Recommendation systems: a probabilistic analysis

Ravi Kumar Prabhakar Raghavan Sridhar Rajagopalan
Andrew Tomkins

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120.

Abstract

A recommendation system tracks past actions of a group of users to make recommendations
to individual members of the group. The growth of computer-mediated marketing and commerce
has led to increased interest in such systems.

We introduce a simple analytical framework for recommendation systems, including a ba-
sis for defining the utility of such a system. We perform probabilistic analyses of algorithms
within this framework. These analyses yield insights into how much utility can be derived from
knowledge of past user actions.

1 Introduction

Collaborative filtering is a process by which information on the preferences and actions of a group
of users is tracked by a system (sometimes known as a recommendation system) [11, 13, 19, 20, 21,
22, 24, 25]. Based on the patterns it observes, the system tries to make useful recommendations
to individual users. For instance, a book recommendation system might recommend Jules Verne
to someone interested in Isaac Asimov based on the fact that a number of users have expressed
simultaneous interest in both authors. See [22, 24] and references therein for a comprehensive
listing of collaborative filtering projects as well as commercial systems.

Most research on recommendation systems has focused on three areas: (i) how to design al-
gorithms that, given the past preferences of users, will make useful recommendations; (ii) how
to gather the information on user preferences as conveniently and unobtrusively as possible—this
issue runs the gamut from user interface research to marketing science; (iii) privacy issues: how to
combine the information gathered from a group of users to the advantage of an individual user,
without divulging information about other users.

Our focus is on the first of these areas—the design and analysis of algorithms for collaborative
filtering. Although the two latter areas are just as important as the first, their treatment is relatively
orthogonal to the problem we consider. To our knowledge, there has been no prior theoretical work
on this important emerging application of computing, widely seen as the core of computer-mediated
and web-based marketing [4, 10, 14].

There is considerable published work experimentally evaluating the satisfaction of users with
recommendation systems, based on user studies. Some papers (e.g., [21]) report cross-validation in
which the recommendations of various algorithms are measured by user studies. Hill et. al. [13]
report a statistical analysis of correlations between recommendations made by a system and users’
previously expressed preferences on a validation set (that is not used for “training” the system).

In all prior work we know of, however, filtering algorithms are designed first, followed by ez post
facto validation to measure user satisfaction. Our intent, on the other hand, is to use a quantitative
notion of utility to drive the design of the algorithm, thus enabling us to give provable guarantees
on the usefulness of the recommendations it generates. Our approach is predicated on the principle
that the success of a recommendation system will be measured by the utility it generates. Our
main contributions here are:

1. An analytical framework for evaluating algorithms for collaborative filtering, including a basis for
defining utility (Section 2). Our focus is not on so-called active collaborative filtering, where users
must explicitly and actively annotate or rate the items (books/movies) they encounter; rather, we
focus on systems that tacitly observe prior activity to make recommendations.

2. Probabilistic analyses of simple algorithms for collaborative filtering, using these to derive
insights on how much prior history is useful and how to exploit it.

2 The model

Our model for recommendation systems consists of three components. The first component is
a framework for recommendation systems. The second is a notion of wutility which defines the
objective that the recommendation system is trying to optimize. The final component is a simple
probabilistic model of user behavior. We have tried to keep each of these components modular—any
of them can be replaced by more sophisticated notions. We feel that our model is simple enough
to be tractable and yet offers interesting insights.

We will now describe each component and the particular choices we make in each case.

A framework for recommendation systems. We have a set of m users F = {e1,...,en}.
For each user e we have a sample of s. items that e has purchased!, drawn from a universe of
n items. In this paper, we address only the uniform case in which Ve,s. = s. In the following
discussion, we will denote the set of items purchased by user e by e as well. Thus, for all e, |e|] = s.

The items can be viewed as nodes of a (hyper)graph and the samples corresponding to users
can be viewed as (hyper)edges in this graph.

The n items may be thought of as books, movies, web-pages, etc; a recommendation algorithm
takes as input the sets of s items for each of the users, and outputs for each user some of the
remaining n — s items as a recommendation. In our case, we restrict our attention to algorithms
that make exactly one recommendation per user.

To facilitate the notion of what a user prefers, we assume that the n items are partitioned into
disjoint clusters Cy,...,Ck. Let C : [n] — [k] be a function from an item to its corresponding
cluster. These clusters may be thought of, for instance, as topics of books (science fiction, travel,
etc.). This clustering may or may not be known to the recommendation algorithm; more on this
below.

Utility of recommendations. We assume the existence of a utility function U : [m]x[n] — [0, 1]
giving the utility U(e, ¢) of recommending an item 7 to user e.

In this paper, we look at utility functions that are uniform on clusters. Thus, if C(i) = C(j)
then U(e,t) = Ule, j) for every e,,j. Note an implicit simplification here: all items in a cluster
have the same utility for a given user (see also Section 2.2). The objective of a recommendation
algorithm is to output a recommendation for each user so that the utility of the recommendations,
summed over all users, is maximized.

'Here “purchase” is a metaphor for transaction; it could also represent rentals, browser clicks, etc.

After our simplification, the utility depends only on the cluster that is recommended. Thus, we
can think of an algorithm as choosing a cluster rather than choosing a particular item.

Probabilistic user model. For the remainder of this paper, we adopt the following probabilistic
model of user behavior.

Each user e € E is characterized by a k-dimensional vector p(e) = (pi(e),...,pr(e)), which
represents a probability distribution over the clusters. Naturally, p;(e) > 0 and >, pi(e) = 1.
The interpretation is that the user’s sample of s prior purchases is generated by repeating the
following procedure s times independently: user e first chooses cluster C; with probability p;(e) and
then chooses an item uniformly from C;. Thus, the sample could contain repetitions. Note that
even though the items are partitioned into clusters, there need be no identifiable clusters in the
samples—users may in fact have no pronounced preferences for clusters. This point is crucial: we
do not assume “planted” clusters in the data and seek to find them. Rather, we seek to maximize
user utility given whatever patterns exist in the sample data.

Our final simplification relates the user model and the utility function. One could argue that
this is indeed the case when the point of view is the one corresponding to the vendor. We assume
that U(e, %) is proportional (and w.l.o.g. in our analyses, equal) to p;(e) for each user 7 and item
e. Thus, the objective of the recommendation system is to generate a recommendation e; for each
user ¢ so that the sum >, p;(e) is maximized.

Notation. We denote by B(k, s, m, p) a recommendation problem with m users, s prior samples
per user, k clusters of items, and the set of per-user probabilistic preferences p. When it is obvious
from the context, we abbreviate B(k, s, m,p) by B(p) or even B.

We denote by II(A, U, B(p)) the expected total utility of algorithm A with utility function U
and probabilistic preferences p. The expectation is over samples from p, and any random choices
made by A. Since both U and B(p) depend on p, we may use II(A, p) as shorthand notation.

Benchmarks. We may compare the expected utility achieved by ALG with that achieved by
two benchmarks : (i) a weak benchmark who knows C, the partitioning of items into clusters, and
(i) a strong benchmark, who knows this partitioning, as well as the precise probability vector p(e)
for each user e.

We denote by opT the utility of the strong benchmark, which is Y, p(e), where p(e) def Ip(€)]eo =
max®_, {p;(e)}. Clearly oPT is an upper bound on the utility of any algorithm.

Let opTiy denote the utility of the weak benchmark. Unlike the strong benchmark, the utility
of the weak benchmark depends in a complicated way on the particular choice of B (see examples
in Section 3). Indeed different choices of B demand differing methods of using knowledge of C.

Limiting cases. It is instructive to consider two limiting cases. If m — oo all edges in the graph
occur with large multiplicities, so any meaningful clusters should become apparent. Thus we would
have all the information available to the weak benchmark. Additionally, if s — oo the algorithm’s
estimate of the distribution of a particular user becomes almost correct with high probability, we
have all the information available to the strong benchmark. We make these statements precise
below.

2.1 Related research areas

Our model and approach builds on a number of research areas; we now briefly explain these con-
nections and the ways in which our work differs.

Marketing science is rich in models of consumer behavior and preferences [1, 3, 4, 15], however
many of these models do not yet appear to be mathematically tractable in frameworks such as ours.

Our user model is tractable but very simplistic in comparison; but we hope in the future to make
the model more realistic.

In computer science, we describe several overlapping categories of related work. The first
category consists of data analysis tools such as clustering, data mining [2], latent semantic indexing
(LSI) [18], and learning [23]. In each of these cases, the goal is to infer or learn a structure
characterizing a given data set. Clustering partitions the data set into groups that are “similar”
by some measure; data mining looks for interesting patterns in the data; LSI analyzes spectral
properties of the term-document matrix to cluster closely related documents; and learning builds
a hypothesis which will perform well when cross-validated against data generated by the true
“concept.”

Our work differs from each of these in a fundamental way. Our goal is not to identify structures
or patterns in the data set, but to exploit these patterns when they exist without necessarily
inferring them formally. We are not interested so much in clustering users into sub-populations,
as in maximizing utility across the population. For instance, if the user population has relatively
weak preferences (say, most users like most clusters roughly equally) then an algorithm can do
quite well without first clustering the users. Thus, clustering is valuable only to the extent that
it helps in improving the utility. Moreover, it can be argued that in situations where this is the
case, the clusters are relatively simple to find. In this sense our problem is somewhat simpler than
clustering and graph-partitioning problems. Indeed, our algorithms are considerably simpler than
typical clustering algorithms.

A second category of related work includes probabilistic methods such as the work of Boppana [6]
and a recent probabilistic analysis of LSI [18]. Our work departs from these in two respects: (i)
we seek simple algorithms (no eigenvector computations); (ii) we do not make any assumption of
overwhelming preference; indeed, we do not require the users to be drawn from one of a small
number of “types”, as implicitly needed in [18]. (On the other hand, our algorithm does not
achieve the strong document clustering results that [18] establishes for LSI.)

Our work is also related to computational learning theory [23], but has a different emphasis.
We are not interested in the sample complexity needed to attain a bounded difference between
the underlying distributions and our hypotheses of user preferences. We instead wish to devise
algorithms whose utility is competitive against the benchmarks. This problem is in some ways
simpler than that of learning the distributions.

The final category includes segmentation [16] problems. This class is perhaps the most closely
related because there is an explicit notion of value or utility. The segmentation model described in
[16], however, is very general and does not seem to be analyzable in our context. Tractable special
cases of the segmentation problem include facility location [9], LSI, and clustering. In each of these
cases, the data is embedded in an explicit metric or “similarity” space, which plays a central role
in the proposed solutions. The absence of this space is a basic difference between these problems
and ours.

The model of Boppana [6] may be viewed as a variant of ours; however, his objective is to find
a carefully planted partition of a graph into two clusters; his techniques used are quite different
and considerably more sophisticated than the simple algorithms we study.

2.2 Critique and extensions of the model

Our view of each user having a fixed preference for each cluster, and the utility being proportional
to this preference is certainly very simplistic. We, however, believe that this is a good first step
from which important lessons can be learned, and this should pave the way for further study.
Some obvious refinements include: (i) In reality, not all clusters are alike. For instance, the cluster

“science fiction” is very different from the cluster “Java”: whereas one might purchase a large
number of science fiction books, it is unlikely that one would purchase a large number of books on
Java. (ii) We have assumed that all the items in a cluster are equally attractive to a buyer; in reality,
some items are more popular than others. It is easy to augment our model with a non-uniform
distribution within each cluster, but the analysis appears harder. (iii) We seek algorithms that
maximize the total utility. Variations—such as maximizing the minimum utility of any user—could
model a situation in which we wish to keep all the users happy. (iv) We assume that all users
are equally important. In reality, we may give greater weight to frequent purchasers. (v) In our
model, user preferences (indicated by prior purchases) are Boolean; more generally, we may model
more finely-graded preferences. In particular, one could extend the model to active collaborative
filtering where some of the expressed preferences could be negative (meaning, the user did not like
a particular item). (vi) It would also be interesting to consider time-dependent user preferences,
leading to sequential collaborative patterns in which the system tries to infer what each user needs
next.

Despite these many possible extensions, we feel that our model is a good start: it is simple
enough to be tractable and yet offers interesting insights. At the same time, it is challenging
enough that many interesting cases remain open.

The reader may have noticed that our model does not assume prior patterns of preferences (e.g.,
“scientists tend to like science fiction”). How could we hope for collaborative filtering in the absence
of such explicit sub-populations? In fact, our algorithm does make recommendations for each user
based on the preferences of similar users, as evident in the sample data. Thus, if the sample data
indicates strong sub-populations we will in fact exploit them; if no patterns are apparent, even the
best algorithm, given the information available to the strong benchmark, will not be able to find
much to exploit.

2.3 Main results

Our model for designing and measuring algorithms for collaborative filtering is one of our main
contributions. In addition, we have several results that we establish in this model.

In Section 3 we compare the performance of the weak benchmark to that of the strong bench-
mark. This is useful for two reasons: (i) the weak benchmark represents the limit of what an
algorithm can achieve with collaborative filtering alone, when it manages to learn the clustering of
items (as evinced in the sample) “as well as possible”; any further improvement must be achieved
through a larger sample size (and thus a better understanding of individual users’ preferences); and
(ii) there are situations when the algorithm may have access to at least some clustering information.
We show that when s = 2, opTy /OPT > 2/(\/E—|— 1). We extend this result to the general case of s
samples, giving a tradeoff between the information values of the number of samples and identities
of clusters. We also give tight bounds for the special case of two clusters.

In Section 4 we consider recommendation algorithms that, unlike the weak benchmark, do not
enjoy knowledge of the clusters. We first give a simple algorithm that is 0.704-competitive with
respect to OPT on two clusters. We then consider the asymptotic behavior as m — co. We give an
intuitive extension of our original algorithm and show that even on an instance with three clusters,
it fails to match the performance of the weak benchmark. We then give an algorithm that performs
as well as the weak benchmark, despite not knowing the clusters.

3 Using collaborative information

If collaborative filtering yielded perfect information about the clustering, then to what extent could
such information be exploited? In our model, the hidden information has two components. The
first, captured by C, is “collaborative” information: i.e., information about similarities between
elements in the universe. The second, represented by p(e), is meant to model individual behavior.
The objective of this section is to address the following question: how much utility can one garner
from the collaborative portion of the hidden information, and what are the penalties imposed by
the vagaries of individual preferences?

We study two complementary aspects of this issue: (i) the performance of collaborative filtering
algorithms as a function of the number of clusters k; and (ii) for a fixed k, the utility gains available
from collaborative filtering algorithms as a function of the information about users described by
s (the number of samples from each one). Intuitively, as s stays fixed and k grows, the utility of
collaborative information should decrease, since we have less information about the user preferences.
On the other hand, as s grows and k stays fixed, the utility of collaborative information should
increase. We prove two results (Theorems 1 and 6) to formalize these intuitions.

Throughout this section, we only consider algorithms that know the underlying clustering of the
items; thus, these algorithms have the same information as a weak benchmark. Section 3.1 addresses
the performance of collaborative filtering as a function of k, the number of clusters. Section 3.2
then examines the improvements possible as s, the number of samples per user, increases.

The above analyses depend on characterizing the worst case distribution of user preferences
(i.e., the set of p(e)’s) for given s and k. While such facts are useful in evaluating the benefits
of collaborative information, the actual user distributions are not truly adversarial. Therefore in
Section 3.3 we provide an analysis that gives tighter performance bounds as a function of simple,
and measurable, parameters of the user preference distributions. We are able to complete this
analysis only for the simplest case when both k and s are 2.

3.1 The case s = 2: the effect of k& clusters

Consider the case when s = 2. This is the smallest meaningful value of s: if s were 1, no correlation
information between items would be available and thus, collaborative filtering would be meaningless.
For s = 2, the sample corresponding to each user e is an edge in a graph whose nodes are the items.
Without risk of confusion, we will use e as well to denote the edge corresponding to user e.

We first consider the case £ = 2. In this case, the nodes are partitioned into clusters C; and
Ca. An algorithm for this case must take a sequence of edges, and decide for each edge (user)
whether to recommend an item from C; or from Cp. Fix some problem B(p), and assume w.l.o.g.
that Y .cgpi(e) > > .crp2(e). More generally, say C; is heavier than C; if 3, p;(e) > >, p;(e).

It is straightforward to see that any optimal algorithm must vote for an item in C; whenever it
sees a Ci-edge. For cross-edges and Cs-edges, the situation is more complicated, as illustrated by
the following examples:

Example 1. If all users have distribution (3/4,1/4) the correct behavior on cross-edges is
to vote for C;. However, consider the situation in which there are equal numbers of two types
of users: one with distribution (0.99,0.01) and the other with distribution (0.02,0.98). C; is the
heavier cluster, but approzimately 2/3 of the cross-edges are generated by the second type of user,
so the correct behavior on cross-edges is to vote for Cs.

Example 2. Similarly, if we again consider the instance in which all users have distribution
(3/4,1/4), the correct decision on Ca-edges is to vote for C;. However, if the user distribution

contains an equal number of (3/4,1/4) users and (1/3,2/3) users then while Ci remains the heavier
cluster, the correct behavior on Cy-edges is to vote for Cs.
We now describe an algorithm called vrc(Vote Randomly on Cross-edges):

Given an edge, vote for C; if it is a C;-edge and vote uniformly at random if it is a
cross-edge.

VRC will not perform optimally on all the instances above. We will show that for problems that
induce the worst-case ratio to OPT, VRC is optimal for such problems. Furthermore, VvRC performs
worse on these problems than on any other problem, and therefore has optimal worst-case ratio
over all problems.

We extend the definition of VRC to general k as follows. Then for an edge, VRC votes for a
cluster chosen uniformly at random from the two endpoints of the edge.

Let p(aLg,p) = II(aLG, p)/II(oPT, p). We show that VRC achieves the best possible worst-case
performance ratio when compared to OPT:

Theorem 1 If s = 2 and m — oo, for any algorithm ALG, inf, p(ALG,p) < inf, p(VRC,p) =

2/(Vk+1).

Proof: First, recall that [I(OPT, p) = > ..z p(e). Second, the utility of VRC is a sum over users. The
utility on user e depends on the edge corresponding to e in the sample, and on the distribution p(e).
A cross-edge from C; to C; occurs with probability 2p;(e)p;(e) and generates utility (p;(e)+p;(e))/2
(since VRC votes between the two candidate clusters uniformly at random on cross-edges). A C;-
edge occurs with probability p?(e) and generates utility p;(e). Thus, the utility of VRC can be
written:

II(VRC,p) = Z(> 2p(e pi(e) +p] +sz) Z(gpf(e))

e€cE \1<i<y<k ecE

Since the utility of oPT only depends on p(e), we can assume without loss of generality that for any
worst-case p, each p(e) minimizes Y7, p?(e) subject to p(e) remaining unchanged. For concreteness,
let £(e) be the “favorite” cluster of user e, so pye)(e) = p(e). Since p*(e) is fixed, we seek to
minimize ;) p?(e) subject to > iz4(e) Pi(e) = 1 — P(e). This symmetric and concave function is
minimized when p;(e) = p;(e) for each i # j # £(e).

Thus, in the worst-case preference distribution, each user is characterized by two quantities,
namely £(e) and p(e). We also know that p(e) > 1/k and that p;(e) = (1 — p(e))/(k — 1) for each
t # £(e). To understand the nature of these distributions better, we require two lemmas.

Consider any problem B(k, 2, m, p). Define the symmetric closure B*(k, 2, k!m, p*) of B(k, 2, m, p)
as follows: for each user e in the original problem, replace e with k! users, with distributions o(p(e)),
for each permutation o € Sg, and let p* be the resulting distribution function.

Lemma 2 For any p, VRC is optimal for p*.

Proof: Let ALG (%, j) be the cluster voted for by ALG when presented with an edge between C; and C;.
The total utility of ALG on such edges in p* is therefore 3- c g > s, Po—1 (1) (€)pa_l(y(€)Po—1(ALG ()
Modulo common multiplicative factors, if ALG(%, 7) & {7, 7 } then this latter sum is simply Z#J# pz(
and if ALG = VRC, then this sum is instead 3=, pi(e)p;(e)(pi(e)+p;(e))/2 = (k—2) 3., pi(e)p;(e).
By straightforward differential calculus, this sum is always at least as large as 3=,/ pi(e)p;(e)pe(e).
|

y(e)-
e)p;(e)pe(e)

Lemma 3 (Permutation Lemma) Let ALG be any optimal algorithm that knows the clusters for
a problem B(k,2,00,p). Then, for any algorithm aLc’, II(aLg,p) > II(ALG, p¥)

Proof: Notice that mean utility over all users for oPT is unchanged from B to B*. By assumption
II(aLa,p) > II(VRC, p). And by Lemma 2, II(VRc, p*) > II(ALG’, p*). So we must show only that
II(vrc, p) > II(VRC, p*). Breaking VRC’s expected utility into within-cluster edges and cross-edges,
we can write II(VRC,p) = 5 ; p3(e) + > i pi(e)ps(e)(pi(e) + pj(e))/2. Clearly the mean utility
of VRC on B and B* is identical for within-cluster edges. For cross-edges, the expected utility can
be rewritten as 37, p?(e)p;(e). This is clearly identical to the utility on cross-edges in B*. |

Let pu(y) denote the fraction (density) of users e who have p(e) = y. We have shown that:
Lemma 4 p(VRC, p) depends only on u(p(e)) where p(e) € [1/k, 1].
We now complete the proof of the theorem. Note that p(VRc, p) can be written as
f% pw(z)vre(z) dz
[ue)e da

p(VRC,p) =

where

_ =z _2)3
me(e) = o+ 2(1 =) (34 15) + 5=

By componendo-dividendo, the ratio is minimized by concentrating all the density at a particu-
lar value of z, namely the one where VRc(z)/z is minimized in the interval @ € [1/k,1]. Stan-
dard differential calculus shows that VRc(z)/z is minimized at z = 1/v/k and that consequently,
p(VRC,p) > 2/(VE+1).

We also exhibit a distribution p on which p(VRc, p) = 2/(vVk+1). Let g € [1/k, 1], and consider

k—1

a user ple) = {q,(1—q)/(k—1),...,(1 —q)/(k—1)). Let B(p) be the problem on k equal-size
clusters that is the symmetric closure of e. VRC is optimal for this distribution by Lemma 2. The
utility of VRC per user on this distribution is:

Q-I-H '1—q_/<:q2—2q—|—1

TI(VRC,p) = ¢° - q+2¢(1—q) - 5 +(1_Q)2k—1_ k-1

Clearly, the utility of OPT per user is g. We can therefore choose ¢ to maximize (kq?—2¢+1)/(q(k—
1)), which yields ¢ = 1/v/k, and gives ratio 2/(vk + 1). |

3.2 How many samples do we need?

We now consider values of s > 2, and study the behavior of the worst-case performance ratio as
s varies for a fixed k. We continue to view m as going to oco. Intuitively, as s increases, we get
a better and better representation of each user’s distribution over the k clusters. This intuition
is made explicit in the following lemma, which is an immediate consequence of the Chernoff tail

bound.

Lemma 5 Consider any distribution D on the domain {1,---,k}. Let X = (X1---Xs) be s
independent samples drawn according to D. Let f;(X) =|{j : X; = <}|/s. Then,

Pr3i | |f(X) — D(3)] >] < 27/ 4H1ek

Proof:
Vi, Prl| fi(X) - D(3)| > ¢ < 27/

by Chernoff bounds. Now, applying a union bound,
Pif3i | |£(X) - D()| > d < k- Pl £(X) - D) >],
which resolves to the desired inequality. [|

Consider the algorithm MAX:

Given a sample (X1,...,X), vote for the cluster that contains the largest number of
elements from the sample.

If more than one cluster is tied for the maximum number of samples, MAX chooses one at random.
Notice that when s = 2 this specializes to VRC.
We prove the following theorem:

Theorem 6 For a given k and 8 < 1, if s > O(k?1g(k/6)/6?), then for any user preference p,
II(max, p) > (1 - 6) - II(oPT, p)

Proof: Consider any user e. Let p(e) be the largest value in {p;(e)}. We say that ¢ is a #-good
cluster for e if p(e) — p;(e) < 6/(2k). Since p(e) is at least 1/k, we know that if MAX chooses a @
good cluster, then the profit of MaX is at least 1 — (8/2) that of opPT.

Now notice that if MAX does not choose a 6 good cluster, there is an ¢, either the one chosen
by oPT or the one chosen by MaX, such that |f;(e) — pi(e)| > 0/(4k). By Lemma 5 above, the
probability of this event is at most 27 (6°#)/(64k*)+lgk Setting s > 256k%1g(k/0)/62, this probability
is smaller than 6/2.

Thus the total loss from not picking #-good clusters is at most a 6/2 fraction of opT. This
completes the proof. [|

3.3 A tighter analysis of the case s =2,k =2

This section gives tighter performance bounds for particular classes of preference distributions. Let
s = k = 2, and let m; and mqy be the first two moments, taken over users, of the probability that
a user buys from Cy; thus, m, e Y ecr Pi(e). We assume m; and my are fixed, and determine the
worst case distribution, and the corresponding competitive ratio. The performance of VRC can be
rewritten as:

M(vRe,p) = 37 (253(e) — 2p1(e) + 1) = 2(ms — ma) + 1 &

eclE

In other words, the performance of VRC is completely characterized by the first two moments of the
preference distribution. We must also extend the permutation lemma to fixed-moment distributions
to obtain the following lemma.

Lemma 7 For a fized m1 and mgy, the user preference distribution p that minimizes p(VRC, p)
contains only two distinct values of p1(e) other than zero and one.

Proof: For contradiction, assume a user preference distribution p that minimizes p(VRc,p) yet
contains three distinct values of pi(e), 0 < v1 < vy < vz < 1. Let o; be the fraction of users with
p1(e) = v;. Viewed as point masses on the real axis, one can define an operation of translation,
which is a perturbation of both o; and v;. The mean of two point masses is given by a;v; 4+ a;v; and
their second moment by o;v2 + ajvjz. Consider the two types of translations: (i) two sets of point
masses translated towards each other such that their mean remains unchanged. This operation
decreases the second moment and so long as the translation operation does not cross 1/2 boundary,
OPT stays the same. (ii) two sets of point masses on either side of 1/2 translated away from each
other such that their mean remains unchanged. This operation increases both the second moment
and OPT.

Let vy, vy be such that both are either above or below 1/2, and let v3 be the third value—if all
three fall on the same side of 1/2, let v3 be either extremal value. Concurrently, translate vy, vy
according to (i) and {v1, v2}, v3 according to (ii). Since these two steps have opposing effects on the
second moment, we can adjust the rate of translations so that the second moment stays unchanged.
This operation of simultaneous translations can be continued until either v; and vy coincide (in
which case the support is reduced) or vz becomes 0/1 (in which case the non-integral support is
reduced). In either case, the performance of VRC remains unchanged, whereas OPT increases, as
implied by the properties of translations used. [|

We now prove a result about distributions with support 2; subsequently we will fix the case of users
at 0 or 1.

Let z; and 22 be the candidate values of pi(e), and let y; and y2 = 1 — y; be the fraction of
users with p;(e) = z1 and pi(e) = 3 respectively. We can now show the following lemma.

Lemma 8 For z; € [0,1/2],

mgx{H(VRC,p)} = 12111%2}2({?;1(1 —z1)+yeze} = (1+ \/1 —4(mq — m2)/2).

Proof: Incorporating the constraints using Lagrange multipliers, we obtain the condition that
z1 + 2o = 1. Substituting back, we can obtain

1—\/1—4(7’)21—7’)22)
T =)

2
and
1+ \/1 —4(7’)21 —m2)
To = 2 ’
from which the lemma follows. []

Let d = my — m;. The above lemma gives a bound for support 2 distributions of fixed d. Suppose
that for fixed m; and m, the worst-case distribution given by Lemma 7 contains some users with
pi1(e) € {0,1}. The contribution of all such users to d is zero, and the ratio of VRC to OPT is only
made worse if these users are removed. Therefore we may assume that the worse-case distribution
for a fixed d has support 2. The ratio of the performance of VRC and OPT can then be obtained as

Lemma 9 If d = mo — my, then for all distributions p with moments my and ms,

II(vre, p) N 2(2d+ 1)

M(oPT,p) = 1++/1+4d
It can be seen that the right-side quantity is at least 2(v/2 — 1), for d = (1 — +/2)/2. The above
expression lets us write down the exact ratio for various moments of the preferences; as expected

the ratio approaches one for both large and small values of d. Surprisingly, the bound is a function
of one variable, rather than a function of both m; and ms,.

4 Algorithms

In the previous section, we showed that perfect collaborative filtering allows an algorithm to be
competitive with respect to a benchmark who knows each user’s distribution. Here we study the
complementary question: we give simple algorithms to perform collaborative filtering when the
clusters are not known. We continue to focus on the basic case in which s = 2. The results in this
section require that the clusters have roughly equal sizes.

First, we show that for two clusters a relatively simple algorithm which we call NEIGHBOR
compares favorably to opT, which knows both the clusters and the distribution of each user. We
also give results comparing NEIGHBOR to VRC, who knows just the clusters. To summarize, we
show that for any distribution p, II(NEIGHBOR, p) > .828 - II(VRC, p). From Section 3, II(Vrc, p) >
.828 - TI(oPT, p). We also show that II(NEIGHBOR, p) > .704 - II(oPT, p). (Note that .704 > (.828)2%
thereby showing that NEIGHBOR and VRC achieve their worst cases on different distributions.)

Next, we consider performance as m — co. We begin by showing that the natural generalization
of NEIGHBOR may perform worse than the weak benchmark when there are as few as 3 clusters. Both
NEIGHBOR and its generalization decide which element to vote for based solely on information about
edges incident to the edge being considered. We do not know of any algorithm whose performance
matches the weak benchmark based only on such local information.

Instead, we present a simple algorithm, CLUSTER, which first uses a global analysis of the graph
to determine some approximation of the clusters, and then uses this clustering to determine what
to recommend to each user. We show that the ratio of CLUSTER is within (1 — o(1)) of the weak
benchmark as m — co.

4.1 The NEIGHBOR algorithm

The NEIGHBOR algorithm is the following:

Let G be the graph corresponding to the problem instance. For a user e;’s sample
{bi1,b;,2}, recommend an item b; 3 such that either {b;1,b;3} € G or {b; 2,b,3} € G.

Despite its simplicity, the performance of this algorithm is not very far from opPT. We prove the
following theorem:

Theorem 10 For any set of preferences p, II(NEIGHBOR, p) > 0.704 - [I(oPT, p).

Proof: The proof consists of two steps. First, we prove the theorem for a particular probabilistic
distribution ¢(-) and then show (Lemma 12) that the performance of NEIGHBOR is the least for this
q(-)-

Consider the following set of probabilistic preferences ¢(-): for a given p; € [0.5,1], and py =
1 — p1, there are exactly two classes of users, occurring with equal probability, denoted by their
distributions (p1, p2) and (p2, p1). The following lemma is immediate:

Lemma 11 Given e € C, the probability that a random edge adjacent to e is inside C is p? + p3
and the probability it is a cross-edge is 2p1ps.

Using this, we can compute the expected utility for NEIGEBOR for this ¢(-). W.l.o.g. we consider a
{p1,p2) user. This user may generate three types of edge: (i) a Ci-edge e with probability p?. For
this case the neighbor of e is in C; with probability p? + p2 which yields a utility of p;, and is in
Cy with the remaining probability, yielding utility pa; (ii) a cross-edge with probability 2p;ps, for
which the utility is (p1 + p2)/2 = 1/2; and (iii) a C2-edge e with probability p3. Here the neighbor

of e is in Cy with probability p? + p2 yielding a utility of pa, and with the remaining probability is
in C; yielding utility p;. Summing these, we obtain

TI(NEIGHBOR, q) Zpl)+ p3(e) + p1(e)pa(e) + 3pi(e)p3le).

Using II(opT, ¢) = 3. pi(e), we can show II(NEIGHBOR, ¢) > 0.704 - [I(oPT, q). [

We now show that the ¢(-) considered above is the worst case for NEIGHBOR. More precisely, we
can show

Lemma 12 For any set of preferences p, [I(NEIGHBOR, p) > II(NEIGHBOR, q).

Proof: Consider the performance of NEIGHBOR on a preference p(-). Let d; be the probability that
a random edge is a C;-edge, and dyx = 1 — dj — dy be the probability of a cross edge. Let d denote
the edge density. Let o = 2d;/(2d; + dx) be the probability that a neighbor of a C;-edge is in Cq,
and likewise f = 2ds/(2d2 + dx) be the probability that a neighbor of a Cs-edge is in Ca. Then we
can write II(NEIGHBOR, p) as

M(NE16HBOR, p) = > 2p1(e)(1 - pa(e)) + (2p1(e) — 1) (apr(e)? = B(1 - pa(e))?)

Consider also the performance of neighbor on the symmetric closure of p(-), which is ¢(+). Let o*, 5*
be the analogs of «, § with respect to ¢(-). Note that o* = 8* by the symmetry of ¢(-). Using this,
we can write

M(NeicuBOR, q) = 3 a* (2p1(e) — 1) + 2p1(e)(1 - pr (e).

We now show that [I(NEIGHBOR,p) > II(NEIGHBOR,q). Combining the two previous equations,
this leads to the following inequality:

Z(Qpl - 1la* < Zapl B(1 —pi(e))2

e

Converting this expression to central moments, taking x to be the mean (over e) of p;(e) , and o?
to be the variance of the same random variable, we get:

(2p - Da* < (0 + p?)(a = B) + (21 - 1)6.

Following the derivation of & and 8 above, we can similarly derive the value of a* using an in-cluster
density of (d; + d2)/2. Converting the resulting expression to central moments allows us to derive
the following useful equality: o* = pa+ (1 — p)B.

Using this substitution, and assuming « # § (the lemma follows otherwise), the above inequality

becomes:

:u“(lu“ - 1) S U2a

which is always true since g < 1. [|

Combining the performance of NEIGHBOR and VRC, we get the following corollary, which asserts
that even without the knowledge of clusters, NEIGHBOR performs very well when compared to VRC.

Corollary 13 For all preferences p, II(NEIGHBOR, p) > 0.828 - II(VRcC, p).

4.2 The VOTING algorithm

The following VOTING algorithm is an intuitive generalization of the NEIGHBOR algorithm:

Let G be the graph corresponding to the problem instance. For a user e;’s sample
{b;,1,bi 2}, recommend an item b; 3 such that b; 3 is a neighbor of b, ; and b; 3 in G with
the maximum multiplicity.

Example 3. Let s = 2, k = 3, and define three classes of user. Class 1 of user has p(e) =
(0.5,0.5,0); class 2 has p(e) = (0.5,0,0.5), and class 3 has p(e) = (0,0.5,0.5). The n users are
broken into the three classes as follows: a .45 fraction belong to class 1, a .45 fraction belong to
class 2, and a .1 fraction belong to class 3. We let m — oo. Note that a constant fraction of all
edges will have one endpoint in Cy and the other in Cs. Let (u,v),u € Ca,v € C3, be such an edge.
Clearly, only users from class 3 could have generated (u,v), so the correct response is either Co or
Cs.

Consider the action of VOTING on (u,v). Fiz z € C1 and y € Ca, and we shall compute the
number of edges from {u,v} to z, and from {u,v} to y. We compute the first quantity by observing
that only class 1 users create (u,z) edges, and they create (.45)9m/(4n?) such edges in expectation.
Likewise, there are the same number of (v,z) edges from class 2 users, for a total of 0.81m/(4n?).
On the other hand, there are (.45)9m/(4n?) edges from u to y generated by class 1 users, and
(.1)9m/(4n?) edges from each of {u,v} to y generated by class & users, for a total of 0.65m/(4n?).
As m grows, the central limit theorem allows us to conclude that the latter value will be smaller
with probability approaching 1.

Thus, voTing will vote for Cy, incorrectly, on all such edges. Since these edges occur a constant
fraction of the time, we observe the following:

Observation 14 For s =2,k > 3,3¢ > 0 such that lim II(voTING) < (1 — €)OPTy .

4.3 A clustering algorithm

We begin by showing that a simple algorithm, CLUSTER, achieves a ratio approaching that of the
weak benchmark as m — co. As the name suggests, the algorithm first finds a clustering of the
items based on the samples it is given; it then applies the VRC algorithm to the resulting clustering.
To complete the proof, we show that CLUSTER finds a clustering of the items that is adequate for
the purposes of achieving a ratio close to that of the weak benchmark, without necessarily finding
the underlying clustering that generated the data.

As in Section 3.1, we view the items as the nodes of a graph, each edge of which is a sample of
items purchased by a user. Given m such samples, we have a multigraph in which an edge (¢, 7)
occurs with some multiplicity m,;, corresponding to the number of users who purchased ¢ and j.
Let mmax be max; ; m; ;. During a run of algorithm CLUSTER, we will work with a temporary graph
G defined on subsets of the users, with simple edges (i.e., no multiplicities). To avoid confusion in
the description that follows, we will refer to the edges of G as G-edges; when we simply say “edges”,
we will be referring to the original multigraph of samples. Let ¢ = 0.01, and m be sufficiently large
that m®/2 > n2.

Algorithm CLUSTER :

Step 1: Generate estimated clusters.
while there is a node not assigned to some cluster:

Let d; be an integer chosen uniformly from [ml/2te 2m1/2+e],
Create a graph G whose nodes are the unclustered items.
Add G-edge (t,7) to G whenever m;; >= Mmax — di.
Find a maximal clique in G; output this clique as a cluster.

end while.

Let C™% be the resulting clustering.

Step 2: Process clusters.
Run algorithm VRc (Section 3.1) given the clustering C™¢W.

We can now state the main theorem regarding this algorithm. Let U4, be the set of all user
preferences on m users. Let p(ALG, m) = inf,¢y,, p(ALG, p). Then,

Theorem 15 For s =2 and any k,

p(CLUSTER, m)

lim =1

m—oo p(OPTw,m)
Proof: We begin with some simple properties of C"*V. First, we justify an assumption that all
edge multiplicities are close to their expectations.

Lemma 16 With probability at least 1 — 1/m, every edge has multiplicity within 2,/mlogm of its
expectation.

Proof: The expected multiplicity of any edge is >, Prluser e generates the edge], which is a sum
of Bernoulli random variables. Clearly, the probability is no more than 1, so the variance is no
greater than m. Thus, the probability of deviating by 2,/mlog m is no more than e~21°8™ = 1 /m?.
There are only n? edges, so the union bound completes the proof. [|

We now show that no cluster of C™®% contains only a single node of some original cluster.
Lemma 17 Pr[3] € C™¥,J € C°™, |INJ| = 1] < 2logm/m*/2.

Proof: ~We analyze the random choice of d; during Step 1 of cLUSTER. By Lemma 16, the
multiplicities of all edges are close to their expectations with probability 1 — 1/m. In order for one
node of I to be included in the clique, and another node not to be included, it must be the case that
Mmax — d1 falls between the multiplicities of some two edges that have the same endpoint-clusters.
However, by the procedure for choosing dj, the probability of this event occurring for any two fixed
edges is no more than 2/mlogm/m'/?t¢ = 2log m/me. Since there are only n? < m¢/? possible
edges, with probability at least 1 — 2log m/me/2 by the union bound d; will not fall between the
multiplicities of any two edges with the same endpoint-clusters. This in fact proves the stronger
statement that no original cluster is split by the clustering procedure. [|

Next, assume that cluster C2V contains ¢, € Cj—)rig and 7,7’ € C;rig.
Lemma 18 Y, (p3(e) + p%(e)) < 3m/2+e 13 2ps(e)ps(e) with probability at least 1 — 1/m.

Proof: The expected multiplicity of edge (4,1'), is m Y, 2(ps(e)/(n/k))?. Likewise, the expected
multiplicity of (7,7') is m Y, 2(ps(e)/(n/k))?. Clearly, either (3,) or (j,5") will have expected
multiplicity at least mk?/n® 3", p3(e) + p%(e). However, the expected multiplicity of a cross-edge
(1,7)is m Y, 2(pr(e)/(n/k))(ps(e)/(n/k)) = mk?/n? 3", 2p1(e)ps(e). By Lemma 16, the bad event

that some edge multiplicity does not fall within 24/mlog m has been discounted except for an event

of probability no more than 1 — 1/m, so the expectations of these two random variables must lie
within 2/mlogm 4 d; < 3m1/2*¢ of one another. []

As above, let 4,4, 7, 7' € C2W, C°M8(;) = C°U8(4') = I, and C°T8(j) = C°8(5") = J.

Lemma 19 Y, |pr(e) — py(e)| < m®/4t</2 with probability at least 1 — 1/m.

Proof: Lemma 18 states that Y. (p2(e) +p3(e)) < 3m!/2te + Y 2pr(e)ps(e). Observe that
if pr(e) = €. + py(e) then the difference between p3(e) + p%(e) and 2ps(e)ps(e) is exactly €2.

Thus, Lemma 18 asserts that 3 €2 < 3m!/?te. Maximizing > . €e subject to this constraint gives
€e =/3m Y42 50 S |pr(e) — pyle)] < my/3m1/Ate/2 = \/3m3/4te/2, |

Let VRCOUE and VRCY be the benefit of algorithm VRC given clustering functions C°8 and CmeW
respectively. For nodes i and j let E;; = {ele = (3,7)}, that is, Ej; is the set of users whose
sample is edge (i,7). Clearly, VRC®™8 is simply 3, |Eij|(pgorig(i)(e) + poorig(j)(e))/Q. Let us
analyze VRC™". On any edge of E;;, VRC™®" will recommend an element of C™¢¥(z) or C™¢(j)
uniformly at random. By Lemma 17, C™%(7) will contain other nodes of C°"8(%) in addition to
node 7% itself, so the conditions of Lemma 19 hold. Let B(C™®W (%), e) be the benefit attained by
VRC™Y on recommending an element of C™¥ (1) to user e: B(C™" (1), e) = 3 jcomew ;) poorig(j)(e).
Therefore on edges of E;j, VRC"" attains benefit } ¢ g, (B(C"" (1), €)+B(C™"(7)))/2. Applying
Lemma 19, we have that 3 g B(C™V (i), €) > —/3m3/4te/2 | YeeE,, poorig(i)(e). Therefore,

VRC™Y = 3" (B(C™Y(3),e) + B(C™Y(5),€))/2

EEEiJ

—\/3m3/4tel2 | ZE: (Poorig(i)(e)‘|‘Poorig(j)(e))/2
ec L%

— VRCorig _ \/§m3/4+5/2.

v

The above analysis encounters error conditions with probability at most 3 log m/mE/Z, so that:
VRC™Y > (1 — 3log m/m®/?)(VRCOTE — \/3m3/4te/2),

Finally, note that the algorithm that recommends uniformly at random will attain revenue
m/k on m users, which gives a lower bound on the performance of VRC™" since this algorithm
can do no worse than a random recommendation. Thus, the revenue of VRc™V is O(m), and so
lim oo VRcorig/VcheW =1.]

5 Conclusions

In this paper, we introduce a framework for studying algorithmic issues arising in recommendation
systems. We have isolated two modeling issues, namely, a model for user utility and a model for
user preferences as central issues within this framework.

We study basic cases arising from a simple probabilistic model for utility and user preferences.
We show that these cases provide the following interesting insights: (i) Recommendation systems
start being valuable with relatively little data on each user. The value of this data is related to the
diversity of the interests of the user population. (ii) Simple algorithms are almost as effective as
the best possible in terms of utility.

Several issues remain open, most notably in extending our analyses to the more general models
suggested in Section 2.2.

References

[1] R.B. Allen. User models: Theory, method and practice. International Journal of Man-Machine
Studies, 32:511-543, 1990.

[2] M.J. Berry and G. Linoff. Data Mining Techniques. John-Wiley, 1997.

[3] J. Bettman. An Information Processing Theory of Consumer Choice. Addison-Wesley Publish-
ing Company, 1979.

[4] R.C. Blattberg, R. Glazer, J.D.C. Little, eds. The Marketing Information Revolution, Harvard
Business School Press, 1994.

[5] B. Bollobas. Random Graphs. Academic Press, NY, 1985.

[6] R. Boppana. Eigenvalues and graph bisection: An average-case analysis, Proc. IEEE Symp. on
Foundations of Computer Science, 1987.

[7] M. Charikar, S.R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. On targeting Markov
segments. Proc. ACM Symposium on Theory of Computing, 1999.

[8] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Indexing by
latent semantic analysis. Journal of the Society for Information Science, 41(6):391-407, 1990.

[9] Z. Drezner, Ed. Facility Location: A Survey of Applications and Methods, Springer, 1995.

[10] R. Glazer. Marketing in an information-intensive environment: Strategic implications of knowl-
edge as an asset, Journal of Marketing, 55:1-19, 1991.

[11] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using collaborative filtering to weave an
information tapestry. Communications of the ACM, 35:12, pp. 51-60, 1992.

[12] G. Golub, C.F. Van Loan, Matriz Computations, Johns Hopkins University Press, 1989.

[13] W. Hill, L. Stead, M. Rosenstein, G. Furnas. Recommending and evaluating choices in a virtual
community of use. Proceedings of ACM CHI, pp. 194-201, 1995.

[14] D.L. Hoffman and T.P. Novak. Marketing in hypermedia computer-mediated environments:
Conceptual foundations. Journal of Marketing, 60:50-68, 1996.

[15] J. Howard. Consumer Behavior in Marketing Strategy, Prentice Hall, Englewood Cliffs, NJ,
1989.

[16] J. Kleinberg, C.H. Papadimitriou, P. Raghavan. Segmentation problems. Proceedings of the
ACM Symposium on Theory of Computing, 1998.

[17] B.N. Miller, J.T. Riedl, J.A. Konstan. Experiences with GroupLens: Making usenet useful
again. Proceedings of the USENIX Conference, 1997.

[18] C.H. Papadimitriou, P. Raghavan, H. Tamaki and S. Vempala. Latent semantic indexing: A
probabilistic analysis. Proceedings of the ACM Symposium on Principles of Database Systems,
1998.

[19] P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, J. Riedl. GroupLens: An Open Architecture
for Collaborative Filtering of Netnews, Center for Coordination Science, MIT Sloan School of
Management Report WP #3666-94, 1994.

[20] U. Shardanand. Social Information Filtering for Music Recommendation, Masters Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
1994.

[21] U. Shardanand and P. Maes. Social information filtering: Algorithms for automating “word
of mouth”, Proceedings of the ACM Conference on Human Factors in Computing Systems, pp.
210-217, May 1995

[22] ACM SIGGROUP resource page on collaborative filtering.
http://www.acm.org/siggroup/collab.html.

[23] L.G. Valiant. A theory of the learnable. CACM 27(11): 1134-1142, 1984.

[24] H.R. Varian. Resources on collaborative filtering.
http://www.sims.berkeley.edu/resources/collab/.

[25] H.R. Varian and P. Resnick, eds. CACM Special issue on recommender systems. CACM 40(3),
1997.

