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Abstract

The subject of this paper is the semi-automatic construction of taxonomies over the Web. We address the problem of
discovering high-quality resources that belong in a particular node of a taxonomy. We show that minimal additional
effort is required to provide relevance feedback in a hyperlinked environment, resulting in significant and consistent
improvement in quality. Furthermore, this feedback is especially valuable for topics for which it is more difficult to
find high-quality pages. Enroute, we describe novel algorithms for hyperlink relevance feedback.
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1 Overview

The Web has reached a point where even a large team of ontologists cannot hope to manually distill and maintain the
best pages in a taxonomy of tens of thousands of topics. Yahoo! reportedly uses hundreds of ontologists to maintain its
taxonomy; they classify (mostly submitted) URL’s into Yahoo’s tree. There are two main advantages to this approach.
First, the taxonomy contents are generallyrelevant—humans judge far more accurately than computers that, for exam-
ple, a page is about music production rather than music promotion. And second, ontologists provide valuable editorial
annotation in the form of pithy one-line page summaries; such annotations are difficult to produce automatically.

On the other hand, relevance and quality differ for two reasons: (1) in a process driven largely by submissions, the
pages that are listed are ones whose authors want to be listedon a major portal, which may not be the pages of highest
quality; (2) with the continued growth of the Web and the small amount of ontologist surfing time available per node
to augment submissions, purely manual approaches cannot find high-quality pages about a topic as effectively as a
high-quality tool that makes use of implicit judgments in the form of hyperlinks [3, 4, 2, 11, 12].

We consider the problem of generating high-quality, relevant, links for topics in a taxonomy tree, which can then
be presented to a human ontologist for vetting and annotation. Our system is designed to be used in a two-phase
taxonomy construction and maintenance process: (1) The ontologist uses a rich query language to specify the query
for a node, allowing the system to generate a high-quality set of links about his topic. (2) The ontologist can then edit
and annotate the resulting set of links to create an appropriate externally-visible node about the topic. We consider
only the first phase of this process. The system we describe should be seen as part of a tool used by a human ontologist
to create substantially larger taxonomies with the same investment of human effort. Our system isnot a replacement
for the ontologist.

To determine the effectiveness of such systems, we study thetime/quality tradeoff for increasingly sophisticated
approaches to specifying a query for a topic. We consider three modes of query. (1)Naive queriescontain one or
two terms similar to those typically received by traditional Web search engines. (2)Advanced queriesincorporate an
“advanced search” syntax allowing phrases, and plus/minusmodifiers in front of terms and phrases. (3)Exemplary
queriesincorporate link-based relevance feedback. We describe (Section 3) the construction of three copies of a
450-node benchmark taxonomy (one for each of our modes). We show the following results (Section 4). First,
naive queries can be entered with surprising efficiency (earlier results have already benchmarked the effectiveness of
these queries [4]). Second, understanding a topic well enough to benefit from an advanced keyword query requires
significant additional effort, but does not provide significant additional quality. And third, using exemplary queries,
link relevance feedback can be performed with effort similar to that required for constructing an appropriate advanced
keyword query, but the resulting improvement in quality is significant. These results are even more dramatic for topics
for which the Web does not contain a large set of high-qualityresources. While our results apply directly to the
problems of taxonomy construction and maintenance, they also have implications for Web search.�IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.yVerity Inc, 892 Ross Dr., Sunnyvale, CA 94089. This work was done while the author was at the IBM Almaden Research Center.
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Conventional relevance feedback as studied in the information retrieval community [13] is well known to improve
search results [6, 9], at the cost of increased complexity inthe interface. However, in the domain of taxonomy
construction and maintenance on the Web, human resources are the dominant costs for large taxonomy maintainers,
and our results should be viewed from that perspective. For many topics, little effort may suffice to find the majority
of high-quality pages, while for other topics, multiple iterations may be necessary. We show that more advanced
techniques including link relevance feedback allow the ontologist to populate the difficult remaining fraction of nodes
successfully, at some small additional overhead to the overall construction process. While it is perhaps unreasonableto
expect users in the mass search market to subscribe to this paradigm, we show that it is an efficient way for ontologists
to build high-quality resource lists.

We benchmark this process in the context of the Clever resource-gathering system [4]. In doing so, we present
algorithmic extensions to the Clever system that support the semi-automated construction of a large taxonomy. In
particular, we extend the system to accept example pages of various kinds into the specification of a query. The
ontologist first issues a naive textual query and then selects appropriate pages in the return set as examples of either
good resources, good “resource lists” (see below for a definition of this concept), or stop sites. Henceforth, we
will refer to this particular form of link relevance feedback asexemplification. We augment Clever to incorporate
exemplification into its core graph-theoretic algorithm (Section 2). Notice that exemplification is a complementary
form of relevance feedback, not a replacement for traditional methods. A complete system will, and should, use both
techniques.

2 Clever system and algorithmic modifications

The Clever system builds on the HITS algorithm due to Kleinberg [8]. Following Kleinberg’s original paper, a number
of modifications have been studied [1, 3, 4, 5, 10]. For a full description of the Clever system, see [4]; here we give a
brief overview and discuss subsequent algorithmic modifications pertinent to the present work. The thesis underlying
HITS, and Clever, is that content creation on the Web resultsnaturally in two kinds of valuable pages: so-calledhubs
andauthorities. Good authorities for a topic are pages that are definitive sources of information on that topic (e.g.,
www.cnn.com for the topic of daily news); they are pointed to by the good hubs for the topic. Good hubs for a topic
typically contain many links to good authorities.

Given a traditional text query, Clever begins by obtaining an initial set of around 200 pages from an inverted
index, such as the Altavista text-search engine. It then expands the initial set to generate theroot setby adding any
page pointing to, or pointed to by, a page in the initial set; typically, the root set contains a few thousand pages.
Consider the graph in which there is a node for each page of theroot set, with a weighted directed edge from a node
to another if the former has a hyperlink to the latter. The weight of the edge is a function of the relevance of the text
surrounding the anchor, augmented by several filters to determine, for instance, whether the same author created both
pages. Having created this graph, Clever then determines hubs and authorities by applying the basic HITS algorithm
augmented with a number of heuristics to address issues of the Web corpus such as mirrored pages, shared domain
names, and so on (cf. [8, 4]).

Building taxonomies: Background and issues.In a preliminary experiment, we used Clever to build out a taxonomy
tree of about 600 topics with about 70 human-hours of effort.This trial was instructive in a number of ways: (1) On
over a third of the topics, a “naive” query consisting basically of the topic title with essentially automatic augmentations
would yield high quality results with a precision of over 80%. (2) A topic could often be pinpointed through example
terms alone. Thus, the querySwissair KLM Sabena would produce a good list of European airline companies,
because it would snare good hubs through this query and then proceed to distill other good authorities such as British
Airways and Lufthansa). (3) On some topics, Clever with a naive topic query would yield a mixture of excellent
resources and some contamination from “nearby” concepts. This led us to ask whether one could re-run Clever
on these results, with human relevance feedback? What wouldthe mechanism (and human cost) of such feedback
be? Standard notions from information retrieval such as example terms and stopwords could be extended to the
graph-theoretic domain: one could potentially exemplify Web pages asexample authorities(saywww.att.com for
long-distance phone companies) orexample hubs(sayartorg.com/leonardo.htmwhen the topic is Leonardo
da Vinci), or identifystopsites(saywww.microsoft.com when the topic is residential double-glazed windows)
that might otherwise co-opt a topic due to their greater Web presence. How should one implement and exploit this
paradigm of combined keywords, example pages, and stopsites?

We describe first new modifications to Clever for dealing withexample hubs, example authorities, and stopsites.
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We then present TaxMan, the graphical interface tool we havedeveloped for administering such taxonomies.

Enhancements to Clever.We now describe our enhancements to the root set generation phase of Clever. During link
relevance feedback, an ontologist may present the algorithm with : (1) example hubs, (2) example authorities, and
(3) stopsites. These types of pages impact the algorithm in two ways. First, they influence the root set, the particular
subgraph of the Web deemed central to the topic. Second, theyinfluence the edge weights connecting hyperlinked
pages. The following describes these issues in more detail:

NODE STRUCTURE. Each example hub and example authority is added to the initial set. Likewise, each page an
example hub points to, and each page that points to two or moreexample authorities, is also added to the initial set.
This has the effect of drawing in new hubs and authorities that are similar to the examples. Finally, no stop sites are
allowed to enter the set.

EDGE WEIGHTS. Intuitively, the edges that point to example authorities or originate at example hubs should weigh
more. Additionally, if a page is cited in thelexical neighborhoodof citations to example authorities, then that link
should weigh more. Letw(x; y) denote the weight of the edge fromx to y in the graph. The following four heuristics
are in addition to the basic edge-weighting schemes stated in [3, 4]: (1) If x is an example hub andx points toy, thenw(x; y) is increased; (2) Ify is an example authority andx points toy thenw(x; y) is increased; (3) Ify is an example
authority andx points to bothy andy0 in the same lexical neighborhood, thenw(x; y0) is increased; and (4) Ify andz
are example authorities, andx points toy0 in the same lexical neighborhood with bothy andz and the reference toy0
is between the references toy andz thenw(x; y0) is increased.1

TaxMan. TaxMan is a tool for building hierarchical taxonomies. It isa simple Java-based GUI to the underlying
extended query language. It has facilities to create, delete, modify, and traverse nodes of a taxonomy. It has support
for entering query terms and runing the Clever algorithm on anode. The user can also select a particular site and add
it as an example hub or as an example authority or as both (called example site) or as a stopsite. Various parameters
(like number of hubs and authorities to display, a limit on the maximum number of URL’s fetched per example hub
and example authority, etc.) can also be tuned using TaxMan.

3 Experiment description

Our experiment involved taxonomy construction using a teamof four ontologists (the authors of this paper).2

Building the taxonomies.Our experiment involved the construction of four taxonomies: three drawn from predefined
subtrees of Yahoo! ( Government, Recreation & Sports, and Science) plus a fourth “personal” taxonomy consisting
of nodes of personal interest to one of our ontologists. There were between 100 and 150 nodes in each of the first
three taxonomies, and 70 in the personal taxonomy, for a total of 455 nodes. We built each taxonomy three times, as
follows:

(1) First, we described each node of each taxonomy using a “naive” query consisting essentially of the topic title,
with (occasionally) some simple alternatives. For instance, for theUnited Nations node the naive query was
"United Nations" U.N.. The intent was to simulate a near-automatic process that gives a very quick first cut
at describing a node.

(2) Next we rebuilt the taxonomy using an “advanced text” query. For example, a node about US Airforce bases
could contain the query"united states air force bases" "usaf bases" "usaf base" "united
states air force base" "Scott Air Force Base" "Altus Air Force Base" "Barksdale
Air Force Base" -navy -army). The intent is to simulate a richer text query incorporating domain knowl-
edge gained by inspecting the results of the naive query.

(3) Finally, we rebuilt the taxonomy using exemplification.For example, thesolar power node contained
four example authorities, an example hub, and no stop sites.3 These example pages were selected from the output of

1The magnitude of the various increases in weight depends on anumber of factors. Consider searching for long-distance phone companies. If
Sprint and AT&T are example authorities for this node, and both occur in a single list of links, we have strong evidence that the other elements of
the list may be relevant to the topic. However if the list contains only AT&T then we have only weak evidence that the list isabout long-distance
phone companies. The increase in weight of an edge is a super-linear function of the number of links to example authorities occurring the edge, and
of the proximity of the edge to these links.

2Thus, we understood the innards of the algorithm and were not“typical” ontologists. However, in discussions with a number of professional
ontologists it repeatedly emerges that the intuitive notions of good hubs, good authorities, and good query construction are all that is really needed
to implement our methodology—and these are readily comprehensible even to those oblivious to the details of the algorithm. In subsequent
experiments, we have found that users with some familiaritywith taxonomy management can quickly be trained to use our tools as or more
effectively than we do.

3The example authorities were the International solar energy homepage (www.ises.org), The American solar energy society
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Clever running on the advanced text query. We feel that this rich form of description, combining text and example
sites, represents a new mode of Web resource gathering that exploits the nature of content creation on the Web in the
hub/authority view.

Our goal in designing these experiments was to benchmark each mode of taxonomy construction, monitoring: (1)
wall clock time elapsed during the construction of the taxonomy; (2) quality of resources found by each; (3) level
of exemplification; (4) investment in looking at results of text searches. Our system was configured to log all the
actions of our ontologists as they used TaxMan. These logs yield, among other things, the wall clock time used in
taxonomy construction, the sequence of mouse clicks, the number of results pages viewed, etc. Together these give a
comprehensive picture of the human ontological effort usedin constructing taxonomies in the various modes.

Evaluating quality: The user study. As noted earlier, evidence from previous work [3, 4, 1] suggests that the average
quality of the nodes we construct are comparable to, and often better than those of manually-constructed taxonomies,
even using text queries only. In the evaluation of our taxonomies, therefore, we did not measure their quality against
such manually-constructed taxonomies. Rather, our emphasis here is on the relative qualities of our three modes of
taxonomy construction. Similarly, [1] compare the relative results of eight variants on HITS.

We collected user statistics evaluating the pages as follows. We collected 50 users willing to help in the evaluation
of our results, and decideda priori that each user could reasonably be expected to evaluate around 40 URL’s. There-
fore, we needed to spread these 2000 total URL evaluations carefully across the well over 50,000 URL’s contained in
our taxonomy. We adopted a random sampling approach as follows. First, we constructed the entire taxonomy in each
of the three modes of operation. After all three versions of the taxonomy were constructed, we randomly sampled 200
nodes for evaluation, chosen uniformly from all nodes. Thuseach user would evaluate 4 topic nodes on average; given
the 40-URL limit on user patience, this suggests that each user can be expected to view 10 URL’s per topic node.

We configured Clever to return 25 hubs and 25 authorities for each topic node in each of the three modes of
taxonomy creation, for a total of 150 URL’s. Since we wish to ask each user to evaluate a total of around 10, we
sub-sampled as follows. For a particular ordered list of URL’s, we refer to the “index” of a particular URL as its
position in the list—the first URL has index one, and so forth.Consider a topic nodeN . We chose a “high-scoring”
index uniformly from the indices between 1 and 3, and a “low-scoring” index uniformly from the indices between 4
and 25. We then extracted the two hub (resp. authority) pagesat these two indices in the list of hubs (resp. authorities),
from the taxonomy constructed using naive queries. This resulted in four URL’s. We performed the same extraction
for topic nodeN in the advanced text and example modes of creation as well, resulting in a total of 12 URL’s. These
samples contained some overlaps however; in all the mean number of distinct URL’s extracted per node was about
10.2. From classical statistics, the score we compute is an unbiased estimator of the actual scores (cf. [7]).

We then asked each user to evaluate four topic nodes from our 200, chosen randomly without replacement. Each
user was provided with a Web page containing links to four topics. Clicking on a particular topic brought up a form
listing the approximately 10 sampled URL’s from that topic,with a set of radio buttons next to each URL. The values
of the radio buttons were “unranked”, “bad”, “fair”, “good”, “fantastic” and “unreachable.” The “unranked” selection
was checked initially for each URL. Clicking on a URL opened that URL in a separate window, allowing users to
browse through URL’s without losing access to the evaluation form. At the bottom of the form, a submit button
logged the rankings. Of our 50 users, 41 completed some node of the survey in time, and of the 146 nodes evaluated,
139 had one or fewer unranked nodes per page, so we performed our evaluations on these nodes, representing 1437
page judgments. Due to an error in logging, we lost almost 200of these judgments and were therefore only able to
incorporate 1240.

4 Results and conclusions

First, a word on evaluation. Pages ranked “unranked” (presumably because a user simply forgot to rank this page)
or “unreachable”, were not considered in the ranking. All other pages were assigned scores as follows: “bad” = 0,
“fair” = 1, “good” = 2, “fantastic” = 3. In some situations, however, it is also interesting to consider an analog of
the information retrieval measure of precision, representing the number of retrieved documents that are “on topic.”
We therefore define pages ranked “good” or “fantastic” as being on topic, and when we refer to precision values we
mean under this binarization of our scores. This is conservative, since a “fair” page is considered (for the purposes

(www.sni.net/solar), The solar cooking archive (www.accessone.com/�sbcn), and Solarex (www.solarex.com). The example
hub was Solar energy links (zebu.uoregon.edu/eesolar.html).
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of precision) to be irrelevant. We do not define “recall” on the Web, as ground truth sets do not exist and would not
remain current under the continued exponential expansion of content.

Ontologist effort. We specified naive queries using a flat file of node names (note that our taxonomy tree is pre-
existing and fixed; we do not consider issues of structure creation). The naive query could simply be typed next to
each node with no browsing overhead, no delays waiting for cgi scripts to return, no use of the mouse, and perhaps one
keyclick overhead to move from one topic to the next. The naive experiment can therefore be seen as a lower bound
on the possible time to specify content for a node. For naive queries, we logged overall wall clock time and found that
each node took between five to ten seconds to specify on average depending on the ontologist.

Our timing results for the advanced and examplary modes of creation are shown in Table 1. Unlike the naive
queries, these results include all the overhead of using TaxMan over a slow network. We therefore created a small
number of naive queries using TaxMan in order to estimate theper-node delay inherent to the UI, and found that
simply navigating from node to node, waiting for screens to repaint, and entering a single piece of data without any
extraneous browsing required 25 to 40 seconds depending on the ontologist. As the figure below shows, timings range
from under two minutes to about four and a half minutes per node. The government taxonomy proved to be difficult
to specify quickly, since it often required significant browsing through.gov sites to find appropriate keywords and
pages for exemplification. As the table shows, providing link relevance feedback through exemplification is roughly
equal in overhead to providing advanced keyword search syntax in this experiment.

Effectiveness of link relevance feedback.Having considered the amount of effort required on the part of the ontol-
ogist, we now report the improvement in quality as a result ofthis effort. Figure 1 shows the average score for the
top 25 documents under each of the three modes of creation. Wesee that there is no significant difference between
naive and advanced queries, but there is a significant improvement for exemplary queries. Each point in all our graphs
represents the mean of at least 30 samples.

Dependence on Web presence of topics.We now examine the differences in the quality of pages discovered from
one taxonomy to the next. Figure 1 shows for each possible page index (1–25) the average score of all pages at
that location or higher. Thus, the results are “cumulative.” In order to get an overall measure of the difficulty of the
topics, we included results from all three modes of creationin this aggregate. We see that it is more difficult to find
high-quality pages for the personal taxonomy than for any ofthe other taxonomies. Furthermore, as the topics of the
personal taxonomy contain fewer high-quality pages, average score falls off towards the tail of the list faster than it
does for the general-purpose taxonomies.

Table 1 shows the average values over the top 25 results, broken down by mode of creation as well as taxonomy,
in both the average score and the precision metrics. In both metrics, the quality of results for the personal taxonomy is
lower; we address this issue in more detail below. As the table shows, relevance feedback using exemplification never
significantly impacts the overall quality of the system; butin case of the personal taxonomy, it helps dramatically.
In the government taxonomy, exemplification does not improve the quality of results; this occurs because multiple
rounds of exemplification are occasionally needed as the ontologist comes to understand the nature of the topic, but
we felt that the difficulty of measuring these multiple rounds would reduce the clarity of the results. Thus ontologists
performed only a single pass in each mode of construction.

Performance by mode of creation.An examination of the nodes shows that topics in the personaltaxonomy tend to be
narrower in focus. For instance, some of the nodes areFOCS/STOC, SIGMOD, WWW, Collaborative Fil-
tering, Latent Semantic Indexing, Phrase Extraction, Kerberos, Smartcards. There
are far fewer pages about, for instance, the FOCS/STOC (theory) conferences than about the sport of ice hockey. In-
terestingly, in this focused context we see the largest difference between modes: exemplification improved quality by
approximately 33% over the purely textual approaches.

Conclusions.We draw two primary high-level conclusions from this work. The first conclusion, shown via our user
study and the timing results of our instrumented taxonomy creation tool, is that an ontologist armed with the paradigm
of iterative topic creation using increasingly sophisticated forms of query can create a high-quality taxonomy with a
fairly quick turnaround time. The second high-level conclusion is that the well-known benefits of relevance feedback
appear to hold in the domain of hyperlinked document search.As a tertiary conclusion, we show that, at least in
the context of taxonomy creation, the traditional “advanced query” syntax used by search engines does not provide
significantly better results than more naive queries. This might provide partial explanation for user dissatisfactionwith
“advanced search” functions in most search engines.
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Taxonomy Advanced Exemplary Naive Advanced Exemplary
secs. secs. Avg. Score Prec. Avg. Score Prec. Avg. Score Prec.

Science 108.0 119.8 1.61 0.55 1.53 0.52 1.63 0.56
Recreation 192.4 239.6 1.64 0.61 1.68 0.64 1.70 0.63
Personal 157.5 214.0 1.03 0.30 0.91 0.31 1.41 0.48

Government 270.4 222.4 1.45 0.51 1.44 0.50 1.42 0.48

Table 1: Average construction time per node and average score, precision of top 25 hubs and authorities, by taxonomy.

Figure 1: Average score by top 1 to 25 results, for naive, full-text, and exemplified queries and for each taxonomy.

References
[1] K. Bharat and M.R. Henzinger. Improved algorithms for topic distillation in hypertext environments,Proc. 21st ACM

SIGIR, 1998.

[2] S. Brin and L. Page. The anatomy of a large scale hypertextual Web search engine,Proc. 7th WWW, 1998.
[3] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Automatic resource compilation by

analyzing hyperlink structure and associated text,Proc. 7th WWW, 1998.
[4] S. Chakrabarti, B. Dom, Ravi Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Experiments in topic distillation.

Proc. ACM SIGIR Workshop on Hypertext Information Retrieval, pages 13–21, 1998.
[5] J. Dean and M. Henzinger. Finding related pages on the Web, Proc. 8th WWW, 1999.
[6] E. Efthimiadis.Interactive Query expansion and Relevance Feedback for Document Retrieval Systems. Ph. D. Thesis, City

University, London, UK, 1992.
[7] W. Feller.An Introduction to Probability Theory and its Applications. John-Wiley, 1968.
[8] J. Kleinberg. Authoritative sources in a hyperlinked environment.Journal of the ACM, 46, 1998.
[9] J. Koenemann. Supporting interactive information retrieval through relevance feedback,Proc. ACM SIGCHI, 1996.

[10] R. Lempel and S. Moran. The stochastic approach for link-structure analysis (SALSA) and the TKC effect.Proc. 9th WWW,
2000.

[11] J. Pitkow and P. Pirolli. Life, death, and lawfulness onthe electronic frontier.Proc. ACM SIGCHI, 1997.
[12] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable structures from the Web.Proc. ACM SIGCHI,

1996.
[13] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.JASIS, 41(4):288–297, 1990.
[14] C.J. van Rijsbergen.Information Retrieval. Butterworths, 1979.

6


