosh, Boyd, and Saberi [10]
considered the global objective of minimizing the total effec-
tive resistance and Boyd, Diaconis, and Xiao [6] considered
the objective of minimizing the mixing time. These prob-
lems are typically cast as convex optimization problems and
solved directly instead of trying to define a score for each
node.

Discrete choice theory is a classic topic in statistics and
behavioral economics and is the closest body of work to our
objective. The goal of the theory to explain and predict
choices between two or more discrete alternatives. Discrete
choice models are characterized by the nature of the set of
alternatives (choice set), the process by which the choice
probabilities are defined, and the utility derived by making
a particular choice. See the books by Ben-Akiva and Ler-
man [3] and by Hensher, Rose, and Greene [14]. There is
a variety of discrete choice models depending on what we
assume about the alternatives. Our choice of choice prob-
abilities (no recursion intended!) is loosely motivated by
the axioms formulated by Duncan Luce [23, 24], which state
that a user’s likelihood to select one object over another
is unaffected by the nature of the other alternatives. Our
framework is reminiscent of multinomial choice models: the
choice set is given by the neighborhood of a node in the
graph, the choice probabilities are defined according to the
score of the nodes, and the implicit utility is to match the
given steady-state distribution. However, our framework is



more general than choice models. First, it does not need to
know which item was chosen, rather, it relies on aiming to
match a desired steady-state distribution. Second, it does
not assume that the random variables follow given distribu-
tions, a very common assumption in the statistical modeling
of choice. Third, it has provable convergence guarantees,
which are hard to obtain for many heuristic and optimiza-
tion methods used in discrete choice theory. Last, it works
with weighted graphs and also for a broad family of functions
that can be applied to the scores of a neighborhood. As we
will show formally, the unweighted case of the steady-state
inversion problem is related to the choice model.

3. PRELIMINARIES
Let G = (V,E) be a weighted directed graph where V =
{1, . . . , n} and wij > 0 is the weight of an edge (i, j) ∈ E.
For a directed edge (i, j) ∈ E, we call j the out-neighbor
of i and i the in-neighbor of j. Let Γout(i) denote the set
of out-neighbors of i and let Γin(i) denote the set of in-
neighbors of i. For a set S ⊆ V let Γin(S) = ∪v∈SΓin(v) and
Γout(S) = ∪v∈SΓout(v). Let G be strongly connected, i.e.,
any node is reachable from every node.

Let s : V → R>0 be a score function on the nodes V .
Such a score function naturally defines a Markov chain on
V given by the following transition probability from i to j:

TG,s(i, j) =
wijsj∑

j′∈Γout(i)
wij′sj′

.

Note that the strong-connectedness of G guarantees that
the Markov chain is recurrent. If the Markov chain is also
aperiodic then the stationary distribution is unique. Given a
score function s, let πG,s denote the stationary distribution
of the Markov chain.

Let p : V → (0, 1] be a given probability distribution over
the nodes of G so that

∑
i∈V pi = 1. By removing each node

i where pi = 0, we will assume without loss of generality that
pi > 0 for all i ∈ V .

Problem 1 (Steady-state inversion). Given a strongly
connected weighted graph G = (V,E), and a distribution p
on V , find a score function s : V → R>0 such that πG,s = p.

Note that a priori it is unclear if such a score function always
exists or if it is unique.

4. FEASIBILITY AND SOLVABILITY
In this section we study the necessary and sufficient condi-

tions for the feasibility of the steady-state inversion problem
and show how to find the scores in polynomial time if the
problem is feasible.

We first illustrate a simple example to show that a solution
to the steady-state inversion problem may not always exist.
Let G be the directed three node cycle A → B → C → A,
with an additional self loop on A. For any score function
s, it is easy to see that the stationary distributions on B
and C must be equal. If not, the the steady-state inversion
problem on this graph is infeasible.

4.1 Reduction to the bipartite case
To study the conditions under which a solution exists

and to find a solution, we convert the steady-state inversion
problem on general graphs to a related problem on directed
weighted bipartite graphs.
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Figure 1: Reduction to the bipartite case: original
graph G and the given steady-state distribution p
and the bipartite form G′ and the new distribution
p′.

Let G = (L,R,E) be a directed weighted bipartite graph.
Let T ′G,s : L × R → [0, 1] be a submatrix of the transition
matrix defined as T ′G,s(iL, jR) = TG,s(iL, jR) for iL ∈ L
and jR ∈ R. Note that since G is bipartite, T ′G,s is itself
a transition matrix. Let p be a probability distribution on
the nodes L ∪ R. Let pL (resp. pR) be the conditional
distribution on the nodes in L (resp. R). We define the
following problem.

Problem 2 (Bipartite steady-state inversion). Given
a directed bipartite graph G = (L,R,E), and probability
distributions pL on L and pR on R, find a score function
s : R→ R>0 such that pR = pL · T ′G,s.

We now show how to reduce the steady-state inversion prob-
lem on graphs to bipartite steady-state inversion. Let G =
(V,E) be the given instance of the steady-state inversion
problem and let p be the given distribution on V .

Let G′ = (L,R,E′) be a bipartite graph derived from G in
the following manner. For each node i ∈ V , create two nodes
iL and iR: L = {iL | i ∈ V } and R = {iR | i ∈ V }. For each
edge (i, j) ∈ E with weight wij , add an edge (iL, jR) with
weight wij to E′. For each node i ∈ V , add a back edge
(iR, iL) of weight 1 to E′. Let p′ be a distribution on L∪R
given by p′(iL) = p′(iR) = p(i)/2. We give an example of
the reduction in Figure 1.

Lemma 3. Let s′ be the solution to the bipartite steady-
state inversion problem on G′ and p′. Then, s defined by
s(i) = s′(iR) is a solution to the steady-state inversion prob-
lem on G.

Proof. By construction, we have p′(iR) = p(i)/2 = p′(iL).
Also, by the construction of G′ from G and the definition of



s from s′, we have T ′G′,s′ = TG,s and hence,

p(i) = 2p′(iR) = 2p′(iL) · T ′G′,s′ = p(i) · TG,s,

where the second equality follows since s′ is a solution to
the bipartite steady-state inversion problem. Therefore, s is
a solution to the steady-state inversion problem on G and
p.

4.2 Algorithm for bipartite graphs
Let G = (L,R,E) be a bipartite graph and let p be a dis-

tribution on L∪R. We define a notion of graph consistency
and show that the steady-state inversion problem is feasible
if and only if the bipartite graph is consistent.

Definition 4 (Consistency). A directed bipartite graph
G = (L,R,E) is consistent with a distribution p on L∪R if∑

i∈L

pi =
1

2
=
∑
j∈R

pj ,

and there exist values αij ≥ 0 for all (i, j) ∈ E so that for
every node i ∈ L,

pi =
∑

j∈Γout(i)

αij ,

and for every node j ∈ R,

pj =
∑

i∈Γin(j)

αij .

The consistency condition is equivalent to saying that the
stationary distribution p is a result of specific choices (namely
the αij ’s) made by each node. Consistency is a condition
that is ensured in many natural settings. For example, a
bipartite graph obtained (according to the reduction in Sec-
tion 4.1) from a strongly connected directed graph with self-
loops at all nodes, is consistent with any distribution. An-
other example of a bipartite graph that is consistent with
any distribution is one in which for any subset L′ ⊆ L, we
have

∑
i∈L′ pi ≤

∑
j∈R′ pj , where R′ = ∪i∈L′Γout(i); this

is related to the Hall’s theorem condition [11] for the ex-
istence of a perfect matching in bipartite graphs. Observe
that the three node cycle example above is consistent only
when the stationary distribution on nodes B and C is the
same. Clearly if the consistency condition is not met, there
is no way to satisfy the steady-state equations in the origi-
nal graph. However, surprisingly, the converse is also true:
if the consistency condition is met, then the node scores can
be set so as to realize the target steady state.

This is our main result, which we now state and prove.

Theorem 5. Let G = (L,R,E) be a weighted bipartite
graph and p be a distribution on L ∪ R that is consistent
with G. Then for any ε > 0, there exists a score function s
such that

(1− ε)pR ≤ pL · T ′G,s ≤ (1 + ε)pR;

moreover, s can be computed in polynomial time.

We prove this Theorem by giving an algorithm to find the
desired scores s. The algorithm will begin with some as-
signment of the scores, and then increase the scores for the
nodes whose realized probability is far below the desired
probability. To state the algorithm, for a node j ∈ R, let

qj(s) = (pL · T ′G,s)j ,

be the probability mass at node j after one step of the ran-
dom walk from PL, based on the scores s.

Let ε > δ > 0 and consider the following algorithm, which
obtains a sequence of approximations to the score function.
(For simplicity of exposition, we have separated the roles of
δ and ε; later in Theorem 10, we will set δ = ε/2.)

Algorithm 1 Bipartite steady-state inversion

1: t← 0
2: for j ∈ R do
3: Initialize stj = pj
4: end for
5: repeat
6: t← t+ 1
7: for j ∈ R do
8: if qj(s

t−1) ≥ pj(1− ε) then
9: stj ← st−1

j {Leave score unchanged}
10: else
11: Solve the following for x:

qj(s
t−1
1 , . . . , st−1

j−1, x, s
t−1
j+1, . . . , s

t−1
n ) = pj(1− δ)

12: stj ← x {Increase score}
13: end if
14: end for
15: until ∀j ∈ R, stj = st−1

j

4.3 Algorithm Analysis

Lemma 6. Algorithm 1 is well defined, i.e., st+1
j exists

as defined for every t. Furthermore, the algorithm produces
a sequence of score functions s0, s1, . . . that is increasing in
each coordinate, i.e., for all j ∈ R, s0

j ≤ s1
j ≤ · · · .

Proof. To see that stj exists for all t and j, first note that

when qj(s
t−1) ≥ pj(1 − ε), it follows trivially. So consider

the case that qj(s
t−1) < pj(1 − ε). We need to show that

the equation

qj(s
t−1
1 , . . . , st−1

j−1, x, s
t−1
j+1, . . . , s

t−1
n ) = pj(1− δ)

has a solution. For convenience, let

Qj(x) = qj(s
t−1
1 , . . . , st−1

j−1, x, s
t−1
j+1, . . . , s

t−1
n ).

Notice that

lim
x→∞

Qj(x) =
∑

i∈Γin(j)

pi.

Since p is consistent with G, this sum either surpasses pj or
approaches pj in the limit. Since Qj(s

t−1
j ) < pj(1− ε), and

Qj is increasing in x and continuous, there is some x ≥ st−1
j

for which Qj(x) = pj(1− δ), as desired. Note that this also
shows that the sequence is non-decreasing.

Thus, we have a sequence of score functions that is non-
decreasing in each coordinate. We will show that each coor-
dinate is upper bounded. At a high level, the proof argues
that any node whose score increases beyond bound must
already be taking almost all of the probability mass from
its in-neighbors (by unboundedness), but that these neigh-
bors must among them have enough probability mass (by
consistency), thus reaching a contradiction.

Lemma 7. For all j ∈ R there is an upper bound uj such
that stj ≤ uj for all t ≥ 0.



Proof. Let Z ⊆ R be the set of nodes for which the
upper bound exists. We will show that Z = R. We begin
by showing that Z is always non-empty.

Fix a time t, and let Z′ be the set of nodes for which
qj(s

t) > pj . Note that if qj(s
t) ≤ (1− ε)pj for some t = t0,

then qj(s
t) ≤ (1− δ)pj for all t ≥ t0. This follows from the

fact that Qj(x) is non-increasing for all coordinates k 6= j.
Thus if Z′ is empty, then the total probability mass on the
nodes in R is: ∑

j∈R

qj(s
t) ≤

∑
j∈R

(1− δ)pj < 1,

a contradiction. Therefore Z′ and Z ⊇ Z′ are non-empty.
Since Z is non-empty, consider what happens when Z 6=

R. Intuitively, since the scores for these nodes are increasing,
it must be the case that their probability mass is below the
target. We will again show that not all of the nodes can have
their probability mass below the target simultaneously.

Assume without loss of generality that minwij = 1, and
let W = maxwij . Let smax = maxj∈Z sj be the maximum
score for any node in Z, and denote by

M =
smaxn

2W

εpmin
,

where pmin = minj∈R pj . Consider the time t when the
scores for all nodes in R \Z are at least M . Note that since
scores in R \ Z tend to infinity such a time must exist.

We partition the nodes in L into three sets, those that are
not connected to any node in Z,

A = {vi ∈ L | Γout(vi) ∩ Z = ∅};

those connected to nodes in Z and in R \ Z,

B = {vi ∈ L | Γout(vi) ∩ Z 6= ∅,Γout(vi) ∩R \ Z 6= ∅};

and those connected only to Z,

C = {vi ∈ L | Γout(vi) ⊆ Z}.

Since the nodes in R \ Z have scores that are increasing,
it must be the case that:∑

j∈R\Z

qj(s
t) < (1− ε)

∑
j∈R\Z

pj . (1)

Now consider the total probability mass for nodes in R \ Z∑
j∈R\Z

qj(s
t) =

∑
i∈A∪B

pi

∑
j∈Γout(vi)∩R\Z wijsj∑

j∈Γout(vi)
wijsj

=
∑
i∈A

pi +
∑
i∈B

pi

(
1−

∑
j∈Γout(vi)∩Z wijsj∑
j∈Γout(vi)

wijsj

)

>
∑
i∈A

pi +
∑
i∈B

pi

(
1−

∑
j∈Γout(vi)∩ZWsmax

M

)

≥
∑
i∈A

pi +
∑
i∈B

pi

(
1− nWsmax ·

εpmin

n2Wsmax

)
≥

∑
i∈A∪B

pi − εpmin. (2)

Finally, consider the total probability mass for nodes in Z.
Intuitively the nodes in Z inherit all of the probability mass
in from nodes in C, and some of the probability mass from

those in B; formally, since p is consistent with G, we have∑
j∈Z

pj ≥
∑
i∈C

pi. (3)

Combining (1) and (2), we have

(1− ε)
∑

j∈R\Z

pj >
∑

i∈A∪B

pi − εpmin.

Since by consistency∑
j∈R

pj =
∑

i∈A∪B∪C

pi =
1

2
,

this is equivalent to(
1

2
−
∑
j∈Z

pj

)
− ε

∑
j∈R\Z

pj >

(
1

2
−
∑
i∈C

pi

)
− εpmin.

Rewriting, we obtain

∑
i∈C

pi + ε

pmin −
∑

j∈R\Z

pj

 >
∑
j∈Z

pj .

Since R \ Z is non-empty, this implies∑
i∈C

pi >
∑
j∈Z

pj ,

which directly contradicts (3).

4.4 Rate of convergence
In order to analyze the convergence time of the algorithm

we give an explicit upper bound on the value of the scores,
and then give a lower bound on the amount by which the
scores increase in every iteration.

Lemma 8. Let st and st+1 be the score functions at time
t and t+1 respectively. Then for each j ∈ R either stj = st+1

j

or

st+1
j

stj
≥ 1− δ

1− ε > 1.

Proof. If stj increases from time t to t+1, then we know
that ∑

i∈Γin(j)

pi
stjwij∑

j′∈Γout(i)
stj′wij′

= Qj(s
t
j) < (1− ε)pj ,

and ∑
i∈Γin(j)

pi
st+1
j wij∑

j′∈Γout(i)
st+1
j′ wij′

= Qj(s
t+1
j ) = (1− δ)pj ,

i.e.,

Qj(s
t+1
j )

Qj(stj)
≥ 1− δ

1− ε .

By an averaging argument, there exists an i ∈ Γin(j) such
that(

stjwij∑
j′∈Γout(i)

stj′wij′

/ st+1
j wij∑

j′∈Γout(i)
st+1
j′ wij′

)
≥ 1− δ

1− ε .



We will focus on this i. Note that j ∈ Γout(i). Hence, the
above expression can be written as(

stj
stj + Z

/ st+1
j

st+1
j + Z

)
≥ 1− δ

1− ε ,

where Z = (1/wij) ·
∑
j′∈Γout(i)\{j} s

t
j′wij′ ≥ 0 and we used

the fact that st+1
j′ = stj′ for j′ ∈ Γout(i) \ {j}. We now claim

the following: for z ≥ 0 and ρ > 1,

a

a+ z

/ b

b+ z
≥ ρ =⇒ a

b
≥ ρ.

Given this claim, the proof is complete by setting z = Z, a =
stj , b = st+1

j , and ρ = (1− δ)/(1− ε).
The claim is easy to see: indeed, after algebraic manipu-

lations, it is equivalent to

az ≥ ρbz + ab(ρ− 1).

Using ρ > 1 and z ≥ 0, we see that a ≥ ρb and the claim is
hence proved.

For the explicit upper bound, let M1 = 1 and for i > 1,

Mk =
(
n2W
εpmin

)k−1

. We will show that any point of the

algorithm at most n− k nodes can have value of Mk.

Lemma 9. At any time t, for all k ∈ {1, . . . , n} and all
nodes j ∈ R:

|{sj ≥Mk}| ≤ n− k.

Proof. We prove the lemma by induction. The scores
are initialized so that si = pi. As we saw in the proof
of Lemma 6 at least one of the initial scores is such that
Qj(si) ≥ (1 − ε)pi and it never increases. Since pi < 1 the
statement holds.

Now suppose the statement holds for all k∗ < k. Let Z
be the set of nodes with scores less than Mk−1. Lemma 6
states that not all of the scores in R \ Z can be larger than

Mk−1 · n
2W

εpmin
. Therefore at least one of the nodes in R \ Z

will have a score bounded by Mk−1 · n
2W

εpmin
= Mk, and the

proof follows.

Theorem 10. Let δ = ε/2. Then the algorithm termi-
nates after at most

O

(
n2

ε
log

nW

εpmin

)
iterations.

Proof. From Lemma 8, in every iteration at least one
score increases by a factor of

1− δ
1− ε ≥ 1 +

ε

2
.

Since each score is bounded by Mn, the number of times
each score can increase is bounded by:

log1+ε/2 Mn = O

(
n log1+ε/2

(
n2W

εpmin

))
= O

(
n

ε
log

nW

εpmin

)
.

Summing over all nodes completes the proof.

4.5 Uniqueness
We show that the solution to the steady-state inversion

problem is unique up to normalization. More formally,

Theorem 11. For any two solutions s and s′ to the steady-
state inversion problem, there exists a constant c > 0 such
that s = c · s′ element-wise.

Proof. Consider the solution s′ and normalize it so that
s and s′ agree on some node v. Let Z = {i | s′i > si}.
Without loss of generality Z 6= ∅, since otherwise we can
swap the roles of s and s′.

Consider the nodes in A = Γin(Z) \ Z. Note that A 6= ∅
since the graph is strongly connected and v 6∈ Z. Then,∑

i∈Z

pi =
∑
j∈A

pj
siwji∑

i′∈Γout(j)
si′wji′

>
∑
i∈A

pj
s′iwji∑

i′∈Γout(j)
s′i′wji′

=
∑
i∈Z

pi.

Here the inequality follows from the fact that x
x+y

is increas-
ing in x and decreasing in y, and the last equality follows
from s′ being a solution.

4.6 Generalizations
We now state a generalization of our result on the steady-

state inversion problem. As before, let G = (V,E) be an
instance of the steady-state inversion problem and let f :
R2 → R be a function. We can define the transition matrix
T fG,s with respect to f and a score function s as

T fG,s(i, j) =
f(wij , sj)∑

j′∈Γout(i)
f(wij′ , sj′)

,

i.e., f is applied to the edge weight and the score function.
Let πfG,s be the stationary distribution of the Markov chain.
Note that the problem considered in Section 4.1 corresponds
to f(x, y) = x · y.

We now state the sufficient conditions on f for the feasi-
bility of the corresponding steady-state inversion problem,
i.e., given p, does there exist a score function s such that
πfG,s = p. We state the result for the bipartite case as in
Section 4.2.

Theorem 12. Given a graph G and a probability distribu-
tion p, and a function f , the steady-state inversion problem
with f is feasible if p is consistent with G and f satisfies
the following two properties: (i) f(x, y) is continuous and
increasing in y and (ii) limy→∞ f(·, y) =∞.

We omit the details of this proof in this version.

4.7 Connections to choice theory
The steady-state inversion problem is somewhat related to

the classical discrete choice problem. We recall the Choice
Axiom formulated by Luce in his seminal work [23, 24]. The
axiom states that when faced with a choice between two
objects, the relative probability of selecting one object over
another is independent of the presence of other alternatives.
An equivalent formulation states that each object has a la-
tent score si and objects are selected with probability pro-
portional to their score.



Let U be the universe of objects. An instance of the choice
problem is of a collection of m observations, O1, . . . , Om
where each observation Oi is a tuple containing a set Si ⊆ U
of objects a user was choosing between as well as the object
sel(Si) ∈ Si that was selected. The goal is then to find
scores that maximize the likelihood of the data, where the
likelihood of the data is:

L =
∏
i∈m

ssel(Si)∑
uk∈Sj

sk
.

We can model this as an instance of the bipartite steady-
state inversion problem. Create one node vi for each obser-
vation Oi, and one node uj for each item in the universe U .
Let V = ∪{vi}. We create a bipartite graph G = (V,U,E)
with the following each edges. For each observation Oi, set
Γout(vi) = Si. Finally, for each node uj ∈ U , set

pj =
1

m
· |{i | sel(Si) = uj}|,

i.e., the number of times item uj was selected, scaled appro-
priately.

Theorem 13. The solution to the steady-state inversion
problem defined above maximizes the likelihood in the choice
problem.

Proof. First observe that the instance of the bipartite
steady-state inversion problem is consistent. For each ob-
servation Oi, let αij = 1/m if j = sel(Si) and 0 otherwise.
By construction this setting of α’s satisfies the consistency
property.

Let s∗ be the solution to the steady-state inversion prob-
lem. For every item uj ∈ U we have:

1

m
· |{i | sel(Si) = uj} =

∑
i:uj∈Si

1

m
· sj∑

uk∈Sj
sk
. (4)

On the other hand, the log-likelihood of the data in the
choice problem is:

logL =

m∑
i=1

(
log ssel(Si) − log

∑
uk∈Si

sk

)
.

Optimality conditions imply that for any element uj :

0 =
∂ logL
∂sj

=
∑

i|sel(Si)=sj

1

sj
−

∑
i|uj∈Si

1∑
uk∈Si

sk

= |{i | sel(si) = uj}| −
∑

i|uj∈Si

sj∑
uk∈Si

sk
,

which is exactly the condition in (4). Since we know the so-
lution to the steady-state inversion problem is unique (The-
orem 11), the proof follows.

The connection to choice theory also explains the consis-
tency condition (Definition 4) required for the feasibility of
the bipartite steady-state inversion problem. Below we show
that the consistency condition is satisfied if and only if there
exists a set of individual choices that lead to the observed
stationary distribution.

Theorem 14. Let G = (L,R,E) and a distribution p be
an instance of the bipartite steady-state inversion problem.

Then p is consistent with G if and only if there is an equiv-
alent discrete choice problem. Moreover, such a discrete
choice problem can be found in polynomial time.

Proof. Suppose that p is consistent with G. Let αij be
the rational weights on the edges that satisfy consistency.
Let

N =

 ∏
(i,j)∈E

αij

−1

.

We will create a discrete choice problem with N observa-
tions. For each node i ∈ L create 1/pi observations, each
with the identical choice set of Γout(i). For each j ∈ Γout(i),
designate uj as selected 1/αij times. Note that by the choice
of N all of these are integer quantities. It is easy to see
that this choice problem is equivalent to the steady-state
inversion problem.

If G and p are consistent, then one can find the αij with
a single round of maximum flow. Given the bipartite graph
G create a source node s, connected to each node vi ∈ L
with an edge of capacity pi. In addition, create a sink node
t, connected to each node vj ∈ R with an edge of capacity
pj . Compute the maximum flow on the resulting graph. If
the value of the max flow is below 1/2 then p is not consis-
tent for G. If the value of the flow is 1/2, then setting αij
to the flow on each edge (i, j) will satisfy the consistency
constraints.

5. EXPERIMENTS
The solution to the steady-state inversion problem to-

gether with the modeling assumptions made by choice the-
ory allow us to predict the number of times each particular
choice was made by observing only the final outcomes of the
decision process. For example, given the relative popularity
of web pages, we can infer the number of times users followed
each particular link. Our main experiment will show that
by only considering the structure of the graph, that is the
underlying choice sets, we can reduce the error by almost
a factor of 2 compared to raw popularity based predictions.
In all of the experiments we set ε = 10−5; we will refer
to this setting of the scores as Steady-State Inversion. We
also study the performance of this algorithm, especially its
convergence and running time properties.

5.1 Data
We consider the following four datasets for our evaluation.

The datasets span different genres and cover different online
user experiences. Three of the datasets are publicly available
for repeatability purposes.

Wikipedia paths.
Wiki is is a set of navigation paths through Wikipedia,

collected as part of the Wikispeedia human computation
game [32, 33]. In the game subjects were asked to navigate
from a starting Wikipedia page to a particular target only
by following links in the documents. The dataset consists of
51, 318 (source, destination) paths which we then decompose
into 199, 945 transition pairs. The dataset is publicly avail-
able from snap.stanford.edu/data/wikispeedia.html.

We let the subgraph induced by the transition pairs denote
the choice sets available at each web page, and set the desired
stationary distribution probability to be proportional to the



number of times the node appears in the dataset. Our goal
is then to predict the number of transitions along every link
in the graph.

Restaurant choice.
Rest captures the decisions made by a user as a result of

a broad restaurant search query issued to Google. For each
query we look at the restaurants offered in the search results
and note which of the choices was first clicked. Each result
displays some metadata about the restaurant such as the
star rating, type of cuisine etc. It is important to note that
unlike traditional search results, the UI treatment displays
all of the options in a horizontal panel, thereby reducing
position effects.

We take a random sample of 100, 000 queries, which had
66, 464 unique selection choices. Our goal is to predict the
restaurant that will be clicked by the user in each of the
queries.

Entree recommendations.
Entree is a public log of the interactions with the En-

tree Chicago restaurant recommendation system (available
at kdd.ics.uci.edu/databases/entree/entree.html
as part of the UCI repository [2]). The data consists of
50,672 user sessions, with each session consisting of restau-
rants explored and the final restaurant chosen by the user
(the End point). We treat the explored restaurants as a
choice set and the final restaurant as the action. There are
27,668 unique choice sets, and 1,066 total restaurants se-
lected.

Comedy.
Comedy is the result of YouTube Comedy Slam, a video

discovery experiment (available at archive.ics.uci.edu/
ml/datasets/YouTube+Comedy+Slam+Preference+Data,
also from [2]) that ran on YouTube in 2011 and 2012. In the
experiment users were shown a pair of videos in random or-
der and were asked to vote for the video that was funnier.
We use this as a binary choice dataset, with 225,593 total
choices over 75,447 unique choice sets.

5.2 Baselines and metrics
We compare our algorithm to the following four baselines.

Each of these baselines will compute a score for each node
in the graph.

• Uniform: The score of each node is identical, simulating
a uniform random walk on the graph.

• Popularity: The score of each node is set to the popular-
ity of the node. This captures the notion that popular
items should have higher scores, but is agnostic to the
structure of the graph, and thus cannot differentiate
between an item being popular because it is present in
many choice sets (and thus has many chances of being
selected), or popular because it has very high quality
(and thus is selected almost every time it is present).

• PageRank: The score of each node is set to the PageR-
ank [7] of the node.

• Temperature Rank: The score of each node is set to
the Temperature Rank [31] of the node.

We will use two metrics to explore our results. The first
is the RMSE of predicting the number of transitions along
each link. The second is the log-likelihood of the data using
the particular set of scores under the choice model. To be
able to interpret the numbers across the four datasets, we
scale them so that the numbers for Popularity are always
unit.

5.3 Predicting the transitions
We show the RMSE of the transition prediction tasks for

both datasets in Table 1, where we normalize the results to
have the Popularity RMSE = 1.0. Note that lower values
mean better prediction.

For all datasets our algorithm outperforms the four base-
lines, reducing the error by 10–30% over the best available
baseline. Note that on the Wiki dataset all of the other
baselines outperform the Popularity baseline. Nonetheless,
the Steady-State Inversion solution is better still. On the
other hand, for restaurant choice, Popularity is the strongest
baseline, but Steady-State Inversion beats it by an addi-
tional 10%. Note again that in all of the prediction tasks
we do not take any metadata into account; these predictions
are based solely on the structure of the graph.

A trend nearly identical to that in Table 1 is obtained for
the log-likelihood metric as well. For sake of brevity, we do
not repeat the numbers.

5.4 Rate of convergence
The algorithm we presented is guaranteed to converge to

the optimal set of scores. Below we show that the upper
bound on the convergence derived in Theorem 10 is incredi-
bly pessimistic and in practice, the algorithm reaches a good
solution after fewer than ten iterations, and converges soon
after.

In Figures 2 and 3 we plot the log-likelihood as well as
the RMSE as the function of the number of iterations on the
Wiki and Rest datasets. Again we normalize the likelihood
so that it is −1 for the Popularity baseline. By design, the
algorithm begins with the popularity baseline. It is evident
that the biggest gains in RMSE and likelihood occur dur-
ing the first few iterations, after that the algorithm quickly
hits diminishing returns and terminates after 32 iterations
for Wiki and 9 iterations for Rest. Similar trends are ob-
served for the other two datasets and we do not repeat the
corresponding plots.

6. CONCLUSIONS
In this paper, we studied the following setting. Users nav-

igate between states according to a Markov process. We are
able to observe the steady state of this process, and we wish
to learn the transition matrix. Even though this problem is
underconstrained in general (as the steady state has linear
number of variables, while the matrix can have quadratically
many variables), we used a specific form of the transition
matrix: each state of the Markov process has an unknown
score and the probability of transition from a source state to
a destination state is dependent on the score of the destina-
tion state. We showed a natural sufficient condition on the
feasibility of the problem. For the instances that are feasi-
ble we gave a simple iterative algorithm to solve this inverse
problem; we also showed the polynomial rate of convergence
of this algorithm, and proved the solution unique. We then
applied this algorithm to a few natural settings and showed



Popularity Uniform PageRank Temperature Steady-State
Rank Inversion

Wiki 1.0 0.65 0.83 0.65 0.57
Rest 1.0 1.17 1.39 1.21 0.89
Entree 1.0 0.69 1.01 0.56 0.42
Comedy 1.0 0.65 0.90 0.78 0.36

Table 1: The RMSE of the transition prediction task normalized by the RMSE obtained by the Popularity
baseline.
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Figure 3: The log-likelihood and RMSE as a func-
tion of the number of iterations on the Rest dataset.
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Figure 2: The log-likelihood and RMSE as a func-
tion of the number of iterations on the Wiki dataset.

that this algorithm has a better likelihood of predicting tran-
sitions in user behavior than other strong baselines.

Our work throws open a number of research questions.
Even though our algorithm admits an obvious paralleliza-
tion and is reasonably efficient in practice, making it scale
to hundreds of millions of nodes would be very useful. It will
also be interesting to study our model with a random tele-
portation component, as in PageRank. Finally, using our
framework for other application domains including opinion
ratings seems fruitful.
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