
Web and Soial NetworksRavi Kumar� Prabhakar Raghavany Sridhar Rajagopalan� Andrew Tomkins�AbstratThe study of the Web as a network has resulted in a better understanding of the soiologyof Web ontent reation. This has paid o� in higher preision searh engines and more e�etivealgorithms for data mining the Web. This paper reviews the researh in this area in the broaderontext of soial networks.1 IntrodutionThe diverse authorship, style and distributed ontent reation on the Web are in sharp ontrast tothe more ontrolled and homogeneous domain of lassial information retrieval. Link analysis hasled to tehniques that have dramatially improved the searh experiene on the Web. This in turnhas spawned researh into the Web's link struture in its own right, ranging from graph-theoretistudies (degree sequenes, onnetivity) to ommunity mining and knowledge management.Modern soial network theory is built on the work of Stanley Milgram [19℄. In 1967, Milgramonduted experiments in whih eah of several subjets in Omaha, Nebraska had to onvey a letterto his assoiate in Boston. They ould only send the letter to someone they knew on a �rst-namebasis, who in turn had to forward to people they knew on a �rst-name basis with the objetive ofgetting the letter to Milgram's assoiate with the smallest number of \hops". Milgram found thatthe median path length taken by suessfully delivered letters was six, leading to the folklore thatany two people in the United States are linked in a soial network with \six degrees of separation."In this paper, we review two link analysis algorithms and two strutural disoveries about Webtopology. There is a strong strutural similarity between the Web as a network and soial networks.It is our belief that these similarities will lead to progress in knowledge management. We presenta number of researh hallenges that must be addressed in this arena.Notation. We view the Web as a direted graph, with nodes (i.e., the pages) and direted edges(i.e., links) between ertain pairs of the nodes. The notation q ! p denotes that page q links topage p. We say p is an out-link of q and q is an in-link of p. The adjaeny matrix A of a graph ofn nodes is an n� n matrix with A(p; q) = 1 if and only if p! q. The number of pages that pointto p is alled the in-degree of p and is denoted indeg(p) and the number of pages that p points tois alled its out-degree, denoted by outdeg(p).�IBM Almaden Researh Center, 650 Harry Road, San Jose, CA 95120, USA. fravi, sridhar,tomkinsg�almaden.ibm.omyVerity, In., 892 Ross Drive, Sunnyvale, CA 94089, USA. pragh�verity.om
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2 Link analysis of the WebText-based searh engines often funtion rather poorly on the Web | the sheer volume of dataand the low signal-to-noise ratio make them undesirable for loating high-quality pages for a giventopi. Text-based engines do not exploit the annotative power of links. Spei�ally, when theauthor of a Web page links to another, it represents an impliit \endorsement" of the page beinglinked to. From the olletive judgment in the set of suh endorsements, a searh system an distillhighly relevant ontent from the Web. Kleinberg [16℄ and Brin and Page [6℄ pioneered the use oflink information in devising searh algorithms for the Web.The HITS algorithm. HITS [16℄ identi�es two kinds of pages on the Web | authorities, whihare pages that are authoritative soures of information for the query and hubs, whih are resourelists ontaining pointers to a list of resoures on the topi. This relationship is mutually reinforing| good hubs point to good authorities and vie versa. The HITS algorithm formalizes this into aniterative omputation, using a sampling phase and a weight-propagation phase. The sampling phaseuses the query terms to ollet a root set of pages from a text-based searh engine and expandsthis root set into a base set by inluding all pages that are linked to by pages in the root set, andall pages that link to a page in the root set. The idea is that even though the root set might notontain the best pages for the query, the base set will.The weight-propagation phase works with the subgraph indued by the base set. The algorithmassigns a non-negative authority weight ap and a non-negative hub weight hp with eah page p inthe base set, both initialized to 1. The update rule for authority and hub weights is:ap = Xq:q!phq;hp = Xq:p!q aq: (1)The algorithm iteratively updates these weights by repeating the above omputations. Followingthe iterations, the authorities (resp. hubs) are presented by the ordering of the authority (resp.hub) values.The authority (resp. hub) values for all the pages form the vetors ~a (resp. ~h). The update rulestranslate to ~a AT~h and ~h A~a. We thus have the linear system ~a (ATA)~a and ~h (AAT )~h.The authority (resp. hub) vetor is thus the prinipal eigenvetor of the matrix ATA (resp. AAT ).The update rules in Equation (1) turn out to be power iterations for omputing these eigenvetors.(See the book by Golub and Van Loan [15℄ for bakground on eigenvetors and power iteration.)Two points are noteworthy here. Sine the power iteration onverges to the prinipal eigenvetorfor any \non-degenerate" hoie of the initial vetor, our initial hoie for the authority and hubvalues is inonsequential. Seondly, although the onvergene of eigenvetor values is guaranteed,we are only interested in the ordering of these values and not their numerial values per se.Extensions to HITS. HITS sometimes has a tendeny to generalize or drift to a nearby topi,espeially when there are hubs that are quite diverse in the topis they over. To address theseand other issues, a number of researhers [4, 8, 9℄ introdued many variants to the basi HITSalgorithm. Chakrabarti et al. [8℄ use the text surrounding a hyperlink (alled the anhortext): thistext is mathed against the query term to obtain a weighted version of Equation (1). In furtherwork, Chakrabarti et al. [9℄ use the tags on a large hub page to break it into smaller hublets so thatthe links within a hublet stay topially foused. Additionally, if several pages from a single domain2



partiipate as hubs, their weights are saled down so as to prevent a single site from beomingdominant. These heuristis, while retaining the lean mathematial properties of HITS (in termsof onvergene, et.), exploit the ontent of a page. Bharat and Henzinger [4℄ presented a numberof di�erent extensions to the basi HITS algorithm, substantiating the improvements via a userstudy. Some of their heuristi improvements inlude: weighting pages based on how similar theyare to a given query topi and averaging the ontribution of multiple links from any given site toa spei� page.Pagerank. A di�erent way of utilizing link information was proposed by Brin and Page [6℄; thishas beome the basis of the suessful Web searh engine Google (google.om). Here a query-independent ranking (alled the pagerank) of all pages is obtained via link analysis. The pagerankof a page p is the limiting fration of the time spent at p by the following proess: at eah stepwith probability � the proess jumps to a random page on the Web and with probability (1 � �)it follows a random out-link (if any present) from the urrent page. Typially, � is hosen to bearound 0:15. The pagerank of a page is given by its entry in the prinipal eigenvetor of the matrix(1� �)AT + �1, where 1 is the matrix of all ones. The main advantage of pagerank omes from thefat that it is a stati ordering and so, given a query term, the pages that ontain the query terman be retrieved using a traditional text-based indexer and displayed in the pagerank order. Whilepagerank is reportedly a omponent in Google, it is not the only one; many other lever heuristisgo into the making of a suessful ommerial searh engine.Salsa. Salsa[18℄ is a variant on HITS. De�ne two matries, W = [wij ℄ where wij = aij=outdeg(i),andW 0 = [w0ij ℄ where w0ij = aji=indeg(j). Here A = [aij ℄ is the adjaeny matrix used in HITS. It iseasily veri�ed, that bothW andW 0 are stohasti, and thus represent Markov hains. Consequently,H = WW 0 and A = W 0W too are stohasti (produts of stohasti matries remain stohasti).Salsa uses the prinipal (left) eigenvetors of H and A to rank pages as hubs and authoritiesrespetively.Borodin et al. [5℄ provide a omparative study of these algorithms and other variants.3 Communities on the WebA ommunity on the Web is a olletion of Web pages that deal with a ommon topi, presumablyreated by people with overlapping interests. Many ommunities are expliitly available on theWeb | for example, newsgroups, email groups and mailing lists, Web rings, personal Web pagesin portals, et. On the other hand, many more are impliit. However, beause of their evolving |and in many ases short-lived | nature, it is a formidable task to keep trak of these ommunitiesmanually. A method for extrating these impliit ommunities automatially was proposed by [17℄.The suess of HITS suggests that ommunities ontain at their ore a dense pattern of linkagefrom hubs to authorities. This motivates the identi�ation of dense bipartite graphs as signaturesof Web ommunities. By direted dense bipartite graph we mean a graph whose nodes an bepartitioned into two sets A and B suh that most potential links direted from a node in A to anode in B are in fat present. Given this haraterization of ommunities, many of them an beexpeted to ontain smaller bipartite subgraphs (alled ores) that are in fat omplete bipartitegraphs: eah node in A has a link to eah node in B. The idea is to enumerate the ores and groweah ore to the ommunity it represents, using algorithms similar to those in Setion 2.3



The tehnique used for enumerating suh ores is alled trawling. The main hallenge is theeÆient enumeration of ores. Naive enumeration is infeasible: onsider the example of examiningevery set of six Web pages to see whether three of them all point to the other three (3 � 3 ores).Even on a subset of the Web with 100 million pages, this would require the examination of over1040 subsets. The key then is to eÆiently prune away most of these subsets from ontention. Thepaper [17℄ desribes a family of suh pruning tehniques and show that all ores with up to twentyWeb pages an be enumerated exhaustively on a standard desktop PC in about 3 days of runningtime. They used a rawl from Alexa (www.alexa.om) ira 1997.The experiment yielded about 130,000 3 � 3 ores. Were these linkage patterns oinidental?Manual inspetion of a random sample of about 400 ommunities suggested otherwise: fewer than5% of the ommunities disovered laked a unifying topi. Moreover, about 25% of the ommunitieswere not represented in Yahoo!, even in 1999. Of those that do appear in Yahoo!, many appearat as deep as the sixth level in the Yahoo! topi tree. Some sample ommunities identi�ed by thestudy inlude: the ommunity of people interested in Hekiru Shiina, a Japanese pop singer; theommunity of people onerned with oil spills o� the oast of Japan; and the ommunity of Turkishstudent organizations in the U.S. These studies lead to believe that trawling a urrent opy of theWeb will result in the disovery of many more ommunities that will beome expliitly reognizedin the future.In a more reent work [14℄, a slightly di�erent notion of ommunities was de�ned. In this work, aommunity is a olletion of Web pages that have more links to the members of the ommunity thanto non-members. Members of a ommunity an be found using maximum ow between a soure(onsisting of known members of the ommunity) and a sink (onsisting of known non-members ofthe ommunity). Unfortunately, this approah is not fully automati sine it requires speifyingthe soure and sink expliitly. Moreover, unlike trawling, it is unlear how to sale these algorithmsfor the entire Web.4 Connetivity and the diameter of the WebBroder et al. [7℄ aimed to understand the onnetivity properties of the Web | is the Web well-onneted or does the Web break into small piees? Is it possible to reah any page from anyother page by just following hyperlinks? These questions reeived impetus from work of Barabasiet al. [2, 3℄ suggesting that the diameter of the Web digraph is 19.Broder et al. �rst studied a rawl of the Web from Altavista onsisting of over 200 millionpages and 1.5 billion links, subsequently validating their �ndings on larger rawls. The results fromthis paper an be lassi�ed into three ategories | degree distributions, the bowtie struture, anddistane/diameter studies of the Web. Several earlier studies on small portions of the Web demon-strated a power-law behavior for in-degree distributions [17, 3℄. The experiments in [7℄ on�rm thisphenomenon on a muh larger sale. The power-law exponent of the in-degree distribution wasdetermined to be 2:1 and has remained onsistent for over three years. The out-degree distributionalso onforms to a power-law, albeit in a less striking manner.Connetivity analysis of the Web graph breaks it into strongly and weakly onneted omponents.Reall that a set of Web pages forms a strongly onneted omponent if there is a path followinghyperlinks from any page in the set to any other. A set of Web pages is weakly onneted undera similar de�nition, exept that hyperlinks an be followed in the forward or bakward diretion.4
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Figure 1: The bowtie struture of the Web.What are the strongly and weakly onneted omponents of the Web graph? The analysis revealsthe following bowtie struture (Figure 1), showing that the Web breaks into four natural piees.The �rst is alled the SCC, whose every page is reahable from every other page in the SCC byfollowing links. This is the largest strongly onneted omponent of the Web graph. The SCCis a olletion of the most valuable resoures on the Web. Most portals, university home pages,orporations, and ompanies an be presumed to be present in the SCC. The seond piee is alledIN and represents those pages that an reah the SCC, but not vie versa. This omponent mayonsist of sites that are fairly new to the Web and point to pages in the SCC, but their own identityis yet unknown to the rest of the Web. The third piee is alled OUT and inludes those pagesthat an be reahed from the SCC, but not vie versa. It ould onsist of pages in orporate Websites that do not point bak to any page in the SCC. The fourth piee onsists of those pages thatdo not fall into the above lassi�ation. Some of them are a onsequene of dead links.In the rawl examined by Broder et al. these four piees are of roughly the same size; thisould very well be a strange oinidene as the sizes are in many ways artifats of rawling poliies.The exat relative sizes of the omponents is not the most interesting aspet of this �nding; ratherthe important message out of this study is that the struture of the Web graph is not one of thefollowing two:(1) A well-onneted graph where given any two pages, one ould lik from one page and getto the other.(2) A fragmented graph where portions of the graph are well-onneted but these well-onnetedportions are disonneted from eah other.We now argue why the Web annot be one of the above. By the way in whih the Web wasdeomposed into four piees, given a pair (p; q) of pages, the only situation where q an be reahedfrom p is when both p is in IN or SCC and q is in SCC or OUT. Sine the sizes of IN and OUTare non-trivial, this shows that for roughly 3=4 of pairs p; q, page q is not reahable from p. Thisdispels possibility (1). Moreover, this is in ontrast with earlier studies [2℄ whih predited thatthe Web is well-onneted by interpolating onnetivity results from a small set of pages olleted5



from a single site.On the other hand a large fration of pages (1=4 in the study) are in the SCC. Moreover, theseond largest strongly onneted omponent turns out to be two orders of magnitude smaller thanthe SCC. This suggests that the Web does not break in regions of well-onneted omponents.Rather, there is a entral SCC that holds most of the Web together. This dispels possibility (2).An o�-shoot of this study was to analyze the diameter of the Web. The diameter of the Web,in strit graph-theoreti terms, is in�nite as there are (in fat, many) pairs of pages in whih oneannot be reahed from the other. We need a modi�ed notion of diameter, alled the averageonneted distane, whih is the average length of the path from page p to page q, onditioned uponq being reahable from p. From the study, the average onneted distane of the Web is roughly16, whih means that if there is a path from p to q, then on average 16 liks are needed to go fromp to q. If we ignore the diretions of the links (i.e., if one has the ability to surf to those pages thatpoint to a given page { as apparently in the alulation of [2℄), then the average onneted distaneis only seven. These �ndings suggest that (under some dramati simpli�ations) the Web exhibitsa \small-world" behavior.5 Fratal nature of the WebSeveral earlier studies of the Web graph at di�erent sales [2, 1, 17, 7℄ showed remarkable similaritiesin various measurements of the Web graph. These observations lead to the natural question: towhat extent is the Web a fratal? In other words, do subgraphs of the Web look like \mini Webs"?These and related questions were addressed in a reent paper [11℄. The subgraphs studied inlude alarge internet rawl; various subgraphs onsisting of about 10% of the sites in the original rawl; 100Web sites from the rawl eah ontaining at least 10,000 pages; ten graphs, eah onsisting of everypage ontaining a set of keywords (in whih the ten keyword sets represent �ve broad topis and�ve sub-topis of the broad topis); a set of pages ontaining geographial referenes (e.g., phonenumbers, zip odes, ity names, et.) to loations in the western United States; a graph representingthe onnetivity of Web sites (rather than Web pages); and a rawl of the IBM intranet. The graphproperties studied inlude the in- and out-degree distributions, the bowtie struture (Setion 4),distribution of onneted omponents, and the number of ommunities (Setion 3).The main �nding is that self-similarity in the Web is both pervasive and robust. It is pervasivein that so long as the slie of the Web onsidered is meaningful, the slie an be thought of as a\mini Web" | its graph-theoreti properties are very similar to that of the entire Web. It is robustin that the parameters orresponding to various properties do not hange signi�antly with theslie onsidered. For instane, for many of the subgraphs, the power-law exponent of the in-degreeturned out to be lose to 2.1 (see Figure 2 for a log-log plot of the in-degree distribution for �ve ofthe \mini Webs").Based on this experimental �nding, one an derive a graph-theoreti interpretation leading toa natural hierarhial haraterization of the graph struture of the Web. Aording to this,olletions of Web pages that share a ommon trait (for example, all the Web pages that deal withgolf) appear similar to the Web as a whole. These \mini Webs" are onneted by a navigationalbakbone whih not only ties together the olletions of pages, but also ties together the manydi�erent and overlapping \mini Webs". The user navigates through the Web by going from one\mini Web" to the other uses the navigational bakbone.6
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