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ABSTRACTThe pages and hyperlinks of the World-Wide Web may beviewed as nodes and edges in a directed graph. This graphhas about a billion nodes today, several billion links, andappears to grow exponentially with time. There are manyreasons|mathematical, sociological, and commercial|forstudying the evolution of this graph. We �rst review a set ofalgorithms that operate on the Web graph, addressing prob-lems from Web search, automatic community discovery, andclassi�cation. We then recall a number of measurementsand properties of the Web graph. Noting that traditionalrandom graph models do not explain these observations, wepropose a new family of random graph models.
1. OVERVIEWThe World-Wide Web has spawned a sharing and dissemi-nation of information on an unprecedented scale. Hundredsof millions|soon to be billions|of individuals are creat-ing, annotating, and exploiting hyperlinked content in a dis-tributed fashion. These individuals come from a variety ofbackgrounds and have a variety of motives for creating thecontent. The hyperlinks of the Web give it additional struc-ture; the network of these links is a rich source of latentinformation.The subject of this paper is the directed graph inducedby the hyperlinks between Web pages; we refer to this asthe Web graph. In this graph, nodes represent static htmlpages and directed edges represent hyperlinks. Recent es-timates [5] suggest that there are over a billion nodes inthe Web graph; this quantity is growing by a few percenta month. The average node has roughly seven hyperlinks(directed edges) to other pages, so that the graph containsseveral billion hyperlinks in all.�IBM Almaden Research Center K53/B1, 650 Harry Road,San Jose CA 95120.yComputer Science Department, Brown University, Provi-dence, RI.

The network of links in this graph has already led to im-proved Web search [7, 10, 23, 32] and more accurate topic-classi�cation algorithms [14], and has inspired algorithms forenumerating emergent cyber-communities [25]. The hyper-links further represent a fertile source of sociological infor-mation. Beyond the intrinsic interest of the topology of theWeb graph, measurements of the graph and the behavior ofusers as they traverse the graph are of growing commercialinterest.
1.1 Guided tour of this paperIn Section 2 we review several algorithms that have been ap-plied to the Web graph: Kleinberg's HITS method [23] andextensions, the enumeration of certain bipartite cliques [25],and classi�cation algorithms utilizing hyperlinks [14].In Section 3 we summarize a number of measurements onlarge portions of the Web graph. We show that the in-and out-degrees of nodes follow inverse polynomial distri-butions [15, 20, 29, 33], and we study the distributions ofmore complex structures. We present measurements aboutconnected component sizes, and from this data we draw con-clusions about the high-level structure of the web. Finally,we present some data regarding the diameter of the web.In Section 4 we show that the measurements described aboveare incompatible with traditional random graph models suchas Gn;p [8]. (Gn;p is a model for n-node graphs in which anedge connecting any pair of nodes occurs independently withprobability p.) We describe a class of new random graphmodels, and give evidence that at least some of our observa-tions about the Web (for instance, the degree distributions)can be established in these models. A notable aspect ofthese models is that they embody some version of a copyingprocess: a node v links to other nodes by picking a random(other) node u in the graph, and copying some links fromit (i.e., we add edges from v to the nodes that u points to).One consequence is that the mathematical analysis of thesegraph models promises to be far harder than in traditionalgraph models in which the edges emanating from a nodeare drawn independently. We conclude in Section 5 with anumber of directions for further work.
1.2 Related workThe structure of the Web graph has been exploited to en-hance the quality of Web search [6, 7, 10, 11, 23, 32]. In thesetting of supervised classi�cation [14], the topics of pages



pointed to by a Web page v can be used to improve theaccuracy of determining the (unknown) topic of v.Power law distributions seem to characterize Web citationfrequency; interestingly, similar distributions have been ob-served for citations in the academic literature, an observa-tion originally due to Lotka [29]. Gilbert [20] presents aprobabilistic model supporting Lotka's law. His model issimilar in spirit to ours, though di�erent in details and ap-plication. The �eld of bibliometrics [17, 19] is concernedwith citation analysis; some of these insights have been ap-plied to the Web as well [28].Many authors have advanced a view of the Web as a semi-structured database. In particular, LORE [1] and Web-SQL [30] use graph-theoretic and relational views of the Webrespectively. These views support structured query inter-faces to the Web (Lorel [1] and WebSQL [30]) that are in-spired by SQL. An advantage of this approach is that manyinteresting queries can be expressed as simple expressionsin the very powerful SQL syntax. The disadvantage of thisgenerality is the associated computational cost, which canbe prohibitive until we have query optimizers for Web graphqueries similar to those available for relational data. Otherexamples include W3QS [24], WebQuery [10], Weblog [27],and ParaSite/Squeal [32].Mendelzon and Wood [31] argue that the traditional SQLquery interface to databases is inadequate in its power tospecify several interesting structural queries in the Web graph.They propose G+, a language with greater expressibilitythan SQL for graph queries.
2. ALGORITHMSConsider classical database and information retrieval prob-lems such as text search, data mining and classi�cation. Theinput to these problems is usually a collection of documents.The Web, with its additional structure as a graph, allowsthe enhancement of existing techniques with graph-theoreticones. We illustrate this through graph-based solutions to thefollowing problems: topic search, topic enumeration, classi-�cation, and crawling.Given a set of web pages V , let E be the set of directed edges(hyperlinks) among these pages. The pair (V;E) naturallyforms an unweighted digraph. For pages p; q 2 V , we denotea hyperlink from p to q by p! q.
2.1 Topic searchThe topic search problem is: Given a search topic (in theform of a query), output high-quality pages for the topicquery.The following is a recurrent phenomenon on the Web: Forany particular topic, there tend to be a set of \authorita-tive" pages focused on the topic, and a set of \hub" pages,each containing links to useful, relevant pages on the topic.This observation motivated the development of the followingHITS search algorithm [23] and its subsequent variants.HITS and related algorithms. Given a set of pages Vand the interconnections E between them, HITS ranks the

pages in V by their quality as hubs, and as authorities. Thenotions of good hubs and authorities are captured by nu-merical values whose de�nitions and update rules are givenbelow.Each page p 2 V has a pair of non-negative weights hxp; ypiwhere xp is the authority weight and yp is the hub weight.Before the start of the algorithm, all the x- and y-values areset to 1.The authority and hub weights are updated as follows. Ifa page is pointed to by many good hubs, we would like toincrease its authority weight; thus for a page p, the value ofxp is updated to be to be the sum of yq over all pages q thatlink to p: xp = Xq j q!p yq: (1)In a strictly dual fashion, for a page p, its hub weight isupdated via yp = Xq j p!q xq: (2)The algorithm repeats these steps a number of times, at theend of which it generates rankings of the pages by their hub-and authority-scores.There is a more compact way to write these updates thatsheds more light on the mathematical process. Let us num-ber the pages f1; 2; : : : ; ng and de�ne their adjacencymatrixA to be the n� n matrix whose (i; j)-th entry is equal to 1if and only if i! j, and is 0 otherwise. Let us also write theset of x-values as a vector x = (x1; x2; : : : ; xn)T , and simi-larly de�ne y = (y1; y2; : : : ; yn)T . Then the update rule forx can be written as x AT y and the update rule for y canbe written as y  Ax. Unwinding these one step further,we have x AT y  ATAx = (ATA)x (3)and y  Ax AAT y = (AAT )y: (4)Thus the vector x after multiple iterations is precisely theresult of applying power iteration to ATA|we multiply ourinitial iterate by larger and larger powers of ATA|and astandard result in linear algebra tells us that this sequence ofiterates, when normalized, converges to the principal eigen-vector of ATA. Similarly, the sequence of values for thenormalized vector y converges to the principal eigenvectorof AAT . (See the book by Golub and Van Loan [21] forbackground on eigenvectors and power iteration.)In fact, power iteration will converge to the principal eigen-vector for any \non-degenerate" choice of initial vector|inour case, for the vector of all 1's. Thus, the �nal x- andy-values are independent of their initial values. This saysthat the hub and authority weights computed are truly anintrinsic feature of the collection of linked pages, not anartifact of the choice of initial weights or the tuning of arbi-trary parameters. Intuitively, the pages with large weightsrepresent a very \dense" pattern of linkage, from pages oflarge hub weight to pages of large authority weight. This



type of structure|a densely linked community of themat-ically related hubs and authorities|will be the motivationunderlying Section 2.2 below.Finally, notice that only the relative values of these weightsmatter not their actual magnitudes. In practice, the rela-tive ordering of hub/authority scores becomes stabile withfar fewer iterations than needed to stabilize the actual mag-nitudes. Typically �ve iterations of the algorithm is enoughto achieve this stability.In subsequent work [6, 11, 13], the HITS algorithm has beengeneralized by modifying the entries of A so that they areno longer boolean. These modi�cations take into accountthe content of the pages in the base set, the internet do-mains in which they reside, and so on. Nevertheless, mostof these modi�cations retain the basic power iteration pro-cess and the interpretation of hub and authority scores ascomponents of a principal eigenvector, as above.Implementation. The actual implementation of HITS al-gorithms (or its variants) consists of a sampling step, whichconstructs a subgraph of several thousand Web pages likelyto be rich in relevant authorities and hubs for the particularquery topic. To construct this subgraph, the algorithm �rstuses keyword queries to collect a root set of, say, 200 pagesfrom a traditional index-based search engine. This set doesnot necessarily contain authoritative pages; however, sincemany of these pages are presumably relevant to the searchtopic, one can expect some to contain links to good author-ities, and others to be linked to by good hubs. The root setis therefore expanded into a base set by including all pagesthat are linked to by pages in the root set, and all pagesthat link to a page in the root set (up to a designated sizecut-o�). This follows the intuition that the prominence ofauthoritative pages is typically due to the endorsements ofmany relevant pages that are not, in themselves, prominent.We restrict our attention to this base set for the remainderof the algorithm; this set often contains roughly 1000{3000pages, and hidden among these are a large number of pagesthat one would subjectively view as authoritative for thesearch topic.The sampling step performs one important modi�cation tothe subgraph induced by the base set. Links between twopages on the same Web site very often serve a purely nav-igational function, and typically do not represent conferralof authority. It therefore deletes all such links from the sub-graph induced by the base set, and the HITS algorithm isapplied to this modi�ed subgraph. As described earlier, thehub and authority values are then used to determine thebest pages for the given topic.
2.2 Topic enumerationThe topic enumeration problem is: Given a snapshot of theweb, output all communities (de�ned below) in the snap-shot.Recall that a complete bipartite clique Ki;j is a graph inwhich every one of i nodes has an edge directed to each of jnodes (in the following treatment it is simplest to think ofthe �rst i nodes as being distinct from the second j; in fact

this is not essential to our algorithms). We further de�ne abipartite core Ci;j to be a graph on i+ j nodes that containsat least one Ki;j as a subgraph. The intuition motivatingthis notion is the following: on any su�ciently well repre-sented topic on the Web, there will (for some appropriatevalues of i and j) be a bipartite core in the Web graph. Fig-ure 1 illustrates an instance of a C4;3 in which the four nodeson the left have hyperlinks to the home pages of three majorcommercial aircraft manufacturers. Such a subgraph of the
www.boeing.com

www.airbus.com

www.embraer.comFigure 1: A bipartite core.Web graph would be suggestive of a \cyber-community" ofa�cionados of commercial aircraft manufacturers who createhub-like pages like the four on the left side of Figure 1. Thesepages co-cite the authoritative pages on the right. Looselyspeaking, such a community emerges in the Web graph whenmany (hub) pages link to many of the same (authority)pages. In most cases, the hub pages in such communitiesmay not co-cite all the authoritative pages for that topic.Nevertheless, the following weaker hypothesis is compelling:every such community will contain a bipartite core Ci;j fornon-trivial values of i and j. Turning this around, we couldattempt to identify a large fraction of cyber-communitiesby enumerating all the bipartite cores in the Web for, sayi = j = 3; we call this process trawling. Why these choicesof i and j? Might it not be that for such small values ofi and j, we discover a number of coincidental co-citations,which do not truly correspond to communities?In fact, in our experiment [25] we enumerated Ci;j 's for val-ues of i ranging from 3 to 9, for j ranging from 3 to 20. Theresults suggest that (i) the Web graph has several hundredthousand such cores, and (ii) it appears that only a minus-cule fraction of these are coincidences|the vast majority doin fact correspond to communities with a de�nite topic fo-cus. Below we give a short description of this experiment,followed by some of the principal �ndings.Trawling algorithms. From an algorithmic perspective,the naive \search" algorithm for enumeration which consid-ers every set of i+ j pages su�ers from two fatal problems.First, the size of the search space is far too large|using thenaive algorithm to enumerate all bipartite cores with twoWeb pages pointing to three pages would require examiningapproximately 1040 possibilities on a graph with 108 nodes.



A theoretical question (open as far as we know): does thework on �xed-parameter intractability [16] imply that wecannot|in the worst case|improve on naive enumerationfor bipartite cores? Such a result would argue that algo-rithms that are provably e�cient on the Web graph mustexploit some feature that distinguishes it from the \bad"inputs for �xed-parameter intractability. Second, and morepractically, the algorithm requires random access to edges inthe graph, which implies that a large fraction of the graphmust e�ectively reside in main memory to avoid the over-head of seeking a disk on every edge access.We call our methodology the elimination-generation paradigm [26].An algorithm in this paradigm performs a number of sequen-tial passes over the Web graph, stored as a binary relation.During each pass, the algorithm writes a modi�ed version ofthe dataset to disk for the next pass. It also collects somemetadata which resides in main memory and serves as stateduring the next pass. Passes over the data are interleavedwith sort operations, which change the order in which thedata is scanned, and constitute the bulk of the processingcost. We view the sort operations as alternately orderingdirected edges by source and by destination, allowing us al-ternately to consider out-edges and in-edges at each node.During each pass over the data, we interleave eliminationoperations and generation operations, which we now detail.Elimination. There are often easy necessary (though notsu�cient) conditions that have to be satis�ed in order for anode to participate in a subgraph of interest to us. Considerthe example of C4;4 's. Any node with in-degree 3 or smallercannot participate on the right side of a C4;4. Thus, edgesthat are directed into such nodes can be pruned from thegraph. Likewise, nodes with out-degree 3 or smaller cannotparticipate on the left side of a C4;4. We refer to thesenecessary conditions as elimination �lters.Generation. Generation is a counterpoint to elimination.Nodes that barely qualify for potential membership in aninteresting subgraph can easily be veri�ed either to belongin such a subgraph or not. Consider again the example ofa C4;4 . Let u be a node of in-degree exactly 4. Then, ucan belong to a C4;4 if and only if the 4 nodes that point toit have a neighborhood intersection of size at least 4. It ispossible to test this property relatively cheaply, even if weallow the in-degree to be slightly more than 4. We de�nea generation �lter to be a procedure that identi�es barely-qualifying nodes, and for all such nodes, either outputs acore or proves that such a core cannot exist. If the test em-bodied in the generation �lter is successful, we have identi-�ed a core. Further, regardless of the outcome, the node canbe pruned since all potential interesting cores containing ithave already been enumerated.Note that if edges appear in an arbitrary order, it is not clearthat the elimination �lter can be easily applied. If, however,the edges are sorted by source (resp. destination), it is clearthat the out-link (resp. in-link) �lter can be applied in asingle scan. Details of how this can be implemented withfew passes over the data (most of which is resident on disk,and must be streamed through main memory for processing)may be found in [25].

After an elimination/generation pass, the remaining nodeshave fewer neighbors than before in the residual graph, whichmay present new opportunities during the next pass. We cancontinue to iterate until we do not make signi�cant progress.Depending on the �lters, one of two things could happen:(i) we repeatedly remove nodes from the graph until nothingis left, or (ii) after several passes, the bene�ts of elimina-tion/generation \tail o�" as fewer and fewer nodes are elim-inated at each phase. In our trawling experiments, the latterphenomenon dominates. However, the number of edges hasdropped substantially so a relatively naive post-processingstep su�ces to output any remaining cores.Why should such algorithms run fast? We make a numberof observations about their behavior:(i) The in/out-degree of every node never increases duringan elimination/generation phase. During each generationtest, we either eliminate a node u from further consideration(by developing a proof that it can belong to no core), or weoutput a subgraph that contains u. Thus, the total work ingeneration is linear in the size of the Web graph plus thenumber of cores enumerated, assuming that each generationtest runs in constant time.(ii) In practice, elimination phases rapidly eliminate mostnodes in the Web graph. A complete mathematical analysisof iterated elimination is beyond the scope of this paper, andrequires a detailed understanding of the kinds of randomgraph models we propose in Section 4.
2.3 ClassificationThe supervised classi�cation problem is: Given a set of pre-de�ned categories, build a system that (learns from a setof examples and) assigns a given document to one of thecategories.Classi�cation is a hard problem in general and is seems noeasier for the Web. The hypertext pages found on the Webpose new problems, however, rarely addressed in the liter-ature on categorizing documents based only on their text.On the Web, for example, pages tend to be short and ofwidely varying authorship style. Hyperlinks, on the otherhand, contain more reliable semantic clues that are lost bya purely term-based categorizer. The challenge is to ex-ploit this information-rich but still noisy link information.Experimentally, it is known that a naive use of terms in theanchortext of links pointing to a document can even degradeaccuracy.An approach to this problem is embodied in a classi�cationsystem[14] which uses robust statistical models (includingthe Markov Random Field (MRF)) and a relaxation labelingtechnique for better categorization by exploiting link infor-mation in a small neighborhood around documents. Theintuition is that pages on the same or related topics tend tobe linked more frequently than those on unrelated topics andthe classi�cation algorithm captures this relationship usinga precise statistical model (the MRF) whose parameters areset by the learning process.The Hyperclass algorithm. The basic idea in this algo-



rithm, called Hyperclass, is described below: If p is a page,then instead of considering just p for classi�cation, the algo-rithm considers the neighborhood �p around p; here q 2 �pif and only if q ! p or p ! q, although the authors of [14]also consider more general neighborhood functions. The al-gorithm begins by assigning class labels to all p 2 V basedpurely on the terms in p. Then, for each p 2 V , its class labelis updated based on the terms in p, terms in pages in �p, andthe (partial) classi�cation labels of pages in �p. This updateis done via robust statistical methods. The iteration, calledrelaxation labeling, is continued until near-convergence.It has been shown experimentally [14] that hyperlinks usedin conjunction with text, if the categories of the linked (to orfrom) pages are known, can lead to dramatic improvementsin categorization accuracy. Even if none of the categories ofthe linked pages is known, signi�cant improvements can beobtained using relaxation labeling, wherein the category la-bels of the linked pages and of the page to be categorized areiteratively adjusted until the most probable con�gurationof class labels is found. Experiments with Hyperclass [14]using pre-classi�ed samples from the US Patent Database(www.ibm.com/patents) and Yahoo! cut the patent errorrate by half and the Yahoo! (web documents) error rate bytwo-thirds. The Hyperclass algorithm has been applied inconjunction with the HITS algorithm to construct a focusedcrawler, designed to fetch all the pages on the Web on agiven topic with minimal use of resources[12].
3. MEASUREMENTSIn this section we survey empirical observations drawn froma number of recent measurement experiments on the web.The degree distribution results of Section 3.1 are drawn fromKumar et al.[25], Albert et al.[2], and Broder et al.[9]. Theenumeration of bipartite graphs in Section 3.2 is from Ku-mar et al.[25]. Finally, the connected component analysisof Section 3.3 and the diameter analysis of Section 3.4 arefrom Broder et al.[9].
3.1 Degree distributionsWe begin by considering the in-degree and out-degree ofnodes in the Web graph. Early work of Kumar et al.[25] con-tained the �rst observation that in-degrees follow a powerlaw: The fraction of web pages with in-degree i is propor-tional to 1=ix for some x > 1.Subsequently, work of Albert et al.[2] and Broder et al.[9]con�rmed this result at a variety of scales and times rangingfrom pages within the Notre Dame University web site, topages in a 200 million node crawl of the web at large. Inall these experiments, the value of the exponent x in thepower law is a remarkably consistent 2:1. The results fromthe largest study, that of Broder et al.[9], are reproducedherein.Figure 2 is a log-log plot (with the x-axis negated) of thein-degree distribution. The value x = 2:1 is derived fromthe slope of the line providing the best �t to the data in the�gure. Figure 3 shows the same results for out-degrees. Thebest �t line gives a power law with x = 2:72, although itis clear from the plot that some concavity exists for smallerout-degrees. The average out-degree is about 7.2.

Figure 2: In-degree distribution.

Figure 3: Out-degree distribution.



i j Cores Diverse cores3 3 89565 388873 5 70168 302993 7 60614 268003 9 53567 245954 3 29769 114104 5 21598 126264 7 17754 107034 9 15258 95665 3 11438 70155 5 8062 49275 7 6626 40715 9 5684 35476 3 4854 27576 5 3196 17956 7 2549 14256 9 2141 1206Table 1: Number of cores enumerated during the pruningphase of trawling.
3.2 Enumeration of bipartite coresWe turn next to the enumeration of cores Ci;j . The trawl-ing experiment of Kumar et al.[25] unearthed well over ahundred thousand cores for values of i; j in the range of3{4. Table 1 gives the number of cores output during theelimination/generation phases; the results of the table showactual number of cores, as well well as the number of di-verse cores in which each hub page comes from a distinctwebsite. The post-processing step resulted in a smaller num-ber of additional cores, but the cores output during post-processing overlap with one another so the exact counts arenot comparable|we do not include them here.
3.3 Connected componentsWe now report on a connected component analysis fromBroder et al.[9]. This analysis includes a number of resultsabout directed and undirected connected components, andalso builds an aggregate picture of the structure of the webat large. The results are drawn from an Altavista crawl fromMay 1999, and have been replicated for a larger crawl fromOctober 1999. All numbers below are from the May crawl,which contains over 200 million pages and 1.5 billion links.We begin with the results for component counts.A weakly-connected component is a set of pages each of whichis reachable from any other if hyperlinks may be followedeither forwards or backwards. The largest weakly-connectedcomponent in this crawl has 186 million nodes, so more than90% of the crawl lies within this component.Similarly, a strongly-connected component is a set of pagessuch that for all pairs of pages (u; v) in the set, there existsa directed path from u to v. In web terminology, this meansthat a surfer can follow hyperlinks to surf from u to v. Thelargest strongly-connected component has roughly 56 mil-lion nodes. The second-largest strongly-connected compo-nent has size around 50 thousand, three orders of magnitudesmaller. The study also notes that the number of compo-nents, either weak or strong, of a given size also follow apower law distribution.

By performing breadth-�rst searches from a number of ran-dom starting nodes following hyperlinks forwards, and thenseparately backwards, Broder et al. were able to elicit themap of the web depicted in Figure 4. They refer to thispicture as a bowtie, and describe the di�erent regions of thebowtie as follows:The \knot" of the bowtie, called the SCC, represents thesingle giant strongly-connected component of size around56 million. The \left side" of the bowtie represents about44 million pages called IN, de�ned to be all pages not in theSCC, but from which a path exists to some node of the SCC.Since a path to some node of the SCC implies a path to everynode of the SCC, a surfer beginning at some page of IN canreach any page of the SCC. The set IN can be thought ofas \new pages" that link to interesting destinations on theweb, but which have not yet been discovered by the coreof the web and are therefore not reachable from the SCC.(If a page of IN became reachable from the SCC, it wouldbecome part of the SCC.)Similarly, another large set of approximately 44 million pagesmake up the \right side" of the bowtie. This set is calledOUT, and has the property that any page of OUT can bereached from any page of the SCC by following hyperlinks,but no page of the SCC can be reached from a page of OUTby following hyperlinks. A surfer beginning at one of thesepages will quickly get stuck and be unable to explore fur-ther. One may think of these pages as corporate internetswhich are well-known, but whose links point only internally.Thus, in this model it is always possible to surf the bowtiefrom left to right, but not the other way: from the pagesof IN a surfer can reach SCC, and can then continue on tothe pages of OUT, but motion in the other direction is notpossible by clicking on links.Finally, there is a fourth region called the TENDRILS, con-sisting of pages that do not link to the knot, and which arenot reachable from the knot. These pages may be thoughtof as possessing the disadvantages of IN and OUT: the webhas not yet discovered these pages, and these pages do notcontain interesting links back to better-known regions of theweb. Although these pages do not �t the image of traditionalweb pages, they nonetheless make up a signi�cant fractionof the web|once again, there are approximately 44 millionsuch pages.
3.4 Measures of diameterThe bowtie of Figure 4, in conjunction with a deeper anal-ysis of the pages outside the SCC, reveals an unexpectedproperty of web connectivity: for most pages u and v, theredoes not exist a path from u to v. More precisely, if u liesin IN [ SCC, and v lies in SCC [ OUT then a path exists,but if not then a path will almost certainly not exist. Theprobability that u lies in IN [ SCC is about 1=2, and theprobability that v lies in SCC [ OUT is likewise about 1=2,so the probability that these two independent events holdsimultaneously is about 1=4. Thus, for around 75% of pagesu and v, no path exists.Recent results of Albert et al.[2] predict that for most pairsof web pages u and v the directed distance (following hyper-
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Figure 4: The web as a bowtie. SCC is a giant strongly connected component. IN consists of pages with paths to SCC, but nopath from SCC. OUT consists of pages with paths from SCC, but no path to SCC. TENDRILS consists of pages that cannotsurf to SCC, and which cannot be reached by sur�ng from SCC.Edge type In-links Out-links UndirectedAvg. Conn. Dist. 16.12 16.18 6.83Table 2: Average distances on the web, conditioned on exis-tence of a �nite path.links) from u to v is about 19, a so-called small world phe-nomenon. However, actual measurement reveals a di�erentpicture: most pairs of pages in fact have in�nite directeddistance.To salvage the small world view, we can instead ask for thelength of paths separating u and v during the 25% of thetime in which there exists a path between them. Formally,we de�ne the average connected distance under a certainde�nition of path (for instance, following hyperlinks, or fol-lowing hyperlinks but in either direction) to be the averagelength of the path over all pairs for which the length is �nite.The average connected distance is given in Table 2.
4. MODELIn this section we lay the foundation for a class of plausi-ble random graph models in which we can hope to establishmany of our observations about the local structure of theWeb graph. We begin by presenting the broad areas of ap-plication for Web graph models, to motivate the discussion.(i) Web graph models can be analytical tools. Many prob-lems we wish to address on the web are computationally dif-

�cult for general graphs; however, with an accurate modelof the Web, speci�c algorithms could be rigorously shown towork for these problems within the model. They could alsobe simulated under the model to determine their scalability.(ii) A good model can be an explanatory tool. If a sim-ple model of content creation generates observed local andglobal structure, then it is not necessary to postulate morecomplex mechanisms for the evolution of these structures.(iii) A good model can act as a predictive tool. The modelcan suggest unexpected properties of today's Web that wecan then verify and exploit. Similarly, the model can alsosuggest properties we should expect to emerge in tomorrow'sWeb.In Section 3 we presented a number of measurements on theWeb graph. To motivate the need for new graph modelstailored to the Web, we briey point out the shortcomingsof the traditional random graph model Gn;p [8]. (The Gn;pmodel describes a random graph on n nodes where everypossible edge is included with probability p, independentlyof other edges.) First, note that Gn;p does not generate ex-tremely popular pages such as Yahoo!. Instead, the tailsof the degree distribution fall o� exponentially, allowing usto conclude that it is unlikely to �nd a page with !(log n)in-links when np, the average number of out-links, is O(1).More generally, the in-degree distribution in Gn;p graphs isbinomial, not one that obeys a power law of the type re-ported in Section 3. Second, and more importantly, in Gn;pthe links to or from a particular page are independent, while



on the web a page that has a link to www.campmor.com ismuch more likely to contain other links to camping-relatedmaterial than a random page. A consequence of this is thefact that Gn;p does not explain well the number of cores Ci;j(as reported in Section 3); for example, the expected numberof cores Ci;j in Gn;p with np = 7:2 (the average out-degreeof the web graph) is �ni��nj� �7:2n �ij ; which is negligible forij > i+ j.Thus, a graph model for the web should manifest the fol-lowing three properties:(i) (The rich get richer) New links should point more oftento pages with higher in-degree than to pages with lower in-degree.(ii) (Correlated out-links) Given a link h = (u; v), the des-tinations of other links out of u should reveal informationabout v, the destination of h.(iii) (Correlated in-links) Given a link h = (u; v), the sourcesof other links with destination v should reveal informationabout u, the source of h.Having established some properties that the model shouldsatisfy, we also enumerate some high-level goals in the de-sign:(i) It should be easy to describe and feel natural.(ii) Graph structures should reect measurements of theWeb graph.(iii) Topics should not be planted|they should emerge nat-urally. This is important because1. It is extremely di�cult to characterize the set oftopics on the Web; thus it would be useful to drawstatistical conclusions without such a characterization.2. The set, and even the nature, of topics reectedin Web content is highly dynamic. Thus, any time-dependent model of topics would need to include thisevolution over time|a daunting task.
4.1 Random copyingOur model is motivated by the following intuition:� some authors will note an interesting (but hitherto un-known on the web) commonality between certain pages, andwill link to pages exhibiting this commonality. The �rst per-son to create a resource list about �shing would be an ex-ample of such an author, as would the �rst person to createa resource list speci�cally about y �shing.� most authors, on the other hand, will be interested incertain already-represented topics, and will collect togetherlinks to pages about these topics.In our model, an author interested in generating links totopics already represented on the web will do so by discov-ering existing resource lists about the topics, then linking topages of particular interest within those resource lists. We

refer to this authoring mechanism as copying because thenew page contains a subset of links on some existing page.However, we must present a few caveats. First, despitethe term \copying," it is not necessary that the new au-thor physically copy links. We assume simply that the newauthor will link to pages within the topic, and therefore topages that are linked-to by some existing resource list. Themechanism is thus analytical, but not behavioral.On a related note, this process is not designed as the basisof a user model; rather, it is a local link-creation procedurewhich in aggregate causes the emergence of web-like struc-ture and properties. Topics are created as follows. First, afew users create disconnected pages about the topic withoutknowledge of one another|at this point, no \community"exists around the topic. Then, interested authors begin tolink to pages within the topic, creating topical resource liststhat will then help other interested parties to �nd the topic.Eventually, while the web as a whole will remain \globallysparse," a \locally dense" subgraph will emerge around thetopic of interest.We propose random copying as a simple yet e�ective mecha-nism for generating power law degree distributions and linkcorrelations similar to those on the web, mirroring the �rst-order e�ects of actual web community dynamics. We nowpresent a family of graph models based on random copying,and present some theoretical results for some simple modelswithin this family.
4.2 A class of graph modelsTraditional Gn;p graphs are static in the sense that the num-ber of nodes is �xed at the beginning of the process, anddoes not change. The graphs in our model are evolving inthat both nodes and edges appear over time; some of thesenodes/edges may later disappear. As a means for presentingour models, we adopt the following terminology. A modelis characterized by four stochastic processes responsible forcreation and deletion of vertices and edges: Cv, Ce, Dv, andDe. Each is a discrete-time process that may base its deci-sions on the time-step and the current graph.As a simple example, consider casting Gn;p in our model. Cvcreates n vertices at time 0, Ce creates each edge with uni-form probability p, and both deletion processes are empty.As a more realistic example that generates web-like graphs,let Cv at time t create a node with probability �c(t) in-dependent of the current graph, and let Dv remove someappropriately-chosen page and all incident edges with prob-ability �d(t). These probabilities would be chosen to mirrorthe growth rate of the web, and the half-life of pages respec-tively. The corresponding edge processes will incorporaterandom copying in order to generate web-like graphs.An example Ce is the following. At each time-step, we chooseto add edges to all the newly-arrived pages, and also to someexisting pages via an update procedure, modeling the pro-cess of page modi�cation on the web. For each chosen page,we randomly choose a number of edges k to add to thatpage. With some �xed probability �, we add k edges to des-tinations chosen uniformly at random. With the remaining



probability, we add k edges by copying: we choose a page vfrom some distribution and copy k randomly-chosen edgesfrom v to the current page. If v contains fewer than k pages,we copy some edges from v and then choose another pageto copy from, iterating until we have copied the requisitenumber of edges.Similarly, a simple example of De might at time t choosewith probability �(t) to delete an edge chosen from somedistribution.We now turn our attention to a particular instantiation ofthis model that is theoretically tractable.
4.3 A simple modelWe present with a simple special case of our family of mod-els; this special case cleanly illustrates that the power lawcan be derived from a copying process. In this special case,nodes are never deleted. At each step we create a new nodewith a single edge emanating from it. Let u be a page chosenuniformly at random from the pages in existence before thisstep. With probability �, the only parameter of the model,the new edge points to u. With the remaining probability,the new edge points to the destination of u's (sole) out-link;the new node attains its edge by copying.We now state a result that the in-degree distribution ofnodes in this model follows a power law. More speci�cally,we show that the fraction of pages with in-degree i is asymp-totic to 1=ix for some x > 0. Let pi;t be the fraction of nodesat time t with in-degree i.Theorem 4.1.(i) 8i; limt!1 E[pi;t] �= p̂(i) exists ;(ii) limi!1 i 2��1�� p̂(i) = 11+� :
5. CONCLUSIONOur work raises a number of areas for further work:(i) How can we annotate and organize the communities dis-covered by the trawling process of Section 2.2?(ii) Bipartite cores are not necessarily the only subgraphenumeration problems that are interesting in the setting ofthe Web graph. The subgraphs corresponding to Webrings(which look like bidirectional stars, in which there is a cen-tral page with links to and from a number of \spoke" pages),cliques, and directed trees are other interesting structuresfor enumeration. How does one devise general paradigmsfor such enumeration problems? Kumar et al.[26] describeinitial approaches to this problem.(iii) What are the properties and evolution of random graphsgenerated by speci�c versions of our models in Section 4?This would be the analog of the study of traditional randomgraph models such as Gn;p.(iv) How do we devise and analyze algorithms that are e�-cient on such graphs? Again, this study has an analog withtraditional random graph models.

(v) What can we infer about the distributed sociologicalprocess of creating content on the Web?(vi) What �ner structure can we determine for the map ofthe Web graph (Figure 4) in terms of domain distributions,pages that tend to be indexed in search engines, and so on?
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