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Abstract

The subject of this paper is the semi-automatic constrmaifdaxonomies over the Web. We address the problem of
discovering high-quality resources that belong in a paléicnode of a taxonomy. We show that minimal additional
effort is required to provide relevance feedback in a hyplkeldd environment, resulting in significant and consistent
improvement in quality. Furthermore, this feedback is eigly valuable for topics for which it is more difficult to
find high-quality pages. Enroute, we describe novel algoré for hyperlink relevance feedback.
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1 Overview

The Web has reached a point where even a large team of orgtd@ginnot hope to manually distill and maintain the
best pages in a taxonomy of tens of thousands of topics. Yabportedly uses hundreds of ontologists to maintain its
taxonomy; they classify (mostly submitted) URL's into Yafsotree. There are two main advantages to this approach.
First, the taxonomy contents are generadigvant—humans judge far more accurately than computers thatxfone

ple, a page is about music production rather than music ptiomacAnd second, ontologists provide valuable editorial
annotation in the form of pithy one-line page summarieshsammnotations are difficult to produce automatically.

On the other hand, relevance and quality differ for two reas@l) in a process driven largely by submissions, the
pages that are listed are ones whose authors want to bedistedhajor portal, which may not be the pages of highest
quality; (2) with the continued growth of the Web and the draalount of ontologist surfing time available per node
to augment submissions, purely manual approaches canddhifih-quality pages about a topic as effectively as a
high-quality tool that makes use of implicit judgments ie form of hyperlinks [3, 4, 2, 11, 12].

We consider the problem of generating high-quality, radéyviinks for topics in a taxonomy tree, which can then
be presented to a human ontologist for vetting and anneotatdur system is designed to be used in a two-phase
taxonomy construction and maintenance process: (1) Theagist uses a rich query language to specify the query
for a node, allowing the system to generate a high-qualitgflinks about his topic. (2) The ontologist can then edit
and annotate the resulting set of links to create an aptepeixternally-visible node about the topic. We consider
only the first phase of this process. The system we descriiddhe seen as part of a tool used by a human ontologist
to create substantially larger taxonomies with the samesimeent of human effort. Our systenmist a replacement
for the ontologist.

To determine the effectiveness of such systems, we studyntieéquality tradeoff for increasingly sophisticated
approaches to specifying a query for a topic. We consideetimodes of query. (INaive queriexontain one or
two terms similar to those typically received by traditibiéeb search engines. (Bdvanced queriemcorporate an
“advanced search” syntax allowing phrases, and plus/mimdifiers in front of terms and phrases. Byemplary
queriesincorporate link-based relevance feedback. We describeti(i 3) the construction of three copies of a
450-node benchmark taxonomy (one for each of our modes). haf she following results (Section 4). First,
naive queries can be entered with surprising efficiencyliGaesults have already benchmarked the effectiveness of
these queries [4]). Second, understanding a topic well giméa benefit from an advanced keyword query requires
significant additional effort, but does not provide sigrafit additional quality. And third, using exemplary queries
link relevance feedback can be performed with effort simiethat required for constructing an appropriate advanced
keyword query, but the resulting improvement in qualityiggwficant. These results are even more dramatic for topics
for which the Web does not contain a large set of high-quaégources. While our results apply directly to the
problems of taxonomy construction and maintenance, treyteve implications for Web search.
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Conventional relevance feedback as studied in the infoaomagtrieval community [13] is well known to improve
search results [6, 9], at the cost of increased complexitthaninterface. However, in the domain of taxonomy
construction and maintenance on the Web, human resoure¢seadominant costs for large taxonomy maintainers,
and our results should be viewed from that perspective. Foynopics, little effort may suffice to find the majority
of high-quality pages, while for other topics, multiplersadons may be necessary. We show that more advanced
techniques including link relevance feedback allow thetmgist to populate the difficult remaining fraction of nade
successfully, at some small additional overhead to theadiva@mnstruction process. While it is perhaps unreasonable
expect users in the mass search market to subscribe to thidigan, we show that it is an efficient way for ontologists
to build high-quality resource lists.

We benchmark this process in the context of the Clever resegathering system [4]. In doing so, we present
algorithmic extensions to the Clever system that suppertstmi-automated construction of a large taxonomy. In
particular, we extend the system to accept example pageariwfug kinds into the specification of a query. The
ontologist first issues a naive textual query and then sebgmpropriate pages in the return set as examples of either
good resources, good “resource lists” (see below for a diefindf this concept), or stop sites. Henceforth, we
will refer to this particular form of link relevance feedtkaas exemplification We augment Clever to incorporate
exemplification into its core graph-theoretic algorithne¢8on 2). Notice that exemplification is a complementary
form of relevance feedback, not a replacement for traditiomethods. A complete system will, and should, use both
techniques.

2 Clever system and algorithmic modifications

The Clever system builds on the HITS algorithm due to Klemgg]. Following Kleinberg’s original paper, a number
of modifications have been studied [1, 3, 4, 5, 10]. For a fefiatiption of the Clever system, see [4]; here we give a
brief overview and discuss subsequent algorithmic modifina pertinent to the present work. The thesis underlying
HITS, and Clever, is that content creation on the Web resaltsrally in two kinds of valuable pages: so-calleths
andauthorities Good authorities for a topic are pages that are definitivecgs of information on that topic (e.g.,
www. cnn. comfor the topic of daily news); they are pointed to by the gootsior the topic. Good hubs for a topic
typically contain many links to good authorities.

Given a traditional text query, Clever begins by obtainimgiratial set of around 200 pages from an inverted
index, such as the Altavista text-search engine. It theredp the initial set to generate ttuot setby adding any
page pointing to, or pointed to by, a page in the initial sggidally, the root set contains a few thousand pages.
Consider the graph in which there is a node for each page obtiteset, with a weighted directed edge from a node
to another if the former has a hyperlink to the latter. Thegliedf the edge is a function of the relevance of the text
surrounding the anchor, augmented by several filters tamete, for instance, whether the same author created both
pages. Having created this graph, Clever then determinesdmd authorities by applying the basic HITS algorithm
augmented with a number of heuristics to address issuesdldb corpus such as mirrored pages, shared domain
names, and so on (cf. [8, 4]).

Building taxonomies: Background and issuesln a preliminary experiment, we used Clever to build out ateomy
tree of about 600 topics with about 70 human-hours of effbhis trial was instructive in a number of ways: (1) On
over a third of the topics, a “naive” query consisting baléyaaf the topic title with essentially automatic augmeiuat
would yield high quality results with a precision of over 80f2) A topic could often be pinpointed through example
terms alone. Thus, the queBni ssai r KLM Sabena would produce a good list of European airline companies,
because it would snare good hubs through this query and tloee¢d to distill other good authorities such as British
Airways and Lufthansa). (3) On some topics, Clever with av@adpic query would yield a mixture of excellent
resources and some contamination from “nearby” conceptss [€d us to ask whether one could re-run Clever
on these results, with human relevance feedback? What vibelthechanism (and human cost) of such feedback
be? Standard notions from information retrieval such asmgr@ terms and stopwords could be extended to the
graph-theoretic domain: one could potentially exemplifgb\pages asxample authoritiegsaywww. at t . comfor
long-distance phone companies)axample hubésayar t or g. cont | eonar do. ht mwhen the topic is Leonardo
da Vinci), or identifystopsitegsaywww. mi cr osof t . comwhen the topic is residential double-glazed windows)
that might otherwise co-opt a topic due to their greater Wedsgnce. How should one implement and exploit this
paradigm of combined keywords, example pages, and stepsite

We describe first new modifications to Clever for dealing vei#ample hubs, example authorities, and stopsites.



We then present TaxMan, the graphical interface tool we daveloped for administering such taxonomies.

Enhancements to CleverWe now describe our enhancements to the root set generéése pf Clever. During link
relevance feedback, an ontologist may present the algontith : (1) example hubs, (2) example authorities, and
(3) stopsites. These types of pages impact the algorithmanaays. First, they influence the root set, the particular
subgraph of the Web deemed central to the topic. Second,inflagnce the edge weights connecting hyperlinked
pages. The following describes these issues in more detail:

NODE STRUCTURE Each example hub and example authority is added to thalis#t. Likewise, each page an
example hub points to, and each page that points to two or ma@ple authorities, is also added to the initial set.
This has the effect of drawing in new hubs and authoritiesahasimilar to the examples. Finally, no stop sites are
allowed to enter the set.

EDGE WEIGHTS Intuitively, the edges that point to example authoritiesriginate at example hubs should weigh
more. Additionally, if a page is cited in tHexical neighborhooaf citations to example authorities, then that link
should weigh more. Leb(z, y) denote the weight of the edge framto y in the graph. The following four heuristics
are in addition to the basic edge-weighting schemes stati] #]: (1) If 2 is an example hub andpoints toy, then
w(z,y) isincreased; (2) If is an example authority angpoints toy thenw(z, y) is increased; (3) If is an example
authority andr points to bothy andy’ in the same lexical neighborhood, thef, y') is increased; and (4) if and=
are example authorities, andboints toy’ in the same lexical neighborhood with batlandz and the reference tg
is between the referencesg@ndz thenw(z, y') is increased!

TaxMan. TaxMan is a tool for building hierarchical taxonomies. ltaisimple Java-based GUI to the underlying
extended query language. It has facilities to create, eehebdify, and traverse nodes of a taxonomy. It has support
for entering query terms and runing the Clever algorithm oode. The user can also select a particular site and add
it as an example hub or as an example authority or as botle@cadample site) or as a stopsite. Various parameters
(like number of hubs and authorities to display, a limit oa thaximum number of URL's fetched per example hub
and example authority, etc.) can also be tuned using TaxMan.

3 Experiment description

Our experiment involved taxonomy construction using a te&four ontologists (the authors of this paper).

Building the taxonomies.Our experiment involved the construction of four taxonasniéree drawn from predefined
subtrees of Yahoo! ( Government, Recreation & Sports, ameh8e) plus a fourth “personal” taxonomy consisting
of nodes of personal interest to one of our ontologists. &hegre between 100 and 150 nodes in each of the first
three taxonomies, and 70 in the personal taxonomy, for Adb#b5 nodes. We built each taxonomy three times, as
follows:

(1) First, we described each node of each taxonomy usingiae’hquery consisting essentially of the topic title,
with (occasionally) some simple alternatives. For inséarfor theUni t ed Nat i ons node the naive query was
"United Nations" U. N..The intentwas to simulate a near-automatic process thas @i very quick first cut
at describing a node.

(2) Next we rebuilt the taxonomy using an “advanced text"rgu€or example, a node about US Airforce bases
could containthe quetyuni t ed states air force bases" "usaf bases" "usaf base" "united
states air force base" "Scott Air Force Base" "Altus Air Force Base" "Barksdal e
Air Force Base" -navy -arny). The intentis to simulate a richer text query incorporgiitomain knowl-
edge gained by inspecting the results of the naive query.

(3) Finally, we rebuilt the taxonomy using exemplificatioRor example, thesol ar power node contained
four example authorities, an example hub, and no stop $ifdsese example pages were selected from the output of

1The magnitude of the various increases in weight dependsnomier of factors. Consider searching for long-distananptcompanies. If
Sprint and AT&T are example authorities for this node, anthtmcur in a single list of links, we have strong evidencé tha other elements of
the list may be relevant to the topic. However if the list @m$ only AT&T then we have only weak evidence that the listhsut long-distance
phone companies. The increase in weight of an edge is a §opar-function of the number of links to example authositeecurring the edge, and
of the proximity of the edge to these links.

2Thus, we understood the innards of the algorithm and werétypical” ontologists. However, in discussions with a nuenlof professional
ontologists it repeatedly emerges that the intuitive mustiof good hubs, good authorities, and good query construetie all that is really needed
to implement our methodology—and these are readily congmsihle even to those oblivious to the details of the algorit In subsequent
experiments, we have found that users with some familiasityy taxonomy management can quickly be trained to use culs tas or more
effectively than we do.

3The example authorities were the International solar gndigmepage vww. i ses. org), The American solar energy society



Clever running on the advanced text query. We feel that tbisform of description, combining text and example
sites, represents a new mode of Web resource gathering«platte the nature of content creation on the Web in the
hub/authority view.

Our goal in designing these experiments was to benchmalkreade of taxonomy construction, monitoring: (1)
wall clock time elapsed during the construction of the taxuog; (2) quality of resources found by each; (3) level
of exemplification; (4) investment in looking at results ekt searches. Our system was configured to log all the
actions of our ontologists as they used TaxMan. These lagld,yamong other things, the wall clock time used in
taxonomy construction, the sequence of mouse clicks, thebeuof results pages viewed, etc. Together these give a
comprehensive picture of the human ontological effort isembnstructing taxonomies in the various modes.

Evaluating quality: The user study. As noted earlier, evidence from previous work [3, 4, 1] sigggthat the average
quality of the nodes we construct are comparable to, and bftéter than those of manually-constructed taxonomies,
even using text queries only. In the evaluation of our taxoies, therefore, we did not measure their quality against
such manually-constructed taxonomies. Rather, our enghasge is on the relative qualities of our three modes of
taxonomy construction. Similarly, [1] compare the relatresults of eight variants on HITS.

We collected user statistics evaluating the pages as felloVe collected 50 users willing to help in the evaluation
of our results, and decidedpriori that each user could reasonably be expected to evaluateded@UJIRL's. There-
fore, we needed to spread these 2000 total URL evaluatiorfutlst across the well over 50,000 URL's contained in
our taxonomy. We adopted a random sampling approach asvilleirst, we constructed the entire taxonomy in each
of the three modes of operation. After all three versionfieftaxonomy were constructed, we randomly sampled 200
nodes for evaluation, chosen uniformly from all nodes. Tdémush user would evaluate 4 topic nodes on average; given
the 40-URL limit on user patience, this suggests that eaehaan be expected to view 10 URL's per topic node.

We configured Clever to return 25 hubs and 25 authorities &ohdopic node in each of the three modes of
taxonomy creation, for a total of 150 URL's. Since we wish sk @ach user to evaluate a total of around 10, we
sub-sampled as follows. For a particular ordered list of JRWwe refer to the “index” of a particular URL as its
position in the list—the first URL has index one, and so fofflonsider a topic nod&’. We chose a “high-scoring”
index uniformly from the indices between 1 and 3, and a “laefg1g” index uniformly from the indices between 4
and 25. We then extracted the two hub (resp. authority) patyeese two indices in the list of hubs (resp. authorities),
from the taxonomy constructed using naive queries. Thisltessin four URL's. We performed the same extraction
for topic nodeN in the advanced text and example modes of creation as waliltireg in a total of 12 URL's. These
samples contained some overlaps however; in all the meameuaof distinct URL's extracted per node was about
10.2. From classical statistics, the score we compute imbiased estimator of the actual scores (cf. [7]).

We then asked each user to evaluate four topic nodes froma@yrchosen randomly without replacement. Each
user was provided with a Web page containing links to fouicgpClicking on a particular topic brought up a form
listing the approximately 10 sampled URL's from that topidth a set of radio buttons next to each URL. The values
of the radio buttons were “unranked”, “bad”, “fair”, “good'fantastic” and “unreachable.” The “unranked” selection
was checked initially for each URL. Clicking on a URL openbdttURL in a separate window, allowing users to
browse through URL's without losing access to the evaluafam. At the bottom of the form, a submit button
logged the rankings. Of our 50 users, 41 completed some rfdde survey in time, and of the 146 nodes evaluated,
139 had one or fewer unranked nodes per page, so we perfonmeyaluations on these nodes, representing 1437
page judgments. Due to an error in logging, we lost almost&dfese judgments and were therefore only able to
incorporate 1240.

4 Results and conclusions

First, a word on evaluation. Pages ranked “unranked” (prnedlly because a user simply forgot to rank this page)
or “unreachable”, were not considered in the ranking. Atlestpages were assigned scores as follows: “bad” = 0,
“fair’ = 1, “good” = 2, “fantastic” = 3. In some situations, t@ver, it is also interesting to consider an analog of
the information retrieval measure of precision, reprasgrnthe number of retrieved documents that are “on topic.”
We therefore define pages ranked “good” or “fantastic” asdpen topic, and when we refer to precision values we
mean under this binarization of our scores. This is consigeyasince a “fair” page is considered (for the purposes

(www. sni . net/sol ar), The solar cooking archiveMw. accessone. cont ~sbcn), and Solarexyww. sol ar ex. com). The example
hub was Solar energy linkg ébu. uor egon. edu/ eesol ar. htm ).



of precision) to be irrelevant. We do not define “recall” oe Web, as ground truth sets do not exist and would not
remain current under the continued exponential expangioardent.

Ontologist effort. We specified naive queries using a flat file of node names (heteour taxonomy tree is pre-
existing and fixed; we do not consider issues of structuratioe). The naive query could simply be typed next to
each node with no browsing overhead, no delays waiting fosapts to return, no use of the mouse, and perhaps one
keyclick overhead to move from one topic to the next. The emaxperiment can therefore be seen as a lower bound
on the possible time to specify content for a node. For naiezigs, we logged overall wall clock time and found that
each node took between five to ten seconds to specify on avdegagnding on the ontologist.

Our timing results for the advanced and examplary modeseastion are shown in Table 1. Unlike the naive
queries, these results include all the overhead of usingyl@axover a slow network. We therefore created a small
number of naive queries using TaxMan in order to estimatephrenode delay inherent to the Ul, and found that
simply navigating from node to node, waiting for screensdpaint, and entering a single piece of data without any
extraneous browsing required 25 to 40 seconds dependirrgeamtologist. As the figure below shows, timings range
from under two minutes to about four and a half minutes peendthe government taxonomy proved to be difficult
to specify quickly, since it often required significant biag through gov sites to find appropriate keywords and
pages for exemplification. As the table shows, providing lielevance feedback through exempilification is roughly
equal in overhead to providing advanced keyword searctagyntthis experiment.

Effectiveness of link relevance feedbackiHaving considered the amount of effort required on the piitie ontol-
ogist, we now report the improvement in quality as a resuthidf effort. Figure 1 shows the average score for the
top 25 documents under each of the three modes of creatiorse@/éhat there is no significant difference between
naive and advanced queries, but there is a significant ingpnewnt for exemplary queries. Each pointin all our graphs
represents the mean of at least 30 samples.

Dependence on Web presence of topicsVe now examine the differences in the quality of pages dis@x from
one taxonomy to the next. Figure 1 shows for each possible patex (1-25) the average score of all pages at
that location or higher. Thus, the results are “cumuldtiie.order to get an overall measure of the difficulty of the
topics, we included results from all three modes of creaitioiihis aggregate. We see that it is more difficult to find
high-quality pages for the personal taxonomy than for arthefother taxonomies. Furthermore, as the topics of the
personal taxonomy contain fewer high-quality pages, ayeszore falls off towards the tail of the list faster than it
does for the general-purpose taxonomies.

Table 1 shows the average values over the top 25 resultsefadivn by mode of creation as well as taxonomy,
in both the average score and the precision metrics. In bethas, the quality of results for the personal taxonomy is
lower; we address this issue in more detail below. As thestahbws, relevance feedback using exemplification never
significantly impacts the overall quality of the system; butase of the personal taxonomy, it helps dramatically.
In the government taxonomy, exemplification does not imerte quality of results; this occurs because multiple
rounds of exemplification are occasionally needed as thelagist comes to understand the nature of the topic, but
we felt that the difficulty of measuring these multiple rosnabuld reduce the clarity of the results. Thus ontologists
performed only a single pass in each mode of construction.

Performance by mode of creation An examination of the nodes shows that topics in the perd¢arahomy tend to be
narrower in focus. For instance, some of the node§&xes/ STOCC, SI GVMOD, WAV Col | aborative Fil -
tering, Latent Semantic |ndexing, Phrase Extraction, Kerberos, Snartcards. There

are far fewer pages about, for instance, the FOCS/STOCr{theonferences than about the sport of ice hockey. In-
terestingly, in this focused context we see the largestidifice between modes: exemplification improved quality by
approximately 33% over the purely textual approaches.

Conclusions.We draw two primary high-level conclusions from this workh€lfirst conclusion, shown via our user
study and the timing results of our instrumented taxonoregton tool, is that an ontologist armed with the paradigm
of iterative topic creation using increasingly sophigechforms of query can create a high-quality taxonomy with a
fairly quick turnaround time. The second high-level cosabn is that the well-known benefits of relevance feedback
appear to hold in the domain of hyperlinked document seafha tertiary conclusion, we show that, at least in
the context of taxonomy creation, the traditional “advahqeery” syntax used by search engines does not provide
significantly better results than more naive queries. Thihtprovide partial explanation for user dissatisfactiath
“advanced search” functions in most search engines.



Taxonomy || Advanced| Exemplary Naive Advanced Exemplary
secs. Secs. Avg. Score Prec| Avg. Score Prec| Avg. Score Prec
Science 108.0 119.8 1.61 0.55 1.53 0.52 1.63 0.56
Recreation 192.4 239.6 1.64 0.61 1.68 0.64 1.70 0.63
Personal 157.5 214.0 1.03 0.30 0.91 0.31 1.41 0.48
Government| 270.4 222.4 1.45 0.51 1.44 0.50 1.42 0.48

Table 1: Average construction time per node and average sgm@cision of top 25 hubs and authorities, by taxonomy.
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Figure 1: Average score by top 1 to 25 results, for naive;tkit, and exemplified queries and for each taxonomy.
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