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Abstract suggest that this graph has roughly a billion vertices, and a
average degree of about 7. In this paper we propose and an-
The web may be viewed as a directed graph each ofalyze a class of random graph models inspired by a series of
whose vertices is a static HTML web page, and each ofempirical observations on the web graph [5, 11]. These ob-
whose edges corresponds to a hyperlink from one web pageservations suggest that the web is not well modeled by tra-
to another. In this paper we propose and analyze random ditional random graph models such@s ,. For instance,
graph models inspired by a series of empirical observations the distributions of in- and out-degrees on the web follow a

on the web. power-law (rather than a Poisson or binomial distribution,
Our graph models differ from the traditionél,, , mod- as one might expect of a random sparse graph chosen from
els in two ways: G p). Further, itis known [11] that there are several hun-

_ ._dred thousand disjoint instances of bipartite cliquEs (
1. I_ndependentl_ychos_en edes do not _result inthe statiss s, i,7 > 3) on the web—once again, an unlikely occur-
tics (degree distributions, _cl|que multitudes) ob_se_rved rence in a traditional sparse random graph. Finally, the web
on the web. Thus, edges in our model are statlstlcallyis anevolvinggraph: new vertices and edges appear over

dependent on each other. time, while some older vertices and edges disappear.

2. Our model introduces new vertices in the graph as  We propose a family of random graph models here, very
time evolves. This captures the fact that the web is different from the traditional Erdos-Rényi random graph
changing with time. model and its derivatives. Two salient features of our mod-

els are worth highlighting here: (1) Because independently
Our results are two fold: we show that graphs generated chosen edges out of each vertex will not result in the statis-
using our model exhibit the statistics observed on the webyjcg (degree distributions, clique multitude) observedten
graph, and additionally, that natural graph models pro- \ep, our model must allow dependencies between edge
posed earlier do not exhibit them. This remains true even cpojces. We achieve this in a simple and plausible manner:
when these earlier models are generalized to account forsome vertices choose their outgoing edges independently
the arrival of vertices over time. In_pf'irtlcular, fthe sparse at random, as ifG, ,, but other vertices replicate exist-
random graphs in our models exhibit properties that do ing linkage patterns by “copying” edges from a randomly-
not arise in far denser random graphs generated by Erdos- chosen vertex. We will discuss this further in Section 2.
Rényi models. (2) Our model introduces new vertices in the graph as time

evolves, to capture the fact that the web is a changing and

growing graph. To our knowledge, the only prior work
1. Introduction studying the evolution of vertices in the traditiods ,, set-

ting is [2], where the focus is on the emergence of the giant

The web may be viewed as a directed graph in which component.

each vertex is a static HTML web page, and each edge isa We show that a graph model with the above two fea-
hyperlink from one web page to another. Current estimatestures predicts certain graph properties observed on the web
There is an obvious “evolving’version ofG,, ,. Indeed,
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out dependencies between the edges) could give rise to the e With vertex degrees being prescribed before any

statistical phenomena observed in the web? We show that edges are introduced, it is not clear how their model
this is not the case: while an evolvidg, , model behaves should be adapted to capture the notion of an evolving
very differently from the traditionats,, ,,, the difference is graph.

not acute enough to give rise to some of the phenomena ob-
served on the web. Motivationsfor modeling the web graph.

1. Many problems we wish to solve on the web (such
as the subgraph enumeration problems of [12]) are
computationally difficult for general graphs. Never-
theless, a suitable model of the web can help us de-
sign and analyze algorithms that work well in prac-
tice. They could also be simulated under the model
to determine their scalability and performance.

Related work. Kumaret. al.[11] describe methods for
enumerating subgraphs of the web in the context of discov-
ering web communities. From a graph-theoretic standpoint,
a central finding in this work is the existence of a surpris-
ing number of edge-induced complete bipartite graphs in
the web. The authors also observe pmver-lawdistri-
bution of in- and out-degrees in the web graph: the prob-
ability that the in-degree of a random vertex:iss dis- 2. The model can suggest unexpected properties of to-
tributed by the power-lawpr, [in-degre¢u) = 4] ~ 1/, day’s web that we can then verify and exploit.

for 8 ~ 2.1. These observations are based on a web crawl

from 1997. Other authors[1, 5] verify these degree distribu Results and organization.

: : : In Section 2, we propose our
tions in more recent web crawls. Interestingly, the power-

| in the | : < th h new models that incorporate evolving graphs in which
aw exponen_t In the later exp_enment_s IS the Same as t a‘edges are introduced by stochastic copying. We study two
from the earlier work, suggesting that it may be a fairly sta- variants of these evolving copying modelsiear growth

ble property of the We_b graph. i in which the graph grows by some absolute amount (i.e.,
Perhaps the first rigorous _effor'F to define and ana!yze Aone vertex) at each timestep, axponential growthin

model for power-layv o_llstrl_butlons is due to Herbert Slmor_1 which the graph grows by an amount that depends on its
[15]. Power-law distributions have been observed for Ci- cprent size (e.g., twice) at each timestep. We also intredu
tations in the acade_mlc literature, an observatl_o_n _orlgma theevolving uniformmodel, in which the graph evolves over
due to Lotka [14]. Gilbert[9] presents a probabilisticmbde  ime byt edge destinations are chosen independently-at ran
supporting Lotka’'s law. His model is similar in spiritto 4o (loosely referred to above as “evolviag ,").

ours, though different in details and application. The field | section 3 we study the degree distributions in each

of bibliometrics _[6, _8] is concerned with gitation analysis o these models. Whereas the copying-based models gives
some of these insights have been applied to the web asjse 1o power-law distributions, we show that the evolving
well [13]. uniform model has a much flatter degree distribution.

The “copying” models analyzed in this paper were first  Next, in Section 4, we study the number of bipartite
introduced by Kleinbergt. al[10]. Motivated by observa- cliques in each of these models, as well as in the ACL
tions of power-laws for degrees on the graph of telephonengqel [3]. Bipartite cliques are an interesting class of-sub
calls, Aiello, Chung, and Lu [3] propose a model for “mas- graphs on the web since they capture the notion of “com-
sive graphs” (henceforth the "ACL model"), which is very  mynities” [11]. We show that whereas evolving copying
different from ours in three key respects: models give rise to large numbers of bipartite cliques (as
observed in the web graph), the number of such cliques in
e : the evolving uniform and ACL models is likely to be small.
by first fixing the degrees of (the appropriate number We conclude (Section 5) with a number of directions for fur-

of) verftices to fit_the distributiqn, then randomly in- 0 \york on modeling and analyzing evolving graphs with
troducing edges into the resulting “ports” at each ver- and without copying

tex. Thus, the power-law for degrees is an intrinsic

feature of the model, rather than an emergent feature
of a stochastic process. 2. Random graph models

e The ACL model ensures the power-law for degrees

e The ACL model was developed to capture character-  In this section we give terminology and describe the ran-
istics of large-scale call graphs, while ours was devel- dom graph models we will study. L&t = (V, E) denote
oped to capture the nature of the web; thus, their mod-a directed graph with vertex s&t and edge set'. For a
els do not explain the abundance of bipartite cliques directed edg€w, v), « is called thetail andv the headof
observed in the web graph, whereas ours do. See Secthe edge. For a vertex, the edges for whicl is the tail
tion 4 for details. (head) are called out-links (in-links) ef. In-degree and



out-degree of a vertex are denotgdandO,, respectively. the out-links, we begin by choosing a “prototype” vertex
The degree of a vertex in an undirected graph is denoted p €g V;. Thei-th out-link of » is then chosen as follows.
d,. With probability «, the destination is chosen uniformly at
In all our models, we assume the average vertex degreeandom froml;, and with the remaining probability the out-
is a constant. This s in light of our focus on the web graph, link is taken to be the-th out-link of p. Thus, the prototype
where we find that despite small average degree, one enis chosen once in advance. THeut-links are chosen by
counters structures that only arise in far denser graphs inx-biased independent coin flips, either randomly frégm
the Erdds-Reényi style of random graphs. For a finite¥et  or by copying the corresponding out-link of the prototype.

letz € X denote a uniform random choice frak, and The intuition behind this model is the following. When
for a distributionD letz ~ D denote that is chosen from  an author decides to create a new web page, the author is
the distributionD. Let[n] = {1, ...,n}. likely to have some topic in mind. The choice of proto-
type represents the choice of topic—Ilarger topics are more
2.1. Evolving graph models likely to be chosen. The Bernoulli copying events reflect

the following intuition: a new viewpoint about the topic
In all of our evolving graph models, the directed graph Will probably link to many pages “within” the topic (i.e.,
evolves over discrete timesteps= 1,2,.... Letthe ver-  Pages already linked-to by existing resource lists abaait th
tices be numbered, 2, ..., and let the graph at timebe ~ topic), but will also probably introduce a new spin on the
G, = (V;, E.). Two functions are required to describe the tOPIC, linking to some new pages whose connection to the
evolution of the graph in a model. The growth of vertices is tOPIC was previously unrecognized.

captured by a (possibly random) functigp(V;, ) which The exponential growth model is para_meterized by a
returns an integer denoting the number of vertices to beconstant growth factgr > 0, the “self-loop” (integral) fac-
added at time + 1; therefore|Vii1| = |Vi| + fo (Vi t). torvy > 1, the “tail copy” factory’ € (0, 1), and out-degree

The growth of edges is more complicated and is describedfactord > 0. In this model, degree sequences evolve as a
by a probabilistic edge procegs(f,, G:, ). This function ~ branching process. Lef (V;,¢) ~ B(V:, p), the standard
returns the set of edges to be added at tirel; therefore, binomial distribution. This branching process has a non-

Ei.y1 = E; U f.(f,,Ge, t). An evolving graph model is ~ Zero extinction probability, but conditioning the process
completely characterized Hy,, f.). the fact that it did not terminate, for largeV; is well con-

centrated around its meafl, + p)t. To simplify the anal-

ysis we assume below (deterministically) that= 1 and

V: = (1 + p)*. The expected number of edges generated in
timet+1is(d+~)pV;. Each new vertex is generated with
self-loop edges. The heads and tails of the remaining edges
are chosen according to the following process. i &t V;.

For each edge directedtmt timet, we generate with prob-

Evolving copying models. We consider two different
models—inear growth copyingand exponential growth
copyingmodels. We begin with an intuitive description of
the two models in the context of the web. On the web,
pages arrive over time, and page creators link to existing

content. We must determme_ Whlc.h existing content pa.geability dp/(d+~v) a new edge directed ta Assuming that
creators will have access to in their decisions about which e
the expected number of edges at titmes (d + v)V;, the

hyperlmk_s to add. Ifwe_ assume that_web pages are Imm.ed"expected number of edges generated in this procesd/is
ately available at creation to the entire browsing popatati . o .
The tails of the new edges generated in this step are dis-

then a page creator should be able to add an edge to aMibuted as follows: (1) with probability — 4’ a tail of a

rior vertex. This idinear growth at timestep, a single . .
P g P 9 new edges is chosen uniformly at random from among the

yertex arnves and may link to any of the first- 1 ver- V: new vertices of this step and (2) with probabiktythe
tices. Itis reasonable however to assume that a page creatcﬁ’

. ail of the edge is chosen at random among the vertices cre-
may not be aware of pages created in the last week or two . . . : .
. ! . . ated in previous steps, with the vertices chosen with proba-
(say). Since the web is currently growing exponentially,

) . ilities proportional to their current out-degree. Theref
this means that a page creator will not see the most recen :
. i - . . ogether with the new self-loop edges the expected number
epoch” of pages. This isxponential growthat timestep

t a new epoch of vertices arrives whose size is a constantOf edges attime + 1is (d + v)Ves1.
fraction of the current graph. Each of these vertices may
link only to vertices from previous epochs. We now present Linear growth variants. For purposes of comparison,

the formal definitions. we also introduce a linear growth analog of the standard
The linear growth copying model is parameterized by a G, , random graph model. Agairf, (V;,t) = 1, and the
copy factora € (0,1) and a constant out-degrde> 1. At vertex generated at ting¢dhasd out-links. The destination of

each time step, one vertexis added, sq¢, (V;,¢) =1, and each out-linkis chosen uniformly from the existing versice
u is then givend out-links for some constadt To generate  In other wordsy. contains! out-links of the form(t+1, z)



forz €g V.. InT. In the exponential case, we show concentration about
the meanE[N; ;] = O(tk°8«(11P)) for ¢ < T9() and
2.2. Static models w=1+pd/(d+~). Incontrast, for the evolving uniform
model, we SshowE[N; ;] = O(texp(—k/d)), i.e., expo-
For purposes of illustration, we describe some static entially small tails.

models. All the graphs in this section are undirected. ] ) )
3.1. Evolving copying model: Thelinear case

Uniform random graphs. The most prevalent and well-
studied static random graph modelds, ,,, in whichV' =
[n] and each possible edgg ;) is present with probability
p. See, for instance, [4].

For simplicity of exposition, we present the cake- 1.
Note that this is without any loss in generality, since the li
ear growth process where out-degteel can be factored
into two probabilistic processes—one fathich vertex a
) i new vertex decides to copy from, and one fmw many
The ACL model. Generally, given a fixed degree se- |ihys jt copies from that vertex. The first choice (namely,
quence, a family of random graph can be defined by yhich vertex to copy from) induces a graph that has the
choosing uniformly from all graphs with that degree se- game distribution as a graph in the linear growth model
quence. Aiello, Chung and Lu [3] describe “power-law ran- \yith d = 1. This is important for clique analyses.
dom graphs” in which the degree sequence is given by a e first present the analysis foe= 0, and build upon it
power-law. The distribution of such graphs can be well- {4 gerive the distributions a¥; ; for i > 0. Our approach is
approximated constructively as follows: first a degree se-, study the sequence of random variakiBay; o | N;_g o]
quence is obtained, which fixes the number of vertices andiq, g <« ¢+ _ 1 < ¢, which forms a marting’ale. Cléarly,
edges. Second_, asetis consj[ructed with as many co_pies_oE[Nt OT — E[ETNt ol = E[N;o | Nio]. The random
each vertex as its degree. Third, a random matching in thisyarjahle v, , has the following distribution, which follows
set is chosen. And finally, each edge in the matching be'directly from the linear growth model:
tween a copy of. and a copy o is added to the original
graph as an edge, v). N { Ni_1,0 W.p.aN:_1,0/(t — 1)

PO Nicio4+ 1 wp.l—alNego/(t—1)

2.3. Extensions to the models
Lemmal Let S50 = 1, and fork > 0, let S o

Our evolving models are by no means complete. They Sk-1,0(1—a/(t—F)). Thenforevery > 1and0 <k <+,

can be extended in several ways. First of all, the tails in our k-1
models were either static, chosen uniformly from the new E[Nio | Ni_go) = Ni_k 0Sk,0 + Z S;0.
vertices, or chosen from the existing vertices proportiona 3=0

to their out-degrees. This process could be made more so- )
phisticated to account for the observed deviations of the Proof. Omitted.
out-degree distribution from the power-law distributiih[  Next, we establish bounded differences for the martingale
Similarly, the models can be extended to incldéath pro- E[N:o | Ni_ ol.

cesseswhich cause vertices and edges to disappear as time

evolves. A number of other extensions are possible, but wel emma2 For everyt > 1 and everyk < ¢,

seek to determine the properties of this simple model, in or-
der to understand which extensions are necessary to capture | B[Ne,o | Nior,o] = E[Nuo | Ne—(iqnyol| < 2.
the complexity of the web. Proof- Omitted. O

O

Before stating the tail bound by applying Azuma'’s inequal-

3. Degree distributions ity, we pause to compute the expected valu@&/p§.

Let N, denote the number of vertices such that Lemma3
I,(t) = k. In this section we obtain the in-degree distri- t+
butions in various graph models. The expected in-degree
distributions in the case of evolving models follow a power-
law—the probability that a random vertex has in-degree Proof: Note thatE[N; o] = E[E[N:o | Ni—go]] =
is roughly poly *(3). Specifically, in the linear case, we E[N;q | N1 o). By Lemma 1, this equaIE;;%J Sjo. We
show thatE[N; x] = tk~(2=2)/(1==) and afterT steps,  bound this sum by first expressing it as the value of a recur-
N, i is sharply concentrated about its meantfop to about  rence, which turns out to be easier to bound sharply. Define

t+ o

o 2
— 111t<EN <
> [ t,O] =7

1+ o




the quantityQ; = 0, and fork < ¢, letQx = (1—a/k)(1+ Lemma6 For « > 1 and integerst and & < ¢, define
Qr+1). By unwinding the two definitions, it is easy to see Fj ;_1 = Ny_p;—1/(t—k)(a+(1—a)(i—1)). LetSy; =1
thaty:~; S;0 = 1 + Q1. The lemma follows from the  and fork > 1, let Sii = Sko1s (1 S - (1t—ock)i)_
following two claims, whose proofs are omitted: (i) (Upper Then N

bound forQy) For everyk < ¢, Qx < (t — k)/(1 + «); in ’

particular,Q; < (¢—1)/(1+ ). and (ii) (Lower bound for E[Nti | Ne—gi, Ne—gic1, Ne—(k—1)i-1, - -, Ne—1,i-1]
Qr) Q1> (t—-1)/(1+a)—a?lnt. O o

We summarize the consequences of Lemmas 2 and 3, to- = Ni_kiSki+ Z S;iFi41io1.

gether with the Azuma inequality in the following theorem.

7=0
Theorem 4 For anyt > 0, Lemma? Fori > 1 and foreveryt > 1 and everyk < t,
ij—_z —a?Int < E[N; o] < iiz |E[Nei | Ne—iyi, Nuiz1] = E[Nei | Ne—(ig1),i, Naji—1]| < 2.
and for allZ > 0, We now proceed to compute the expected valuesd of.
While the goal is to give an analogue of Lemma 3, we now
Pr[|Ny o — E[Nio]| > 4] < e84 need to condition on the event that the random variables
N, ;_1 take values close to their expectation. As we pro-
Corollary 5 Py £ lim;_, E[N:o/t] =1/(1+ a). ceed fromi — 1 to 4, we lose a bit both in the accuracy (i.e.,

the sharpness of the concentration around the mean) and the

We now turn to the more general quantiy; for > 0. range oft’s for which the concentration holds.

The goal is to show that for a sufficiently large integer A ) A )
T, after T steps, all the quantitied'r o, Nz 1,...,Np; Letd; = o+ (_1 —_a)(l —1andA; = o+ (1 - a)u. o
are sharply concentrated about their respective values AS afirstapplication of the lemma, we compute the limit
Py, Py, ..., P;, foriuptoaboulinT. The strategy here is of E[Nii] = E[E[Ny; | Niy,Nuioa]] = E[E[Ne; |

as follows: for each, we will study the martingal&[N; ; | N, ;-1]] (sinceNy; is the fixed value). Inductively, we
Ny i, Ny ;1] for k < t and whereV, ;_; is a shorthand for will assume thatimy, oo B[Nk i-1]/k = P;_1; the base
the listNo;_1, N1 i_1, ..., Nes_1. The sequenc&[N; ; | case isP;, which, from Corollary 5, equall/(1+«). Now,

Nogl, E[N.i | Nigl, ElNei | Nal,oo o, ENei | Neeyo] koo BIEINus | Noioal] = 6Py (limk o0 Q1) =
is not a martingale in itself; however, conditionedontheva /(1 + A:)P;—1. This, and some crude calculations show:
ues for the random variablé& ;_1, N1 i—1, ..., Ne_145-1, o
this sequence forms a martingale, which is our object OfTheorern 8 For r > 0, the limit
study. We first derive an expression for the quargifv; ; | ists, and satisfies
Ni4, N, i_q]in term_s (_)f the yalues of the random variables . 1+a/((1—a))
N, ;_1. Then we will inductively assume tha&{, ;_,/s is P = POHi:lm
bounded byP;_; + T-2¢-1 for all s > T'~*(¢~1) and
for suitable decreasing functionsandé. The basis for this ~ and .
induction is provided by Theorem 4. Using the inductive P.=0 (T_m) .
assumption, we first show thét/¢) E[N; ; | N1,i, Ny i—1] ) _
is P, + T-%G) for all t > T'~*(). Then by applying We finally proceed to_show sharp co_n_centranon for the val-
the Azuma inequality, we prove that all th, ;'s, for ~ UeSN:;. For convenience of exposition, lefi) andb(s)
¢ > T1=*(), are sharply concentrated about their mean val- b€ decreasing functions éfsuch thatb() — b(i + 1) >
ues with small error probability, thus completing the induc (¢ + 1) (roughly,a(z) = ¥'(¢)); for definiteness, we take
tive step. The error probability for eadth, ; will be atmost ~ #(8) & 1/(In4) anda(s) ~= 1/(i(In)?).
T-1»T so summing over all < T and all; < T still gives
a negligible total error probability.

We begin by stating the stochastic recurrenceNpy for
1> 0:

PT é hmt_wo Nt’,,«/t ex-

Theorem 9 For a sufficiently large integef’, afterT steps
in the linear growth model, with probability at leat—
T-UT) for everyi > 0,
o —a)iNi_1 1 Nt,i
Nt—l,i -1 W.p. Ng_1,1+E1_1 )N_ = Pi - Ta(i) S 1
Nt,i — Nt—l,i +1 W.p. alNy_1i-1+(1—0)(E—1)Ny_1 51

t—1
Ne_q otherwise

1 1-b(3)
< P+ Tat) for everyt > T .

In particular (with the choice$(z) ~ 1/(In%) anda(é) ~
1/(i(1n4)?)), after T steps, with overwhelming probability,
Using techniques similar to the proof of Lemma 1 and Nr;/T € [P; — §, P; + §] for some small constait > 0
Lemma 2 we obtain: andalli <InT.



Proof: The proof proceeds in stages. We inductively as- Proof: Fix a vertexu and considef,,(¢), the in-degree of
sume that the statement of the theorem holds ferl, and u at timet. I,(¢) can be viewed as a branching process that
show that for every > T~ the average value of the starts withy vertices and has
martingaleE[N; ; | N, ;, N, i;_1], conditioned on the val- d d d d
ues of N, ;_; being in the “right range,” is bounded by u=1+p ando? = p (1- )<p
P, + T-20). Then, by applying the bounded differences d+ d+
property for these martingales (from Lemma 7), we obtain Let u? > 1 + p.
the sharp concentration result; this implies that for every  Then by simple calculations (see, for example, [7]),
t > T1~%C), every one of the valued; ; will be in the E[L,(t)] = yu* and
“right range,” which allows induction to continue. 5 i1 )

Thus, let; > 0, and assume that the statement of the varl,(t)] = Yol T (W 1) =t = 1).
theorem holds fof — 1. Now, p—1

Let£ = log,(k/v), and let:* be the minimum integer
such tha(l — €)u® > 1, for somee such that?yp > 1.

pd—|—7 d+v'

E[N ;| N1s, Ny i_1]

< GQN P + T 4 4,(Q — QT 7Y Fori > i*
< 6 <L> (Prs + T26-D) 4 g, <T1_b(i_1)> . Y — k= (T — i) > eyptt
1+A 1+A Thus, by Chebyshev inequality,
Thus, . Pr [L,(£ +7) < k]

(1/t)E[Nsi | Nig,Noia] < P+ g (T72070 4

: ) < Pr[|L(e+d) — pt > ptt — k
T1-%(-1)/1). It suffices, therefore, to show that the “er- < Prlfu(t4d) = p™ > p ]

ror term”(&i/(l + Ai))(T_a(i_l) + (1/t)T1—b(i—1)) is at < ,},#2(Z+z)—1 _ ,YILLZ+1—1 B ,},#2(Z+z)—1 5o
mostT—*% for ¢ > T*~%¢). Following a little manip- = 2 (ptti — k)2 = 2y2p20e4i) '
ulation (and assuming that*(¥) = o(T(*~1)) and using
the fact tha®; /(1 + A;) < 1), this is equivalent to show-  E[N, x]
ing that7—(*¢-1)-8(#)) < 7-2() which follows from the pit beity1
definition ofa andb. The Iower bound otf1/¢)E[N;; | > HA+py > (1 - el)L
N1 ;, N, ;_1] is obtained very similarly, and using the same - =1 2p
ﬁ(())cvd::tl)onrql onae andb. The first part of the inductive step is (1+ p)t—i*+1 Dit) _ Di(t)
plete, namely we have shown bounds on the ex- > (1 —¢;) > 7= e
pectation ofE[N; ; | Ny ;, N, ;_,] for all suitable. 2p(1 +p) (1+p) k
By a simple application of Azuma’s inequality, using the for ¢ = log, (1 + p) and
bounded differences from Lemma 7, we see that the proba-
bility that any fixedN; ; /¢, fort > T*~%(), deviates from Di(t) = ﬂ,y °(1+ p)t—i Tt
P; by more tharT=2() is at mostZ~2T)_ Thus, sum- 2p
ming over allt < T and: < T, the error probability Let;* = Llog, 2, then forj > j*,
is still of the same form. However, whens InT, the # -
boundT—%(*) becomes a constant (with the choigg) = , yp2t=i)=1
1/(i(In4)?)), and the bounds fail to be interesting.d Pr[l(£~3j) 27k < V2 (uf — pt=7)
< L < 2
3.2. Evolving copying model: The exponential case Yu(p?? = 1) = ypPtt
We now analyze the degree distribution in the evolving £[NVe, k]
exponential growth copying model. We show, 445" ' £-35° 21+
< (L+p) + (1 +p) E 2]f1
Theorem 10 j=1 =1
=j*
D (t) < E[NoA] < D2(t)’ < l((l—I—p)t_“'j*-H “ 1)+ (1+p) t L45* i
ke HE ke P = u
whereD; (t) and D,(t) are functions of, p, ¥y andd but not (1+p)to7 Lt 2t(1 4+ p)ttT"  Dy(t)

k. cis a function ofp, y andd but not oft andk. < p(1+p)t yu(l+p)f = ke’



where 4.1. Evolving copying models
2pt

Do(t) = %(1 +p) (L+p+ W)’ The following theorem shows that there are many cliques
L, in the evolving copying model with linear growth, even
usingu” > 1+p. O with constant out-degree. One can define a variant of the
This yields the corollary: linear growth copying model in which the tails of edges are
Corollary 11 Fort andk such thatﬂ;ﬁ, ﬂzcﬂ — 00, and also chosen by copying processes; for such models, we can
for anye > 0 show that there are many copies®f ;; we instead focus
Du(t) Dy(t) ONnK; 4's.

Pr|(1—e¢) 1 <Ny <(1+6=22| =1—o0(1).

ke ke Theorem 14 In the linear growth copying model with con-

Proof: The degrees of different vertices are independent Stant out-degree, fori <logt, K¢ i,a = Q(t exp(—)).
random variables. Thud/, x is the sum of 0-1 independent

random variables. O Proof: Call a vertexv, arriving at timer < ¢ aleader

if at least one of itsl out-links is chosen uniformly, i.e.,
. ) without copying. Notice that a given node is a leader with
3.3. Evolving uniform model probability1 — (1 — «)?. Call a vertex aduplicatorif it
) ] copies alld of its out-links, and note that a node is a du-
Letvy, vz, ... be the vertices added at time=1,2, ... plicator with probability(1 — «)¢. Now, consider a leader
Lemmal2 Fort’ < t, p = E[I,,,(t)] = dIn(¢/t’) and v,. Consider the epoch,, 27], (27, 41], ..., (¢/2,t]. The
Pr[(1-0)p <I,, < (1+8)u] > 1 — 2exp(—pd?/4) for probability that at least one vertex in the first epoch copies
sufficiently smalb > 0. fromv, is at leastl — HfT:TH(l —1/(r+7")) ~ 1/2,and
likewise for subsequent epochs. Thus, the expected number
of duplicators ofv, is Q(In(¢/7)). The random variable de-
noting the number of duplicators ef is concentrated about

Proof: The expected increase in in-degree-pris given
by Zfzt, d/i, which yieldsy. Also, using independence
of the choices, the distribution is concentrated around its

expectation. O its mean because each epoch is an independent event with
constant probability of contributing a duplicatoNow, v,

Corollary 13 E[N; ] = O(texp(—k/d)). and its duplicators form a complete bipartite subgragh.

Proof:  Notice that for all verticesv, . . ., V¢ exp(—&/d) then follows, fori <log#, Ky 4 = Q(texp(—)). O

the expected degree of each of them is at lekst The following theorem shows that there are a lot of

Hence, E[N; ;] = texp(—k/d) — texp(—(k — 1)/d = cliques in the evolving copying model, the exponential

O(texp(—k/d)). The degree distribution is concentrated growth case.
around the mean since each of vertices has expected degre_le
heorem 15 There are constants = ¢

very close to mean as shown in the previous lemmal (p,u) < 1and

8 = d(p,p) < 1, independent of and ¢, such that
K(t+1,4,1) = Q((1 4 p)67).

Proof: (Sketch) We condition on two events that hold with

Recall thatk; ; is a bipartite clique when all thg possi- ~ high probability: (1) For some constaht> 0 there are at
ble edges are present. Since our random graphs are directedgastb(1 + p)*~7 vertices of degree at leagt at timet;
we consider the situation when the edges are directed from(2) For some constant > 0 there are no more thar{d +
i vertices toj vertices. 7)(1 +p)* edges at time. '

In this section, we count the number of bipartite cliques ~ Letu andv be two vertices of degree at leastat time
that arise in the different graph models. We also count thet- The probability that a new edge connectto v at time
number of bipartite cliques in a directed version of the ACL t + 1 is at least
model to show that our evolving copying model is funda- ) , W
mentally different from this model. Lét (¢, 7, ) denote the g=1- <1 _ Y pdy’ > —g_H
expected number d&; ;'s present in the graph at timeln a(d +y)(1 + p)* (14 p)
many of the cases, we focus only #f{¢, 7, 7)'s. We distin-
guish the evolving copying models from the other models
by showing that in the copying models there are mafy ( _2We can e}ttain better bounds_ by considerir)gQUpIicatorspEmIors;
large cliques, while there are only very few cliques in the Lr:)lf] gorzmulatlon yields a branching process similar to thecpss of Sec-
uniform evolving model, and very few large cliques inthe srq; < 4, we can attain better bounds faf, ;. ;; for simplicity, we
ACL model. treatd as a constant.

4. Number of cliques

2j

forsomed < 4 < 1.




Partition the set oB(1 + p)*~7 vertices of degreg? into

r = (b/3)(1 + p)t~7 disjoint sets ofi vertices each. Di-

vide ther sets into two equal size groupsandW. The
probability that a given set iy and a given set i#/ are
connected by? edges at time + 1, to complete &; ; is

2
7

q .
To count disjoint cliqgues we construct uprf? cliques;
thus each set i¥ has at least/2 possible sets i to

4.3. Cliquesin the ACL model

Let K (¢, 7) denote the expected numbetfof ;'s present
in a graph. We comput& (¢, 7) in a directed version of
the ACL model. The ACL model for given,5 > 0 is
the following: assign uniform probability to all graphs tvit
N(k) = exp(a)/kP (self-loops are allowed), whe¥ (k)
is the number of nodes with out-degreelLet G = (V, E)

choose from. Thus, the expected number of disjoint cliquesPe generated according to this model. The following lemma

is at least(r/2)(1 — (1 — ¢*")™/2). Forj > t(log(1 +
p)/(2logp) +o(1)), 1 - (1 —¢")/? > 6", O

4.2. Evolving uniform model
Theorem 16 Fort > 0,: > e? + 1, K(¢,4,7) < 2.

Proof: We assumé < d. For the formation of d; ; from
verticesU = {ug,...,u;} to verticesV = {v1,...,v},
we need all of the edges emanating from each € U to

can be proved.

Lemmal7 There is a constant (slightly above 1) such
thatPr, . [(u,v) € E] < cdud, /(2F).

The following theorem shows that there are very few bipar-
tite cliques in this model.

Theorem 18 For ¢ > 2/(5 — 2), K(z, 1) is constant.

Proof: ComputingK (%, j) is equivalent to summing over
all i-tuples andj-tuples of vertices, the probability that all
the edges exist between them. &t d,, ..., d;y; be the

degrees of vertices. Notice that the maximum degree of a

link into distinct members of. For the sake of establishing  vertex in their model is given byxp(c/3) and the prob-
an upper bound on the expected number of such cliques, weybility that a vertex has degrekis given byexp(a)/dP.
willmerely insist that all of the edges emanating fromeach  Then, the expected value @ (i, 7) is upper bounded by

u; link into V, without insisting that they link into distinct

members of/. Enumerating over all choices af, v;, the
expected number is bounded from above by

[ ) @) [ @)

The above expression is an upper bound since we omit sev-
eral +1 terms (in the lower limits of the integrals, in the
denominators of the probabilities, etc.) and we let the uppe

limits of the integrals beo rather thart.
We next bound“}), the number of ways of choosifig

from vertices to the left of; by (eu;/:)?, and integrate.

The expectation is then bounded above by

4—1 \% = . _
(Z e) /ulzi /uz:ul <U2> /u7.=u7.—1 <u’>

Integrating out, the upper bound becomes

(Z'i—le)i _ (62)1
G — 11— 2)#G-2) —  li—2)(i— 1)1
< 621

In particular, even fog = 3, K(¢,¢,4) < 23 and fori >
e? 4+ 1, thisnumber isundez. O

the sum

exp & itj iog I
/ Pg ( exp(a)) G ( d) ) ( ’ )
dy,..,diyg; =1 d[ 4=1 2E =1 2B

We restrict our attention t& (z, ), in which case the sum
is upper bounded by

exp(2ia) / Ty dgy)oD)
(2E)” Ja,,...da

— exp <(2i2 + 2i)% - i2a> .

Fori > 2/(8 — 2), this quantity is constant. O

5. Further work

A number of directions for further work arise. (1) Our
models allow for the web graph to evolve by the addition
of vertices and edges; more generally, we could study mod-
els with vertex- and edge-deletion. (2) Some of our evolv-
ing models result in directed acyclic graphs; by introduc-
ing processes for deleting and re-introducing edges, ame ca
remedy this. What are the effects on the properties of the re-
sulting graphs? (3) Recent heuristic calculations [1] argu
that the web graph has a small diameter; on the other hand
observations by Brodest. al. [5] suggest that the reality
is somewhat more complicated. What light can our models



shed on this? (4) What is the size of the connected com- [13] R. Larson. Bibliometrics of the World-Wide Web:

ponents of our graph models, and how would this reconcile An exploratory analysis of the intellectual structure
with the observations of [5]? (5) What can be said of the of cyberspaceAnn. Meeting of the American Soc.
efficiency of algorithms on evolving and/or copying-based Info. Sci, 1996.

random graphs? o )
[14] A. J. Lotka. The frequency distribution of scien-

tific productivity.J. of the Washington Acad. of Sci.
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