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1 Overview

Information retrieval is concerned with representing con-
tent in a form that can be easily accessed by users with
information needs [61, 65]. A definition at this level of
generality applies equally well to any index-based re-
trieval system or database application; so let us focus
the topic a little more carefully. Information retrieval,
as a field, works primarily with highly unstructured con-
tent, such as text documents written in natural lan-
guage; it deals with information needs that are gener-
ally not formulated according to precise specifications;
and its criteria for success are based in large part on the
demands of a diverse set of human users.

Our purpose in this short article is not to provide
a survey of the field of information retrieval — for this
we refer the reader to texts and surveys such as [25, 29,
51, 60, 61, 62, 63, 65, 70]. Rather, we wish to discuss
some specific applications of techniques from linear al-
gebra to information retrieval and hypertext analysis.
In particular, we focus on spectral methods — the use
of eigenvectors and singular vectors of matrices — and
their role in these areas.

After briefly introducing the use of vector-space mod-
els in information retrieval [52, 65], we describe the ap-
plication of the singular value decomposition to dimension-
reduction, through the Latent Semantic Indexing tech-
nique [14]. We contrast this with several other ap-
proaches to clustering and dimension-reduction based
on vector-space models.
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We then turn to hyperlinked corpora — collections
of documents with an underlying link structure. The
emergence of the World Wide Web [2] has led to a surge
of interest in the problem of information retrieval in such
domains; we describe some approaches that apply spec-
tral methods to link structures for information discovery
tasks (e.g. [8, 43]). There are connections between this
work and earlier work in sociology and citation analysis
[24], and we discuss this as well.

2 Information retrieval and the vector space model

The language of linear algebra made its appearance quite
early in information retrieval, through the use of vector-
space models [52, 65]; these models have formed the ba-
sis for information retrieval frameworks such as Salton’s
SMART system (see e.g. [10, 65]). We begin with a set
of d documents and a set of t terms. We model each
document as a vector x in the t-dimensional space Rt

— it has one coordinate for each term. The jth coor-
dinate of x is a number that measures the association
of the jth term with respect to the given document —
it is generally defined to be 0 if the document does not
contain the term, and non-zero otherwise.

The problem of how to define the non-zero entries
in such a vector is known as term-weighting, and it
has been the subject of a large amount of work; see
e.g. [17, 64, 65, 68]. Perhaps the simplest formulation is
to set xj = 1 if the jth term occurs at all in the docu-
ment. More general approaches based on term frequency
and inverse document frequency take into account the
number of times the term occurs in the document, and
the total number of documents in the corpus in which
the term occurs.

The representation of documents by vectors in Eu-
clidean space allows one to bring geometric methods
to bear in analyzing them. At the simplest level, the
representation naturally suggests numerical similarity
metrics for documents, based on the Euclidean distance
or the inner product. Again, many related metrics have
been proposed, and we discuss one representative — the
cosine measure [65] — that will help motivate some of



the developments to follow. Let x and y be two docu-
ment vectors. We define their cosine similarity by the
equation

sim(x, y) =
x · y
|x||y| ,

where the inner product x · y is the standard vector
dot product, defined as

∑t

i=1 xiyi, and the norm in the
denominator is defined as |x| =

√
x · x. We term this

the cosine similarity because for any two unit vectors,
it is simply the cosine of the angle between them.

Numerical similarity metrics on documents suggest
natural approaches for similarity-based indexing (e.g. [66])
— by representing textual queries as vectors and search-
ing for their nearest neighbors in a collection of docu-
ments — as well as for clustering (e.g. [40]). Of course,
in any application with a large number of underlying
terms, these vector operations are being carried out in
a huge number of dimensions. Very high dimensionality
can be a problem not only from the point of view of com-
putational efficiency, but also because the large number
of terms leads to sets of vectors with very sparse pat-
terns of non-zeroes, in which relationships among terms
(e.g. synonymy) can be difficult to detect or exploit.
An effective method for reducing the dimension of the
set of vectors, without seriously distorting their metric
structure, offers the possibility of alleviating both these
problems. We turn to this issue next, beginning with
some fundamental background material from linear al-
gebra.

3 Linear algebra, eigenvalues, and the singular

value decomposition

Given a set of d vectors representing a collection of d
documents, we can construct a t × d matrix in which
each document vector constitutes one of the columns.
Our interest will be in transforming this matrix to one
that has low rank; this will correspond to a dimension-
reduction of the set of documents. To make this notion
precise, we introduce the following definitions; we refer
the reader to linear algebra texts such as [38, 69] for
further details.

First, let M be an n × n matrix with real numbers
as entries. An eigenvalue of M is a number λ with the
property that, for some vector ω, we have Mω = λω.
Such a vector is called an eigenvector associated with λ.
The set of all eigenvectors associated with a given λ is a
subspace of Rn, and the dimension of this space will be
referred to as the multiplicity of λ. If M is a symmet-
ric matrix — one of the main cases of interest for our
purposes — then M has at most n distinct eigenvalues,
each of them a real number, and the sum of their mul-
tiplicities is exactly n. We will denote these eigenvalues
by λ1(M), λ2(M), . . . , λn(M), listing each a number of
times equal to its multiplicity. For symmetric M , we
can choose an eigenvector ωi(M) associated with each

λi(M) so that the set of vectors {ωi(M)} forms an or-
thonormal basis of Rn — each is a unit vector, and each
pair of them is orthogonal.

We say that a matrix Q is orthogonal if QT Q = I,
where QT denotes the transpose of the matrix M , and I
represents the identity matrix — a diagonal matrix with
all diagonal entries equal to 1. If M is a symmetric
n × n matrix, Λ is the diagonal matrix with diagonal
entries λ1(M), λ2(M), . . . , λn(M), and Q is the matrix
with columns equal to ω1(M), . . . , ωn(M), then it is easy
to verify that Q is an orthogonal matrix and QΛQT =
M .

Thus, the eigenvalues and eigenvectors provide a
useful “normal form” representation for symmetric square
matrices in terms of orthogonal and diagonal matrices.
In fact, there is a way to extend this type of normal form
to matrices that are neither symmetric nor square, as
we now discuss.

Theorem 1 (Singular Value Decomposition (SVD))
Every m×n matrix A can be written A = UΣV T where
U and V are orthogonal, and Σ is diagonal.

That is, we can rewrite any matrix A as follows:

m×n
︷ ︸︸ ︷
(

A

)

=

m×m
︷ ︸︸ ︷
(

U

)

·

m×n
︷ ︸︸ ︷
(

Σ

)

·

n×n
︷ ︸︸ ︷
(

V T

)

We refer to the diagonal entries of Σ as the sin-
gular values of A. Using the SVD directly, we can
write AT A = (UΣV T )T (UΣV T ) = V Σ2V T . Likewise,
AAT = UΣ2UT . It follows that the columns of U and
V represent the eigenvectors of AAT and AT A respec-
tively, and the diagonal entries of Σ2 represent their
(common) set of eigenvalues.

What does the SVD have to do with dimension-
reduction? To begin with, we notice the following fact.
Suppose we build a matrix by keeping only the k largest
singular values, and multiplying them by the appropri-
ate rows and columns of U and V : Ak =

∑k

i=1 σiuiv
T
i ,

where ui is the ith column of U and vi is ith column
of V . We first notice that the matrix Ak has rank at
most k. Moreover, it is a reasonable rank-k approxi-
mation to the original matrix A in the sense that we
have only “zeroed out” the small singular vectors of A.
Fuzzy as this intuitive description is, it can be converted
to a surprisingly concrete statement: the matrix Ak de-
scribed above is the best rank-k approximation to A in
the matrix 2-norm.

Theorem 2 (Eckart and Young; see [38]) Let the
SVD of A be given by UΣV T , let r = rank(A), and
k < r. If

Ak =

k∑

i=1

σiuiv
T
i
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Figure 1: The LSI method

then

min
rank(B)=k

||A−B||2 = ||A− Ak||2 = σk+1.

4 Latent semantic indexing

We use the machinery of the previous section to out-
line the technique of latent semantic indexing (LSI), a
powerful approach to dimension-reduction in informa-
tion retrieval developed by Deerwester et al. [14].

Suppose we have a collection of d document vectors,
over a set of t terms, and we construct the matrix X
whose columns consist of these vectors. We can view
Theorem 2 as having the following interpretation in this
setting (see Figure 1). We fix a value k, consisting of
a (relatively small) number of dimensions in which we
want to represent the documents. By retaining only the
k largest singular values in the SVD of X, we obtain a
k × k diagonal matrix Σk with these singular values as
its diagonal entries, and we write X̂ = UkΣkV T

k , with
Uk a t× k matrix and V T

k a k× d matrix. We can view
each of the d columns of the matrix ΣkV T

k as represent-
ing one of the documents; in this representation, the
documents have been projected into the k-dimensional
subspace spanned by the columns of the matrix Uk.

The choice of k is a non-trivial issue — there is a
trade-off between the amount of dimension-reduction
and the accuracy of the resulting document represen-
tation. In many applications, k is on the order of sev-
eral hundred, while the original representation involves
a dimension in the thousands or tens of thousands.

An effect of our projection is that each term no
longer occupies a distinct dimension; rather, each of the
k new dimensions corresponds to a vector — a column
of Uk — that is a weighted sum of terms. It has been
found (e.g. [14]) that terms which co-occur in the corpus
(e.g. “car,” “automobile,” and “vehicle”) have similar

weights in these vectors: the low-dimensional projec-
tion has reduced the “noise” introduced by the effects
of co-occurring terms on our similarity measure. This
has consequences for several basic applications employ-
ing, for example, the cosine measure.

1. We can compute document-document similarities
using the matrix Vk. Given a document in which
we know a user is interested, we can suggest other
documents that might also be of interest, even if
they do not use the same terms.

2. We can compute term-term similarities using ma-
trix Uk. Given a one-word query, for instance, we
can expand it to include words that tend to co-
occur in the corpus, augmenting “car” with “auto-
mobile” and “vehicle.”

3. We can compute term-document similarities directly
using the entries of X̂ — for instance, when the user
enters a search term, we can return the documents
that are most similar to the search term. Analo-
gously to the previous two cases, the top-ranked
document may not necessarily contain the search
term.

A number of papers have tried to develop interpre-
tations of the columns of Uk, the axes of the reduced
space, in terms of the basic information retrieval ap-
plications. Since, as we observed above, each can be
viewed as a weighted combination of terms, some previ-
ous work has even offered the view that they represent
the fundamental “concepts” that underlie the collection
of documents [47].

Some evaluations of the effectiveness of LSI are given
in [18, 19, 20]; computational issues are considered in [3];
and additional perspectives and extensions related to
LSI can be found in [4, 5, 6, 21, 32, 33, 34, 48]. LSI has
been applied in a variety of domains, including cross-
language retrieval [22, 23, 49] and information filtering
[20, 28].



Papadimitriou et al. [56] recently studied LSI at an
analytical level, by employing a probabilistic model of
term usage across a “clustered” collection of documents.
Essentially, their model consists of k different topics
(hidden from the retrieval algorithm); a document on
a given topic τ is generated by a repeated random se-
lection of terms from a probability distribution Fτ over
terms. For different topics τ and τ ′, there is a tech-
nical condition enforcing that the distributions Fτ and
Fτ′ are “well-separated.” This is the sense in which the
collection of documents is “clustered” — each document
belongs to a topic that induces a distinctive distribution
over terms. The main result of [56] is that, when the
distributions induced by different topics are sufficiently
separated, the k-dimensional subspace produced by LSI
yields, with high probability, sharply defined clusters
among documents of the k different topics with respect
to the cosine measure. This provides a concrete ana-
lytical sense in which LSI in certain settings is able to
uncover semantically “meaningful” associations among
documents with similar patterns of term usage, even
when they do not actually use the same terms.

Other Approaches to Dimension-Reduction. Papadim-
itriou et al. also observed that, if the reduced dimension
k we are seeking is sufficiently large relative to the num-
ber of documents, it is not necessary to use the full
power of the singular value decomposition — a random
projection is sufficient. This is the content of the follow-
ing result of Johnson and Lindenstrauss [41], sharpened
by Frankl and Maehara [30].

Theorem 3 For ε ∈ (0, 1
2 ) and any positive integer n,

let

k(n, ε) = ⌈9(ε2 − 2ε3/3)−1 log n⌉+ 1 = O

(
log n

ε2

)

.

If n > k(n, ε)2 then for any n-point set S in Rn, there
exists a map f : S → Rk(n,ε) such that for all u, v ∈ S,

(1− ε)|u− v|2 < |f(u)− f(v)|2 < (1 + ε)|u− v|2.

The map f in the statement of the theorem can
be constructed very easily: one chooses a random sub-
space of dimension k(n, ε) and applies an orthogonal
projection into this subspace, followed by a uniform re-
scaling. The desired approximation property then holds
with high probability. Papadimitriou et al. suggested
that the SVD calculations in Latent Semantic Indexing
could be sped up by first projecting into a random sub-
space of dimension O(ε−2 logn), and then computing
the SVD [56]. Further approaches to produce highly ef-
ficient approximation algorithms for the SVD through
random sampling appear in Frieze et al. [31] and Drineas
et al. [16].

In a different direction, Baker and McCallum [1] ap-
plied the technique of distributional clustering [57] to

the task of dimension-reduction. Distributional clus-
tering is a framework that also seeks to cluster terms
based on co-occurrence; as opposed to LSI, however, it
is based on an information-theoretic model that repre-
sents terms via the probability distributions they induce
over features with which they co-occur. Experiments in
[1] showed that this technique compared favorably with
LSI, as well as with several other techniques [9, 45, 72],
for reducing feature dimensionality in a document clas-
sification task.

For other recent approaches to dimension-reduction,
and its relation to the general area of feature selection,
see [44, 45, 71, 72].

5 Hyperlinked domains and spectral graph theory

In the remainder of this article, we move from the pure
framework of terms and documents to a setting in which
documents are connected by an underlying link struc-
ture. This captures the problem of information retrieval
on the World Wide Web, where one can make use of
both the textual content of documents as well as the
patterns of linkage among them. The study of links as
a means of understanding the informational content of
a collection of documents predates the Web and other
modern hypertext systems, however; the implicit link-
age defined by citations among scholarly papers has
been a fundamental object of study in the field of bib-
liometrics, or citation analysis [24].

Dimension-reduction and clustering based on the sin-
gular value decomposition has been applied to link struc-
tures in the field of bibliometrics. A natural way to ob-
tain a matrix from an underlying citation structure is
by the following construction: given a collection of n
documents, we define an n× n matrix A for which the
(i, j) entry is equal to 1 if document i cites document
j, and 0 otherwise. One can recognize this as the adja-
cency matrix of the directed graph whose directed edges
correspond to the citations among documents.

By analogy with the vector-space model in informa-
tion retrieval, one could use the rows and columns of
this matrix A to represent the documents in the citation
structure. The application of the singular value decom-
position to such vector representations has been investi-
gated by Small [67], McCain [54], and Noma [55]. More
recently, the application of dimension-reduction tech-
niques to such vector representations of WWW pages
has been employed by Larson [50] and by Pitkow and
Pirolli [59].

The use of eigenvectors for clustering link structures
is a technique that can be understood directly at the
level of the underlying graph model. Indeed, this type of
eigenvector-based clustering is a topic that has received
considerable study in the area of graph algorithms, be-
ginning with the foundational work of Donath and Hoff-
man [15] and Fielder [27] on spectral partitioning heuris-



tics. A large body of results now exists, relating spectral
properties of adjacency matrices to combinatorial prop-
erties of the associated graphs; see the book by Chung
[13] for a recent overview.

6 Impact, influence, and authority in linked

domains

Let us now turn to an issue different from the prob-
lems of clustering and dimension-reduction, which also
constitutes a central question in the development of in-
formation retrieval techniques. Suppose we have access
to a large set of documents relevant to a given topic,
and we wish to automatically select the most “impor-
tant” ones. One could imagine many settings in which
this notion arises: we may be surveying the scientific lit-
erature, looking for “seminal” papers on quantum me-
chanics; or we may be searching the WWW, looking for
the most “authoritative” pages on cryptography. Note
the difference between this issue and what we have been
discussing previously — we are not concerned here with
representing the set of all relevant material, but rather
with the problem of filtering, from a large volume of
relevant content, a small set of the most significant doc-
uments.

Links provide a natural mechanism for quantifying
notions of “importance”; in both scientific citations and
hypertext, a link can indicate the judgment of the au-
thor of one document as to the importance of another
document. Indeed, the use of links to measure “social
standing” has also been investigated in the field of social
networks; link-based measures of standing have been
proposed in a sociometric context by Katz [42], Hubbell
[39], and others. For purposes of the present discussion,
however, we will focus on the use of links in the areas
of citation analysis and hypertext.

Citation Analysis. The most widely-used measure of
“importance” in citation analysis is Garfield’s impact
factor [35], used to provide a numerical assessment of
journals in the Journal Citation Reports of the Insti-
tute for Scientific Information. Under the standard def-
inition, the impact factor of a journal j in a given year
is the average number of citations received by papers
published in the previous two years of journal j [24].
Thus, the impact factor is based fundamentally on a
pure counting of the number of links pointing into each
node of the citation network.

Pinski and Narin [58] proposed a significant varia-
tion on this notion, based on the observation that not
all citations are equally important. They argued that a
journal is “influential” if, recursively, it is heavily cited
by other influential journals. The concrete construction
of Pinski and Narin, as modified by Geller [36], is the
following. The measure of standing of journal j will be
called its influence weight and denoted wj. Given a set

of n journals, one constructs an n×n matrix A in which
the (i, j) entry specifies the “connection strength” from
i to j: it is the fraction of the citations from journal i
that go to journal j. Following the informal definition
above, the influence of j should be equal to the sum
of the influences of all journals citing j, with the sum
weighted by the amount that each cites j. Thus, the
set of influence weights {wj} is designed to be a non-
zero, non-negative solution to the system of equations
wj =

∑

i Aijwi; in other words, if w is the vector whose
jth entry is wj, then we have AT w = w. Thus, the set
of influence weights under the Pinski-Narin definition
is precisely an eigenvector of the matrix AT associated
with the eigenvalue 1. Geller [36] observed that the in-
fluence weights also correspond to a stationary distribu-
tion of the following random process: beginning with an
arbitrary journal j, one chooses a random reference that
has appeared in j and moves to the journal specified in
the reference. Indeed, one can verify that a stationary
set of probabilities w for such a process must satisfy the
equation AT w = w. (See e.g. the text by Feller [26].)

WWW Search. In the setting of the World Wide Web,
Brin and Page proposed a method for ranking the “im-
portance” of Web pages [8], based on a model of a “ran-
dom browser.” Specifically, they begin from a model of
a user randomly following hyperlinks: at each page, the
user either selects an outgoing link uniformly at ran-
dom, or (with some probability p < 1) jumps to a new
page selected uniformly at random from the entire col-
lection of pages. The stationary probability of node j
in this random process will correspond to the “rank” of
j, referred to as its page-rank. Note that the random
jump is crucial to prevent the random process from get-
ting stuck in “dead-ends” in the link structure of the
Web. If we consider the matrix B whose (i, j) entry is
the probability of going directly from page i to page j
in this process, and let r be the vector whose jth coor-
dinate is the page-rank of page j, then we are seeking a
solution to the equation BT r = r; so we are seeking an
eigenvector of B associated with the eigenvalue 1.

Kleinberg proposed a different model for the con-
ferral of authority on the WWW [43]. He argued that
in many settings on the Web, prominent authorities do
not “endorse” one another directly — consider, for ex-
ample, a collection of prominent corporate home pages
in a common area. Rather, for many broad topics, au-
thority is conferred on thematically related, prominent
pages by a set of potentially unrecognized hub pages,
which have a large number of links to many relevant
authorities. Thus, hubs and authorities exhibit a mutu-
ally reinforcing relationship: a good authority is a page
that is pointed to by many good hubs, while a good hub
is page that points to many good authorities. Numeri-
cally, one can assign a hub weight hj and an authority
weight aj to each page j. If we let h and a denote the



normalized vectors whose coordinates correspond to the
hub and authority weights respectively, and we let A de-
note the adjacency matrix of the link graph as defined
earlier, one could construct estimates for the “ideal” hub
and authority weights iteratively as follows. We begin
with h and a equal to the “flat” vector v0 in which every
coordinate is equal to 1. We then repeatedly update aj

to be the sum of hi over all i that point to j, and we
update hj to be the sum of ai over all i that j points to
— this is simply a numerical rendition of our mutually
reinforcing relationship among hubs and authorities. In
matrix notation, we could write this as follows:

a← AT h; h← Aa

If we unwind these recurrences, and keep in mind that
we normalize both h and a in each iteration to remain
a unit vector, then we obtain the following:

a = lim
n→∞

(AT A)nv0

|(AT A)nv0|
; h = lim

n→∞

(AAT )nv0

|(AAT )nv0|

Finally, we can determine these limits explicitly via the
following standard theorem about eigenvectors.

Theorem 4 (See Golub and Van Loan [38]) Let
M 6= 0 be a symmetric matrix, let λ∗ denote the eigen-
value of M with maximum absolute value, and let u0

denote a vector that is not orthogonal to the subspace
consisting of the eigenvectors associated with λ∗. Then
the unit vector in the direction of Mnu0 converges to
an eigenvector associated with with λ∗ as n increases
without bound.

Thus, the limiting vectors of hub and authority weights
are eigenvectors of AAT and AT A respectively, associ-
ated with eigenvalues of maximum absolute value.

In a number of different implementations and stud-
ies, both the page-rank and hub/authority methodolo-
gies have been shown to provide qualitatively good search
results for broad query topics on the WWW — such
topics can implicitly involve an underlying set of sev-
eral million relevant pages. Because the methods are
heavily based on link information, they offer another
means of circumventing problems that can arise from
too great a reliance on pure term-matching techniques.

Although both can be analyzed in the language of
eigenvectors, it is interesting to contrast the “one-level”
type of influence propagation manifested by Pinski-Narin
influence weights [58] with the “two-level” conferral of
authority that forms the basis of Kleinberg’s hub/authority
model [43]. One could argue that the distinctions be-
tween the two directly parallel fundamental differences
in the social organizations of the scientific literature and
the World Wide Web. Journals in the scientific litera-
ture have, to a first approximation, a common purpose,
and traditions such as the peer review process typically

ensure that highly authoritative journals on a common
topic reference one another extensively. Thus it makes
sense to consider a one-level model in which author-
ities directly endorse other authorities. The WWW,
on the other hand, is much more heterogeneous, with
WWW pages serving many different functions — indi-
vidual AOL subscribers have home pages, and multi-
national corporations have home pages. Moreover, for
a wide range of topics, the strongest authorities con-
sciously do not link to one another — for example,
www.honda.com and www.toyota.com are both authori-
tative sources for the topic “automobile manufacturers,”
but they will not link to one another for commercial and
competitive reasons. Thus, they can only be connected
by an intermediate layer of relatively anonymous hub
pages, which link in a correlated way to a thematically
related set of authorities; a model of the WWW involv-
ing both hubs and authorities takes this into account.
Such a two-level pattern of linkage exposes structure
among both the set of hubs, who may not know of one
another’s existence, and the set of authorities, who may
not wish to acknowledge one another’s existence.

A set of hubs densely linking to a common set of
authorities can be viewed as a natural graph-theoretic
“community” structure associated with a topic of gen-
eral interest on the Web. Recent work has advanced
the argument that this basic type of linkage pattern is
a recurring and fundamental structural feature of the
World Wide Web; see [37, 46] for further details.

7 Further directions in link-based analysis

We now consider some recent extensions to these link-
based approaches. First, Bharat and Henzinger [7] con-
sider modifying the binary link weights used in com-
puting WWW hubs and authorities to incorporate term
weighting schemes, thus including text frequency statis-
tics in the underlying iterative algorithm. They also
modify link weights to limit the extent to which author-
ity from pages on a single “site” could be conferred to
any individual page.

The CLEVER system [12] also builds on the algo-
rithmic framework of hubs and authorities, and includes
a number of extensions based on both content and link
information. We give two examples. First, it develops a
heuristic approach to prevent “topic drift” on large hub
pages with many links; this is in response to the prob-
lem that on a page containing a large number of links, it
is likely that all the links do not focus on a single topic.
In such situations it becomes advantageous to treat con-
tiguous subsets of links as mini-hubs, or pagelets; one
may develop a hub score for such pagelets, down to the
level of single links, that participate in the iterations as
full-fledged entities. The thesis is that contiguous sets
of links on a hub page are more focused on a single topic
than the entire page. For instance, a complete hub page



on automobile racing may be a good hub for the topic
of “cars”, but a contiguous set of links on the page may
cater to “Indy racing.”

Another extension proposed in [12] makes use of the
text that surrounds hyperlink definitions (href’s) in Web
pages, often referred to as anchor text (e.g. McBryan
[53]). The use of anchor text in this setting, to weight
the links along which authority is propagated, is based
on the following observation. When one seeks author-
itative pages on mountain climbing, for instance, one
might reasonably expect to find the phrase “mountain
climbing” in the vicinity of the tails – or anchors – of
the links pointing to authoritative pages. Thus a hub
page containing links to mountain climbing resources,
and links to kayaking resources, is likely to contain the
phrase “mountain climbing” around the href’s point-
ing to the correct resources resources, but not near the
kayaking links. To this end, one boosts the weights of
links which occur near instances of query terms. The
details of this are given in [11, 12].

8 Conclusion

We have focused primarily on linear algebraic methods
that make use of eigenvectors and the singular value de-
composition; and from this perspective, we have seen a
variety of ways in which methods from linear algebra can
be brought to bear on problems in information retrieval
and hypertext analysis. The application of such tech-
niques has been made possible by the long-standing use
of vector representations for documents in information
retrieval, and the deep connections that exist between
the combinatorics of link structures and the eigenvectors
of their adjacency matrices. We feel that a recurring
theme in these areas is the versatility of spectral meth-
ods, and the diversity of ways in which eigenvalues and
singular values naturally arise in these domains; this of-
fers every indication that spectral methods will remain
a significant source of useful techniques for approaching
problems in information retrieval.
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