
Recommendation systems: a probabilistic analysisRavi Kumar Prabhakar Raghavan Sridhar RajagopalanAndrew TomkinsIBM Almaden Research Center650 Harry RoadSan Jose, CA 95120.AbstractA recommendation system tracks past actions of a group of users to make recommendationsto individual members of the group. The growth of computer-mediatedmarketing and commercehas led to increased interest in such systems.We introduce a simple analytical framework for recommendation systems, including a ba-sis for de�ning the utility of such a system. We perform probabilistic analyses of algorithmswithin this framework. These analyses yield insights into how much utility can be derived fromknowledge of past user actions.1 IntroductionCollaborative �ltering is a process by which information on the preferences and actions of a groupof users is tracked by a system (sometimes known as a recommendation system) [11, 13, 19, 20, 21,22, 24, 25]. Based on the patterns it observes, the system tries to make useful recommendationsto individual users. For instance, a book recommendation system might recommend Jules Verneto someone interested in Isaac Asimov based on the fact that a number of users have expressedsimultaneous interest in both authors. See [22, 24] and references therein for a comprehensivelisting of collaborative �ltering projects as well as commercial systems.Most research on recommendation systems has focused on three areas: (i) how to design al-gorithms that, given the past preferences of users, will make useful recommendations; (ii) howto gather the information on user preferences as conveniently and unobtrusively as possible|thisissue runs the gamut from user interface research to marketing science; (iii) privacy issues: how tocombine the information gathered from a group of users to the advantage of an individual user,without divulging information about other users.Our focus is on the �rst of these areas|the design and analysis of algorithms for collaborative�ltering. Although the two latter areas are just as important as the �rst, their treatment is relativelyorthogonal to the problem we consider. To our knowledge, there has been no prior theoretical workon this important emerging application of computing, widely seen as the core of computer-mediatedand web-based marketing [4, 10, 14].There is considerable published work experimentally evaluating the satisfaction of users withrecommendation systems, based on user studies. Some papers (e.g., [21]) report cross-validation inwhich the recommendations of various algorithms are measured by user studies. Hill et. al. [13]report a statistical analysis of correlations between recommendations made by a system and users'previously expressed preferences on a validation set (that is not used for \training" the system).

In all prior work we know of, however, �ltering algorithms are designed �rst, followed by ex postfacto validation to measure user satisfaction. Our intent, on the other hand, is to use a quantitativenotion of utility to drive the design of the algorithm, thus enabling us to give provable guaranteeson the usefulness of the recommendations it generates. Our approach is predicated on the principlethat the success of a recommendation system will be measured by the utility it generates. Ourmain contributions here are:1. An analytical framework for evaluating algorithms for collaborative �ltering, including a basis forde�ning utility (Section 2). Our focus is not on so-called active collaborative �ltering, where usersmust explicitly and actively annotate or rate the items (books/movies) they encounter; rather, wefocus on systems that tacitly observe prior activity to make recommendations.2. Probabilistic analyses of simple algorithms for collaborative �ltering, using these to deriveinsights on how much prior history is useful and how to exploit it.2 The modelOur model for recommendation systems consists of three components. The �rst component isa framework for recommendation systems. The second is a notion of utility which de�nes theobjective that the recommendation system is trying to optimize. The �nal component is a simpleprobabilistic model of user behavior. We have tried to keep each of these components modular|anyof them can be replaced by more sophisticated notions. We feel that our model is simple enoughto be tractable and yet o�ers interesting insights.We will now describe each component and the particular choices we make in each case.A framework for recommendation systems. We have a set of m users E = fe1; : : : ; emg.For each user e we have a sample of se items that e has purchased1, drawn from a universe ofn items. In this paper, we address only the uniform case in which 8e; se = s. In the followingdiscussion, we will denote the set of items purchased by user e by e as well. Thus, for all e, jej = s.The items can be viewed as nodes of a (hyper)graph and the samples corresponding to userscan be viewed as (hyper)edges in this graph.The n items may be thought of as books, movies, web-pages, etc; a recommendation algorithmtakes as input the sets of s items for each of the users, and outputs for each user some of theremaining n � s items as a recommendation. In our case, we restrict our attention to algorithmsthat make exactly one recommendation per user.To facilitate the notion of what a user prefers, we assume that the n items are partitioned intodisjoint clusters C1; : : : ; Ck. Let C : [n] ! [k] be a function from an item to its correspondingcluster. These clusters may be thought of, for instance, as topics of books (science �ction, travel,etc.). This clustering may or may not be known to the recommendation algorithm; more on thisbelow.Utility of recommendations. We assume the existence of a utility function U : [m]�[n]! [0; 1]giving the utility U(e; i) of recommending an item i to user e.In this paper, we look at utility functions that are uniform on clusters. Thus, if C(i) = C(j)then U(e; i) = U(e; j) for every e; i; j. Note an implicit simpli�cation here: all items in a clusterhave the same utility for a given user (see also Section 2.2). The objective of a recommendationalgorithm is to output a recommendation for each user so that the utility of the recommendations,summed over all users, is maximized.1Here \purchase" is a metaphor for transaction; it could also represent rentals, browser clicks, etc.

After our simpli�cation, the utility depends only on the cluster that is recommended. Thus, wecan think of an algorithm as choosing a cluster rather than choosing a particular item.Probabilistic user model. For the remainder of this paper, we adopt the following probabilisticmodel of user behavior.Each user e 2 E is characterized by a k-dimensional vector p(e) = hp1(e); : : : ; pk(e)i, whichrepresents a probability distribution over the clusters. Naturally, pi(e) � 0 and Pi pi(e) = 1.The interpretation is that the user's sample of s prior purchases is generated by repeating thefollowing procedure s times independently: user e �rst chooses cluster Ci with probability pi(e) andthen chooses an item uniformly from Ci. Thus, the sample could contain repetitions. Note thateven though the items are partitioned into clusters, there need be no identi�able clusters in thesamples|users may in fact have no pronounced preferences for clusters. This point is crucial: wedo not assume \planted" clusters in the data and seek to �nd them. Rather, we seek to maximizeuser utility given whatever patterns exist in the sample data.Our �nal simpli�cation relates the user model and the utility function. One could argue thatthis is indeed the case when the point of view is the one corresponding to the vendor. We assumethat U(e; i) is proportional (and w.l.o.g. in our analyses, equal) to pi(e) for each user i and iteme. Thus, the objective of the recommendation system is to generate a recommendation ei for eachuser i so that the sum Pe pi(e) is maximized.Notation. We denote by B(k; s;m; p) a recommendation problem with m users, s prior samplesper user, k clusters of items, and the set of per-user probabilistic preferences p. When it is obviousfrom the context, we abbreviate B(k; s;m; p) by B(p) or even B.We denote by �(A; U;B(p)) the expected total utility of algorithm A with utility function Uand probabilistic preferences p. The expectation is over samples from p, and any random choicesmade by A. Since both U and B(p) depend on p, we may use �(A; p) as shorthand notation.Benchmarks. We may compare the expected utility achieved by alg with that achieved bytwo benchmarks : (i) a weak benchmark who knows C, the partitioning of items into clusters, and(ii) a strong benchmark, who knows this partitioning, as well as the precise probability vector p(e)for each user e.We denote by opt the utility of the strong benchmark, which isPe p̂(e), where p̂(e) def= jp(e)j1 =maxki=1fpi(e)g. Clearly opt is an upper bound on the utility of any algorithm.Let optW denote the utility of the weak benchmark. Unlike the strong benchmark, the utilityof the weak benchmark depends in a complicated way on the particular choice of B (see examplesin Section 3). Indeed di�erent choices of B demand di�ering methods of using knowledge of C.Limiting cases. It is instructive to consider two limiting cases. If m!1 all edges in the graphoccur with large multiplicities, so any meaningful clusters should become apparent. Thus we wouldhave all the information available to the weak benchmark. Additionally, if s! 1 the algorithm'sestimate of the distribution of a particular user becomes almost correct with high probability, wehave all the information available to the strong benchmark. We make these statements precisebelow.2.1 Related research areasOur model and approach builds on a number of research areas; we now brie
y explain these con-nections and the ways in which our work di�ers.Marketing science is rich in models of consumer behavior and preferences [1, 3, 4, 15], howevermany of these models do not yet appear to be mathematically tractable in frameworks such as ours.

Our user model is tractable but very simplistic in comparison; but we hope in the future to makethe model more realistic.In computer science, we describe several overlapping categories of related work. The �rstcategory consists of data analysis tools such as clustering, data mining [2], latent semantic indexing(LSI) [18], and learning [23]. In each of these cases, the goal is to infer or learn a structurecharacterizing a given data set. Clustering partitions the data set into groups that are \similar"by some measure; data mining looks for interesting patterns in the data; LSI analyzes spectralproperties of the term-document matrix to cluster closely related documents; and learning buildsa hypothesis which will perform well when cross-validated against data generated by the true\concept."Our work di�ers from each of these in a fundamental way. Our goal is not to identify structuresor patterns in the data set, but to exploit these patterns when they exist without necessarilyinferring them formally. We are not interested so much in clustering users into sub-populations,as in maximizing utility across the population. For instance, if the user population has relativelyweak preferences (say, most users like most clusters roughly equally) then an algorithm can doquite well without �rst clustering the users. Thus, clustering is valuable only to the extent thatit helps in improving the utility. Moreover, it can be argued that in situations where this is thecase, the clusters are relatively simple to �nd. In this sense our problem is somewhat simpler thanclustering and graph-partitioning problems. Indeed, our algorithms are considerably simpler thantypical clustering algorithms.A second category of related work includes probabilistic methods such as the work of Boppana [6]and a recent probabilistic analysis of LSI [18]. Our work departs from these in two respects: (i)we seek simple algorithms (no eigenvector computations); (ii) we do not make any assumption ofoverwhelming preference; indeed, we do not require the users to be drawn from one of a smallnumber of \types", as implicitly needed in [18]. (On the other hand, our algorithm does notachieve the strong document clustering results that [18] establishes for LSI.)Our work is also related to computational learning theory [23], but has a di�erent emphasis.We are not interested in the sample complexity needed to attain a bounded di�erence betweenthe underlying distributions and our hypotheses of user preferences. We instead wish to devisealgorithms whose utility is competitive against the benchmarks. This problem is in some wayssimpler than that of learning the distributions.The �nal category includes segmentation [16] problems. This class is perhaps the most closelyrelated because there is an explicit notion of value or utility. The segmentation model described in[16], however, is very general and does not seem to be analyzable in our context. Tractable specialcases of the segmentation problem include facility location [9], LSI, and clustering. In each of thesecases, the data is embedded in an explicit metric or \similarity" space, which plays a central rolein the proposed solutions. The absence of this space is a basic di�erence between these problemsand ours.The model of Boppana [6] may be viewed as a variant of ours; however, his objective is to �nda carefully planted partition of a graph into two clusters; his techniques used are quite di�erentand considerably more sophisticated than the simple algorithms we study.2.2 Critique and extensions of the modelOur view of each user having a �xed preference for each cluster, and the utility being proportionalto this preference is certainly very simplistic. We, however, believe that this is a good �rst stepfrom which important lessons can be learned, and this should pave the way for further study.Some obvious re�nements include: (i) In reality, not all clusters are alike. For instance, the cluster

\science �ction" is very di�erent from the cluster \Java": whereas one might purchase a largenumber of science �ction books, it is unlikely that one would purchase a large number of books onJava. (ii) We have assumed that all the items in a cluster are equally attractive to a buyer; in reality,some items are more popular than others. It is easy to augment our model with a non-uniformdistribution within each cluster, but the analysis appears harder. (iii) We seek algorithms thatmaximize the total utility. Variations|such as maximizing the minimum utility of any user|couldmodel a situation in which we wish to keep all the users happy. (iv) We assume that all usersare equally important. In reality, we may give greater weight to frequent purchasers. (v) In ourmodel, user preferences (indicated by prior purchases) are Boolean; more generally, we may modelmore �nely-graded preferences. In particular, one could extend the model to active collaborative�ltering where some of the expressed preferences could be negative (meaning, the user did not likea particular item). (vi) It would also be interesting to consider time-dependent user preferences,leading to sequential collaborative patterns in which the system tries to infer what each user needsnext.Despite these many possible extensions, we feel that our model is a good start: it is simpleenough to be tractable and yet o�ers interesting insights. At the same time, it is challengingenough that many interesting cases remain open.The reader may have noticed that our model does not assume prior patterns of preferences (e.g.,\scientists tend to like science �ction"). How could we hope for collaborative �ltering in the absenceof such explicit sub-populations? In fact, our algorithm does make recommendations for each userbased on the preferences of similar users, as evident in the sample data. Thus, if the sample dataindicates strong sub-populations we will in fact exploit them; if no patterns are apparent, even thebest algorithm, given the information available to the strong benchmark, will not be able to �ndmuch to exploit.2.3 Main resultsOur model for designing and measuring algorithms for collaborative �ltering is one of our maincontributions. In addition, we have several results that we establish in this model.In Section 3 we compare the performance of the weak benchmark to that of the strong bench-mark. This is useful for two reasons: (i) the weak benchmark represents the limit of what analgorithm can achieve with collaborative �ltering alone, when it manages to learn the clustering ofitems (as evinced in the sample) \as well as possible"; any further improvement must be achievedthrough a larger sample size (and thus a better understanding of individual users' preferences); and(ii) there are situations when the algorithm may have access to at least some clustering information.We show that when s = 2, optW =opt � 2=(pk+1). We extend this result to the general case of ssamples, giving a tradeo� between the information values of the number of samples and identitiesof clusters. We also give tight bounds for the special case of two clusters.In Section 4 we consider recommendation algorithms that, unlike the weak benchmark, do notenjoy knowledge of the clusters. We �rst give a simple algorithm that is 0:704-competitive withrespect to opt on two clusters. We then consider the asymptotic behavior as m!1. We give anintuitive extension of our original algorithm and show that even on an instance with three clusters,it fails to match the performance of the weak benchmark. We then give an algorithm that performsas well as the weak benchmark, despite not knowing the clusters.

3 Using collaborative informationIf collaborative �ltering yielded perfect information about the clustering, then to what extent couldsuch information be exploited? In our model, the hidden information has two components. The�rst, captured by C, is \collaborative" information: i.e., information about similarities betweenelements in the universe. The second, represented by p(e), is meant to model individual behavior.The objective of this section is to address the following question: how much utility can one garnerfrom the collaborative portion of the hidden information, and what are the penalties imposed bythe vagaries of individual preferences?We study two complementary aspects of this issue: (i) the performance of collaborative �lteringalgorithms as a function of the number of clusters k; and (ii) for a �xed k, the utility gains availablefrom collaborative �ltering algorithms as a function of the information about users described bys (the number of samples from each one). Intuitively, as s stays �xed and k grows, the utility ofcollaborative information should decrease, since we have less information about the user preferences.On the other hand, as s grows and k stays �xed, the utility of collaborative information shouldincrease. We prove two results (Theorems 1 and 6) to formalize these intuitions.Throughout this section, we only consider algorithms that know the underlying clustering of theitems; thus, these algorithms have the same information as a weak benchmark. Section 3.1 addressesthe performance of collaborative �ltering as a function of k, the number of clusters. Section 3.2then examines the improvements possible as s, the number of samples per user, increases.The above analyses depend on characterizing the worst case distribution of user preferences(i.e., the set of p(e)'s) for given s and k. While such facts are useful in evaluating the bene�tsof collaborative information, the actual user distributions are not truly adversarial. Therefore inSection 3.3 we provide an analysis that gives tighter performance bounds as a function of simple,and measurable, parameters of the user preference distributions. We are able to complete thisanalysis only for the simplest case when both k and s are 2.3.1 The case s = 2: the e�ect of k clustersConsider the case when s = 2. This is the smallest meaningful value of s: if s were 1, no correlationinformation between items would be available and thus, collaborative �ltering would be meaningless.For s = 2, the sample corresponding to each user e is an edge in a graph whose nodes are the items.Without risk of confusion, we will use e as well to denote the edge corresponding to user e.We �rst consider the case k = 2. In this case, the nodes are partitioned into clusters C1 andC2. An algorithm for this case must take a sequence of edges, and decide for each edge (user)whether to recommend an item from C1 or from C2. Fix some problem B(p), and assume w.l.o.g.that Pe2E p1(e) �Pe2E p2(e). More generally, say Ci is heavier than Cj if Pe pi(e) >Pe pj(e).It is straightforward to see that any optimal algorithm must vote for an item in C1 whenever itsees a C1-edge. For cross-edges and C2-edges, the situation is more complicated, as illustrated bythe following examples:Example 1. If all users have distribution h3=4; 1=4i the correct behavior on cross-edges isto vote for C1. However, consider the situation in which there are equal numbers of two typesof users: one with distribution h0:99; 0:01i and the other with distribution h0:02; 0:98i. C1 is theheavier cluster, but approximately 2=3 of the cross-edges are generated by the second type of user,so the correct behavior on cross-edges is to vote for C2.Example 2. Similarly, if we again consider the instance in which all users have distributionh3=4; 1=4i, the correct decision on C2-edges is to vote for C1. However, if the user distribution

contains an equal number of h3=4; 1=4i users and h1=3; 2=3i users then while C1 remains the heaviercluster, the correct behavior on C2-edges is to vote for C2.We now describe an algorithm called vrc(Vote Randomly on Cross-edges):Given an edge, vote for Ci if it is a Ci-edge and vote uniformly at random if it is across-edge.vrc will not perform optimally on all the instances above. We will show that for problems thatinduce the worst-case ratio to opt, vrc is optimal for such problems. Furthermore, vrc performsworse on these problems than on any other problem, and therefore has optimal worst-case ratioover all problems.We extend the de�nition of vrc to general k as follows. Then for an edge, vrc votes for acluster chosen uniformly at random from the two endpoints of the edge.Let �(alg; p) = �(alg; p)=�(opt; p). We show that vrc achieves the best possible worst-caseperformance ratio when compared to opt:Theorem 1 If s = 2 and m ! 1, for any algorithm alg, infp �(alg; p) � infp �(vrc; p) =2=(pk + 1).Proof: First, recall that �(opt; p) =Pe2E p̂(e). Second, the utility of vrc is a sum over users. Theutility on user e depends on the edge corresponding to e in the sample, and on the distribution p(e).A cross-edge from Ci to Cj occurs with probability 2pi(e)pj(e) and generates utility (pi(e)+pj(e))=2(since vrc votes between the two candidate clusters uniformly at random on cross-edges). A Ci-edge occurs with probability p2i (e) and generates utility pi(e). Thus, the utility of vrc can bewritten: �(vrc; p) = Xe2E0@ X1�i<j�k 2pi(e)pj(e)pi(e) + pj(e)2 + kXi=1 p3i (e)! = Xe2E kXi=1 p2i (e)!Since the utility of opt only depends on p̂(e), we can assume without loss of generality that for anyworst-case p, each p(e) minimizes Pi p2i (e) subject to p̂(e) remaining unchanged. For concreteness,let `(e) be the \favorite" cluster of user e, so p`(e)(e) = p̂(e). Since p̂2(e) is �xed, we seek tominimize Pi6=`(e) p2i (e) subject to Pi6=`(e) pi(e) = 1� p̂(e). This symmetric and concave function isminimized when pi(e) = pj(e) for each i 6= j 6= `(e).Thus, in the worst-case preference distribution, each user is characterized by two quantities,namely `(e) and p̂(e). We also know that p̂(e) � 1=k and that pi(e) = (1� p̂(e))=(k� 1) for eachi 6= `(e). To understand the nature of these distributions better, we require two lemmas.Consider any problem B(k; 2; m; p). De�ne the symmetric closure B�(k; 2; k!m; p�) ofB(k; 2; m; p)as follows: for each user e in the original problem, replace e with k! users, with distributions �(p(e)),for each permutation � 2 Sk, and let p� be the resulting distribution function.Lemma 2 For any p, vrc is optimal for p�.Proof: Let alg(i; j) be the cluster voted for by alg when presented with an edge between Ci and Cj .The total utility of alg on such edges in p� is thereforePe2EP�2Sk p��1(i)(e)p��1(j)(e)p��1(alg(i;j))(e).Modulo commonmultiplicative factors, if alg(i; j) 62 fi; jg then this latter sum is simplyPi6=j 6=` pi(e)pj(e)p`(e)and if alg = vrc, then this sum is insteadPi6=j pi(e)pj(e)(pi(e)+pj(e))=2 = (k�2)Pi6=j p2i (e)pj(e).By straightforward di�erential calculus, this sum is always at least as large asPi6=j 6=` pi(e)pj(e)p`(e).

Lemma 3 (Permutation Lemma) Let alg be any optimal algorithm that knows the clusters fora problem B(k; 2;1; p). Then, for any algorithm alg0, �(alg; p) � �(alg0; p�)Proof: Notice that mean utility over all users for opt is unchanged from B to B�. By assumption�(alg; p) � �(vrc; p). And by Lemma 2, �(vrc; p�) � �(alg0; p�). So we must show only that�(vrc; p) � �(vrc; p�). Breaking vrc's expected utility into within-cluster edges and cross-edges,we can write �(vrc; p) = Pki=1 p3i (e) +Pi6=j pi(e)pj(e)(pi(e) + pj(e))=2. Clearly the mean utilityof vrc on B and B� is identical for within-cluster edges. For cross-edges, the expected utility canbe rewritten as Pi6=j p2i (e)pj(e): This is clearly identical to the utility on cross-edges in B�.Let �(y) denote the fraction (density) of users e who have p̂(e) = y. We have shown that:Lemma 4 �(vrc; p) depends only on �(p̂(e)) where p̂(e) 2 [1=k; 1].We now complete the proof of the theorem. Note that �(vrc; p) can be written as�(vrc; p) = R 11k �(x)vrc(x) dxR 11k �(x)x dx ;where vrc(x) = x3 + x(1� x)�x + 1� xk � 1�+ (1� x)3k � 1By componendo-dividendo, the ratio is minimized by concentrating all the density at a particu-lar value of x, namely the one where vrc(x)=x is minimized in the interval x 2 [1=k; 1]. Stan-dard di�erential calculus shows that vrc(x)=x is minimized at x = 1=pk and that consequently,�(vrc; p) � 2=(pk + 1).We also exhibit a distribution p on which �(vrc; p) = 2=(pk+1). Let q 2 [1=k; 1], and considera user p(e) = hq; k�1z }| {(1� q)=(k � 1); : : : ; (1� q)=(k � 1)i. Let B(p) be the problem on k equal-sizeclusters that is the symmetric closure of e. vrc is optimal for this distribution by Lemma 2. Theutility of vrc per user on this distribution is:�(vrc; p) = q2 � q + 2q(1� q) � q + 1�qk�12 + (1� q)2 � 1� qk � 1 = kq2 � 2q + 1k � 1 :Clearly, the utility of opt per user is q. We can therefore choose q to maximize (kq2�2q+1)=(q(k�1)), which yields q = 1=pk, and gives ratio 2=(pk + 1).3.2 How many samples do we need?We now consider values of s > 2, and study the behavior of the worst-case performance ratio ass varies for a �xed k. We continue to view m as going to 1. Intuitively, as s increases, we geta better and better representation of each user's distribution over the k clusters. This intuitionis made explicit in the following lemma, which is an immediate consequence of the Cherno� tailbound.Lemma 5 Consider any distribution D on the domain f1; � � � ; kg. Let ~X = hX1 � � �Xsi be sindependent samples drawn according to D. Let fi(~X) = jfj : Xj = igj =s. Then,Pr[9i j jfi(~X)�D(i)j � �] � 2��2s=4+lg k

Proof: 8i;Pr[jfi(~X)�D(i)j � �] � 2��2s=4by Cherno� bounds. Now, applying a union bound,Pr[9i j jfi(~X)�D(i)j � �] � k �Pr[jfi(~X)�D(i)j � �];which resolves to the desired inequality.Consider the algorithm max:Given a sample hX1; : : : ; Xsi, vote for the cluster that contains the largest number ofelements from the sample.If more than one cluster is tied for the maximum number of samples, max chooses one at random.Notice that when s = 2 this specializes to vrc.We prove the following theorem:Theorem 6 For a given k and � < 1, if s � O(k2 lg(k=�)=�2), then for any user preference p,�(max; p) � (1� �) ��(opt; p)Proof: Consider any user e. Let p̂(e) be the largest value in fpi(e)g. We say that i is a �-goodcluster for e if p̂(e)� pi(e) � �=(2k). Since p̂(e) is at least 1=k, we know that if max chooses a �good cluster, then the pro�t of max is at least 1� (�=2) that of opt.Now notice that if max does not choose a � good cluster, there is an i, either the one chosenby opt or the one chosen by max, such that jfi(e)� pi(e)j � �=(4k). By Lemma 5 above, theprobability of this event is at most 2�(�2s)=(64k2)+lg k . Setting s � 256k2 lg(k=�)=�2, this probabilityis smaller than �=2.Thus the total loss from not picking �-good clusters is at most a �=2 fraction of opt. Thiscompletes the proof.3.3 A tighter analysis of the case s = 2; k = 2This section gives tighter performance bounds for particular classes of preference distributions. Lets = k = 2, and let m1 and m2 be the �rst two moments, taken over users, of the probability thata user buys from C1; thus, mx def= Pe2E px1(e). We assume m1 and m2 are �xed, and determine theworst case distribution, and the corresponding competitive ratio. The performance of vrc can berewritten as: �(vrc; p) = Xe2E(2p21(e)� 2p1(e) + 1) = 2(m2 �m1) + 1 (1)In other words, the performance of vrc is completely characterized by the �rst two moments of thepreference distribution. We must also extend the permutation lemma to �xed-moment distributionsto obtain the following lemma.Lemma 7 For a �xed m1 and m2, the user preference distribution p that minimizes �(vrc; p)contains only two distinct values of p1(e) other than zero and one.

Proof: For contradiction, assume a user preference distribution p that minimizes �(vrc; p) yetcontains three distinct values of p1(e), 0 < v1 < v2 < v3 < 1. Let �i be the fraction of users withp1(e) = vi. Viewed as point masses on the real axis, one can de�ne an operation of translation,which is a perturbation of both �i and vi. The mean of two point masses is given by �ivi+�jvj andtheir second moment by �iv2i + �jv2j . Consider the two types of translations: (i) two sets of pointmasses translated towards each other such that their mean remains unchanged. This operationdecreases the second moment and so long as the translation operation does not cross 1=2 boundary,opt stays the same. (ii) two sets of point masses on either side of 1=2 translated away from eachother such that their mean remains unchanged. This operation increases both the second momentand opt.Let v1; v2 be such that both are either above or below 1=2, and let v3 be the third value|if allthree fall on the same side of 1=2, let v3 be either extremal value. Concurrently, translate v1; v2according to (i) and fv1; v2g; v3 according to (ii). Since these two steps have opposing e�ects on thesecond moment, we can adjust the rate of translations so that the second moment stays unchanged.This operation of simultaneous translations can be continued until either v1 and v2 coincide (inwhich case the support is reduced) or v3 becomes 0=1 (in which case the non-integral support isreduced). In either case, the performance of vrc remains unchanged, whereas opt increases, asimplied by the properties of translations used.We now prove a result about distributions with support 2; subsequently we will �x the case of usersat 0 or 1.Let x1 and x2 be the candidate values of p1(e), and let y1 and y2 = 1 � y1 be the fraction ofusers with p1(e) = x1 and p1(e) = x2 respectively. We can now show the following lemma.Lemma 8 For x1 2 [0; 1=2],maxp f�(vrc; p)g = maxx1;x2fy1(1� x1) + y2x2g = (1 +q1� 4(m1 �m2)=2):Proof: Incorporating the constraints using Lagrange multipliers, we obtain the condition thatx1 + x2 = 1. Substituting back, we can obtainx1 = 1�p1� 4(m1 �m2)2 ;and x2 = 1 +p1� 4(m1 �m2)2 ;from which the lemma follows.Let d = m2 �m1. The above lemma gives a bound for support 2 distributions of �xed d. Supposethat for �xed m1 and m2 the worst-case distribution given by Lemma 7 contains some users withp1(e) 2 f0; 1g. The contribution of all such users to d is zero, and the ratio of vrc to opt is onlymade worse if these users are removed. Therefore we may assume that the worse-case distributionfor a �xed d has support 2. The ratio of the performance of vrc and opt can then be obtained asLemma 9 If d = m2 �m1, then for all distributions p with moments m1 and m2,�(vrc; p)�(opt; p) � 2(2d+ 1)1 +p1 + 4d:It can be seen that the right-side quantity is at least 2(p2 � 1), for d = (1 � p2)=2. The aboveexpression lets us write down the exact ratio for various moments of the preferences; as expectedthe ratio approaches one for both large and small values of d. Surprisingly, the bound is a functionof one variable, rather than a function of both m1 and m2.

4 AlgorithmsIn the previous section, we showed that perfect collaborative �ltering allows an algorithm to becompetitive with respect to a benchmark who knows each user's distribution. Here we study thecomplementary question: we give simple algorithms to perform collaborative �ltering when theclusters are not known. We continue to focus on the basic case in which s = 2. The results in thissection require that the clusters have roughly equal sizes.First, we show that for two clusters a relatively simple algorithm which we call neighborcompares favorably to opt, which knows both the clusters and the distribution of each user. Wealso give results comparing neighbor to vrc, who knows just the clusters. To summarize, weshow that for any distribution p, �(neighbor; p) > :828 ��(vrc; p). From Section 3, �(vrc; p) >:828 ��(opt; p). We also show that �(neighbor; p) > :704 ��(opt; p). (Note that :704 > (:828)2,thereby showing that neighbor and vrc achieve their worst cases on di�erent distributions.)Next, we consider performance asm! 1. We begin by showing that the natural generalizationof neighbormay perform worse than the weak benchmark when there are as few as 3 clusters. Bothneighbor and its generalization decide which element to vote for based solely on information aboutedges incident to the edge being considered. We do not know of any algorithm whose performancematches the weak benchmark based only on such local information.Instead, we present a simple algorithm, cluster, which �rst uses a global analysis of the graphto determine some approximation of the clusters, and then uses this clustering to determine whatto recommend to each user. We show that the ratio of cluster is within (1 � o(1)) of the weakbenchmark as m!1.4.1 The neighbor algorithmThe neighbor algorithm is the following:Let G be the graph corresponding to the problem instance. For a user ei's samplefbi;1; bi;2g, recommend an item bi;3 such that either fbi;1; bi;3g 2 G or fbi;2; bi;3g 2 G.Despite its simplicity, the performance of this algorithm is not very far from opt. We prove thefollowing theorem:Theorem 10 For any set of preferences p, �(neighbor; p) � 0:704 ��(opt; p):Proof: The proof consists of two steps. First, we prove the theorem for a particular probabilisticdistribution q(�) and then show (Lemma 12) that the performance of neighbor is the least for thisq(�).Consider the following set of probabilistic preferences q(�): for a given p1 2 [0:5; 1], and p2 =1 � p1, there are exactly two classes of users, occurring with equal probability, denoted by theirdistributions hp1; p2i and hp2; p1i. The following lemma is immediate:Lemma 11 Given e 2 C, the probability that a random edge adjacent to e is inside C is p21 + p22and the probability it is a cross-edge is 2p1p2.Using this, we can compute the expected utility for neighbor for this q(�). W.l.o.g. we consider ahp1; p2i user. This user may generate three types of edge: (i) a C1-edge e with probability p21. Forthis case the neighbor of e is in C1 with probability p21 + p22 which yields a utility of p1, and is inC2 with the remaining probability, yielding utility p2; (ii) a cross-edge with probability 2p1p2, forwhich the utility is (p1 + p2)=2 = 1=2; and (iii) a C2-edge e with probability p22. Here the neighbor

of e is in C2 with probability p21 + p22 yielding a utility of p2, and with the remaining probability isin C1 yielding utility p1. Summing these, we obtain�(neighbor; q) =Xe p51(e) + p52(e) + p1(e)p2(e) + 3p21(e)p22(e):Using �(opt; q) =Pe p1(e), we can show �(neighbor; q) � 0:704 ��(opt; q).We now show that the q(�) considered above is the worst case for neighbor. More precisely, wecan showLemma 12 For any set of preferences p, �(neighbor; p) � �(neighbor; q):Proof: Consider the performance of neighbor on a preference p(�). Let di be the probability thata random edge is a Ci-edge, and d� = 1� d1 � d2 be the probability of a cross edge. Let d denotethe edge density. Let � = 2d1=(2d1 + d�) be the probability that a neighbor of a C1-edge is in C1,and likewise � = 2d2=(2d2+ d�) be the probability that a neighbor of a C2-edge is in C2. Then wecan write �(neighbor; p) as�(neighbor; p) =Xe 2p1(e)(1� p1(e)) + (2p1(e)� 1) ��p1(e)2 � �(1� p1(e))2� :Consider also the performance of neighbor on the symmetric closure of p(�), which is q(�). Let ��; ��be the analogs of �; � with respect to q(�). Note that �� = �� by the symmetry of q(�). Using this,we can write �(neighbor; q) =Xe ��(2p1(e)� 1) + 2p1(e)(1� p1(e)):We now show that �(neighbor; p) � �(neighbor; q). Combining the two previous equations,this leads to the following inequality:Xe (2p1(e)� 1)�� <Xe �p1(e)2 � �(1� p1(e))2:Converting this expression to central moments, taking � to be the mean (over e) of p1(e) , and �2to be the variance of the same random variable, we get:(2�� 1)�� � (�2 + �2)(�� �) + (2�� 1)�:Following the derivation of � and � above, we can similarly derive the value of �� using an in-clusterdensity of (d1 + d2)=2. Converting the resulting expression to central moments allows us to derivethe following useful equality: �� = ��+ (1� �)�:Using this substitution, and assuming � 6= � (the lemma follows otherwise), the above inequalitybecomes: �(�� 1) � �2;which is always true since � � 1.Combining the performance of neighbor and vrc, we get the following corollary, which assertsthat even without the knowledge of clusters, neighbor performs very well when compared to vrc.Corollary 13 For all preferences p, �(neighbor; p) � 0:828 ��(vrc; p).

4.2 The voting algorithmThe following voting algorithm is an intuitive generalization of the neighbor algorithm:Let G be the graph corresponding to the problem instance. For a user ei's samplefbi;1; bi;2g, recommend an item bi;3 such that bi;3 is a neighbor of bi;1 and bi;2 in G withthe maximum multiplicity.Example 3. Let s = 2, k = 3, and de�ne three classes of user. Class 1 of user has p(e) =h0:5; 0:5; 0i; class 2 has p(e) = h0:5; 0; 0:5i, and class 3 has p(e) = h0; 0:5; 0:5i. The n users arebroken into the three classes as follows: a .45 fraction belong to class 1, a .45 fraction belong toclass 2, and a .1 fraction belong to class 3. We let m ! 1. Note that a constant fraction of alledges will have one endpoint in C2 and the other in C3. Let (u; v); u 2 C2; v 2 C3, be such an edge.Clearly, only users from class 3 could have generated (u; v), so the correct response is either C2 orC3. Consider the action of voting on (u; v). Fix x 2 C1 and y 2 C2, and we shall compute thenumber of edges from fu; vg to x, and from fu; vg to y. We compute the �rst quantity by observingthat only class 1 users create (u; x) edges, and they create (:45)9m=(4n2) such edges in expectation.Likewise, there are the same number of (v; x) edges from class 2 users, for a total of 0:81m=(4n2).On the other hand, there are (:45)9m=(4n2) edges from u to y generated by class 1 users, and(:1)9m=(4n2) edges from each of fu; vg to y generated by class 3 users, for a total of 0:65m=(4n2).As m grows, the central limit theorem allows us to conclude that the latter value will be smallerwith probability approaching 1.Thus, voting will vote for C1, incorrectly, on all such edges. Since these edges occur a constantfraction of the time, we observe the following:Observation 14 For s = 2; k � 3; 9� > 0 such that limm!1�(voting) < (1� �)optW .4.3 A clustering algorithmWe begin by showing that a simple algorithm, cluster, achieves a ratio approaching that of theweak benchmark as m ! 1. As the name suggests, the algorithm �rst �nds a clustering of theitems based on the samples it is given; it then applies the vrc algorithm to the resulting clustering.To complete the proof, we show that cluster �nds a clustering of the items that is adequate forthe purposes of achieving a ratio close to that of the weak benchmark, without necessarily �ndingthe underlying clustering that generated the data.As in Section 3.1, we view the items as the nodes of a graph, each edge of which is a sample ofitems purchased by a user. Given m such samples, we have a multigraph in which an edge (i; j)occurs with some multiplicity mij , corresponding to the number of users who purchased i and j.Let mmax be maxi;j mi;j . During a run of algorithm cluster, we will work with a temporary graphG de�ned on subsets of the users, with simple edges (i.e., no multiplicities). To avoid confusion inthe description that follows, we will refer to the edges of G as G-edges; when we simply say \edges",we will be referring to the original multigraph of samples. Let � = 0:01, and m be su�ciently largethat m�=2 > n2.Algorithm cluster :Step 1: Generate estimated clusters.while there is a node not assigned to some cluster:

Let d1 be an integer chosen uniformly from [m1=2+�; 2m1=2+�].Create a graph G whose nodes are the unclustered items.Add G-edge (i; j) to G whenever mij >= mmax� d1.Find a maximal clique in G; output this clique as a cluster.end while.Let Cnew be the resulting clustering.Step 2: Process clusters.Run algorithm vrc (Section 3.1) given the clustering Cnew.We can now state the main theorem regarding this algorithm. Let Um be the set of all userpreferences on m users. Let �(alg; m) = infp2Um �(alg; p). Then,Theorem 15 For s = 2 and any k, limm!1 �(cluster; m)�(optW ; m) = 1Proof: We begin with some simple properties of Cnew. First, we justify an assumption that alledge multiplicities are close to their expectations.Lemma 16 With probability at least 1� 1=m, every edge has multiplicity within 2pm logm of itsexpectation.Proof: The expected multiplicity of any edge is Pe Pr[user e generates the edge], which is a sumof Bernoulli random variables. Clearly, the probability is no more than 1, so the variance is nogreater than m. Thus, the probability of deviating by 2pm logm is no more than e�2 logm = 1=m2.There are only n2 edges, so the union bound completes the proof.We now show that no cluster of Cnew contains only a single node of some original cluster.Lemma 17 Pr[9I 2 Cnew; J 2 Corig; jI \ J j = 1] � 2 logm=m�=2:Proof: We analyze the random choice of d1 during Step 1 of cluster. By Lemma 16, themultiplicities of all edges are close to their expectations with probability 1� 1=m. In order for onenode of I to be included in the clique, and another node not to be included, it must be the case thatmmax� d1 falls between the multiplicities of some two edges that have the same endpoint-clusters.However, by the procedure for choosing d1, the probability of this event occurring for any two �xededges is no more than 2pm logm=m1=2+� = 2 logm=m�: Since there are only n2 < m�=2 possibleedges, with probability at least 1 � 2 logm=m�=2 by the union bound d1 will not fall between themultiplicities of any two edges with the same endpoint-clusters. This in fact proves the strongerstatement that no original cluster is split by the clustering procedure.Next, assume that cluster Cnewx contains i; i0 2 CorigI and j; j 0 2 CorigJ .Lemma 18 Pe �p2I(e) + p2J(e)� � 3m1=2+� +Pe 2pI(e)pJ(e) with probability at least 1� 1=m.Proof: The expected multiplicity of edge (i; i0), is mPe 2(pI(e)=(n=k))2. Likewise, the expectedmultiplicity of (j; j 0) is mPe 2(pJ(e)=(n=k))2. Clearly, either (i; i0) or (j; j 0) will have expectedmultiplicity at least mk2=n2Pe p2I(e) + p2J(e). However, the expected multiplicity of a cross-edge(i; j) is mPe 2(pI(e)=(n=k))(pJ(e)=(n=k)) = mk2=n2Pe 2pI(e)pJ(e). By Lemma 16, the bad eventthat some edge multiplicity does not fall within 2pm logm has been discounted except for an event

of probability no more than 1 � 1=m, so the expectations of these two random variables must liewithin 2pm logm+ d1 < 3m1=2+� of one another.As above, let i; i0; j; j 0 2 Cnewx , Corig(i) = Corig(i0) = I , and Corig(j) = Corig(j 0) = J .Lemma 19 Pe jpI(e)� pJ(e)j < m3=4+�=2 with probability at least 1� 1=m.Proof: Lemma 18 states that Pe �p2I(e) + p2J (e)� � 3m1=2+� + Pe 2pI(e)pJ(e). Observe thatif pI(e) = �e + pJ(e) then the di�erence between p2I(e) + p2J (e) and 2pI(e)pJ(e) is exactly �2e .Thus, Lemma 18 asserts that Pe �2e � 3m1=2+�. Maximizing Pe �e subject to this constraint gives�e = p3m�1=4+�=2, so Pe jpI(e)� pJ (e)j � mp3m�1=4+�=2 = p3m3=4+�=2.Let vrcorig and vrcnew be the bene�t of algorithm vrc given clustering functions Corig and Cnewrespectively. For nodes i and j let Eij = feje = (i; j)g, that is, Eij is the set of users whosesample is edge (i; j). Clearly, vrcorig is simply Pi;j jEij j(pCorig(i)(e) + pCorig(j)(e))=2. Let usanalyze vrcnew. On any edge of Eij , vrcnew will recommend an element of Cnew(i) or Cnew(j)uniformly at random. By Lemma 17, Cnew(i) will contain other nodes of Corig(i) in addition tonode i itself, so the conditions of Lemma 19 hold. Let B(Cnew(i); e) be the bene�t attained byvrcnew on recommending an element of Cnew(i) to user e: B(Cnew(i); e) =Pj2Cnew(i) pCorig(j)(e).Therefore on edges of Eij, vrcnew attains bene�tPe2Eij(B(Cnew(i); e)+B(Cnew(j)))=2. ApplyingLemma 19, we have that Pe2Eij B(Cnew(i); e)� �p3m3=4+�=2 +Pe2Eij pCorig(i)(e). Therefore,vrcnew = Xe2Eij(B(Cnew(i); e) + B(Cnew(j); e))=2� �p3m3=4+�=2 + Xe2Eij(pCorig(i)(e) + pCorig(j)(e))=2= vrcorig � p3m3=4+�=2:The above analysis encounters error conditions with probability at most 3 logm=m�=2, so that:vrcnew � (1� 3 logm=m�=2)(vrcorig �p3m3=4+�=2):Finally, note that the algorithm that recommends uniformly at random will attain revenuem=k on m users, which gives a lower bound on the performance of vrcnew since this algorithmcan do no worse than a random recommendation. Thus, the revenue of vrcnew is O(m), and solimm!1 vrcorig=vrcnew = 1:5 ConclusionsIn this paper, we introduce a framework for studying algorithmic issues arising in recommendationsystems. We have isolated two modeling issues, namely, a model for user utility and a model foruser preferences as central issues within this framework.We study basic cases arising from a simple probabilistic model for utility and user preferences.We show that these cases provide the following interesting insights: (i) Recommendation systemsstart being valuable with relatively little data on each user. The value of this data is related to thediversity of the interests of the user population. (ii) Simple algorithms are almost as e�ective asthe best possible in terms of utility.Several issues remain open, most notably in extending our analyses to the more general modelssuggested in Section 2.2.

References[1] R.B. Allen. User models: Theory, method and practice. International Journal of Man-MachineStudies, 32:511{543, 1990.[2] M.J. Berry and G. Lino�. Data Mining Techniques. John-Wiley, 1997.[3] J. Bettman. An Information Processing Theory of Consumer Choice. Addison-Wesley Publish-ing Company, 1979.[4] R.C. Blattberg, R. Glazer, J.D.C. Little, eds. The Marketing Information Revolution, HarvardBusiness School Press, 1994.[5] B. Bollobas. Random Graphs. Academic Press, NY, 1985.[6] R. Boppana. Eigenvalues and graph bisection: An average-case analysis, Proc. IEEE Symp. onFoundations of Computer Science, 1987.[7] M. Charikar, S.R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. On targeting Markovsegments. Proc. ACM Symposium on Theory of Computing, 1999.[8] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Indexing bylatent semantic analysis. Journal of the Society for Information Science, 41(6):391{407, 1990.[9] Z. Drezner, Ed. Facility Location: A Survey of Applications and Methods, Springer, 1995.[10] R. Glazer. Marketing in an information-intensive environment: Strategic implications of knowl-edge as an asset, Journal of Marketing, 55:1{19, 1991.[11] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative �ltering to weave aninformation tapestry. Communications of the ACM, 35:12, pp. 51{60, 1992.[12] G. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1989.[13] W. Hill, L. Stead, M. Rosenstein, G. Furnas. Recommending and evaluating choices in a virtualcommunity of use. Proceedings of ACM CHI, pp. 194{201, 1995.[14] D.L. Ho�man and T.P. Novak. Marketing in hypermedia computer-mediated environments:Conceptual foundations. Journal of Marketing, 60:50{68, 1996.[15] J. Howard. Consumer Behavior in Marketing Strategy, Prentice Hall, Englewood Cli�s, NJ,1989.[16] J. Kleinberg, C.H. Papadimitriou, P. Raghavan. Segmentation problems. Proceedings of theACM Symposium on Theory of Computing, 1998.[17] B.N. Miller, J.T. Riedl, J.A. Konstan. Experiences with GroupLens: Making usenet usefulagain. Proceedings of the USENIX Conference, 1997.[18] C.H. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala. Latent semantic indexing: Aprobabilistic analysis. Proceedings of the ACM Symposium on Principles of Database Systems,1998.

[19] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl. GroupLens: An Open Architecturefor Collaborative Filtering of Netnews, Center for Coordination Science, MIT Sloan School ofManagement Report WP #3666{94, 1994.[20] U. Shardanand. Social Information Filtering for Music Recommendation, Masters Thesis, De-partment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,1994.[21] U. Shardanand and P. Maes. Social information �ltering: Algorithms for automating \wordof mouth", Proceedings of the ACM Conference on Human Factors in Computing Systems, pp.210{217, May 1995[22] ACM SIGGROUP resource page on collaborative �ltering.http://www.acm.org/siggroup/collab.html.[23] L.G. Valiant. A theory of the learnable. CACM 27(11): 1134{1142, 1984.[24] H.R. Varian. Resources on collaborative �ltering.http://www.sims.berkeley.edu/resources/collab/.[25] H.R. Varian and P. Resnick, eds. CACM Special issue on recommender systems. CACM 40(3),1997.

