
Hierarchical Topic Segmentation of Websites

Ravi Kumar
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089.

ravikumar @
yahoo-inc.com

Kunal Punera∗

Dept. of Electrical and
Computer Engineering

University of Texas at Austin
Austin, TX 78712

kunal @ ece.utexas.edu

Andrew Tomkins
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089.

atomkins @
yahoo-inc.com

ABSTRACT
In this paper, we consider the problem of identifying and
segmenting topically cohesive regions in the URL tree of a
large website. Each page of the website is assumed to have a
topic label or a distribution on topic labels generated using a
standard classifier. We develop a set of cost measures char-
acterizing the benefit accrued by introducing a segmentation
of the site based on the topic labels. We propose a general
framework to use these measures for describing the quality
of a segmentation; we also provide an efficient algorithm to
find the best segmentation in this framework. Extensive ex-
periments on human-labeled data confirm the soundness of
our framework and suggest that a judicious choice of cost
measures allows the algorithm to perform surprisingly accu-
rate topical segmentations.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurements

Keywords
Website Hierarchy, Website Segmentation, Tree Partition-
ing, Classification, Facility Location, Gain Ratio, KL-distance

1. INTRODUCTION
As the major established search engines vie for supremacy,

and new entrants explore a range of technologies to at-
tract users, we see researchers and practitioners alike seeking
novel analytical approaches to improve the search experi-
ence. One promising family of approaches that is generating
significant interest is analysis at the level of websites, rather
∗This work was done while the author was at Yahoo! Re-
search.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

than individual webpages. There are a variety of techniques
for exploiting site-level information. These include detect-
ing multiple possibly-duplicated pages from the same site [2,
4], determining entry points [8], identifying spam and porn
sites [18], detecting site-level mirrors [4], extracting site-wide
templates [16] and structures [25], and visualizing content at
the site level [15].

In this paper we consider site segmentation, a particular
form of site-level analysis in which a website must be seg-
mented into one or more largely uniform regions. The seg-
mentation may be performed based on the topics discussed
in each region, or based on the look and feel, or based on
the authorship, or other factors. We focus specifically on
topical segmentation, i.e., segmenting a site into pieces that
are largely uniform in the topics they discuss. Such a topical
segmentation offers many potential advantages:

(i) Various algorithms that are currently applied to web-
sites could more naturally be applied to topically-focused
segments.

(ii) Websearch already incorporates special treatment for
pages that are known to possess a given topic—for instance,
many engines provide a link to the topic in a large direc-
tory such as the Yahoo! Directory, Wikipedia, or the Open
Directory Project. These approaches can naturally be ex-
tended when several pages from a search result list lie within
a topically-focused segment.

(iii) The resultant segments provide a simple and concise
site-level summary to help users who wish to understand the
overall content and focus of a particular website.

(iv) A host such as an ISP may contain many individual
websites, and a topical segmentation is a useful input to help
tease out the appropriate granularity of a site.

(v) Website classification is a problem that has been ad-
dressed using primarily manual methods since the early days
of the web, in part because sites typically do not contain a
single uniform class. Segmentation is an important starting
point for this larger problem.

Site segmentation may be viewed from two distinct per-
spectives. First, it may be viewed as a constrained clus-
tering problem in which the allowable segments represent
constraints on the possible clusters that the algorithm may
return. At the same time, site segmentation may be viewed
as an extended form of site-level classification in which the
algorithm may choose to classify either the entire site, or
various sub-sites. The measure we propose for the quality
of a segmentation is much simpler than standard measures
from machine learning. As a result, while the problem may
be viewed as a constrained version of the NP-hard clustering

problem, or an extended version of classification that incor-
porates a search for the appropriate objects to classify, the
simple measure of segmentation quality, combined with the
class of allowable segmentations, will allow us to provide an
algorithm to return the optimal segmentation in polynomial
time. To achieve this bound, we employ a dynamic pro-
gramming algorithm that is quite different from traditional
algorithms for either clustering or classification.

One could consider many different classes of allowable seg-
mentations of a website, for example based on the hierarchi-
cal structure of the site, or based on clusters in the intra-site
link graph, or based on regions of the site that display some
commonality of presentation template, and so forth. We
will focus specifically on segmentations that respect the hi-
erarchical structure of a website, for two reasons. First, we
believe that of the many possible approaches to segment-
ing websites, hierarchy is the most natural starting point.
Site authors often think in terms of a site being made up of
several sub-sites, each of which may contain sub-structure
of its own; and the layout of pages on a website often fol-
lows a “folder” structure inducing a natural hierarchy. And
second, in many applications an individual segment must
be returned to the user in some succinct manner. Rather
than simply returning a long list of URLs located at various
positions within the site, it is desirable to return instead a
pointer to a particular sub-site.

In general, the hierarchical structure of a website may be
derived from the tree induced by the URL structure of the
site, or mined from the intra-site links or the page content of
the site. Our algorithm makes use of whatever hierarchical
information is available about a site to constrain the possible
segmentations. We show that 85-90% of sites exhibit a non-
trivial form of hierarchy based on the URL tree that can
exploited by our algorithm for segmentation. The remaining
fraction of sites might have a latent hierarchical structure
that could be mined by further analysis of intra-site links or
content, but that is beyond the scope of this paper.

Thus, our paper is on hierarchical topic segmentation (HTS):
the segmentation of websites into topically-cohesive regions
that respect the hierarchical structure of the site.

Formulation. Consider a tree whose leaves have been as-
signed a class label or a distribution on class labels, perhaps
by a standard page-level classifier. A distribution is induced
on an internal node of the tree by averaging the distribu-
tions of all leaves subtended by that internal node. These
distributions, along with a hierarchical arrangement of all
the pages in the site, are provided to the HTS algorithm.
The algorithm must return a set of segmentation points that
optimally partition the site. The objective function for the
segmentation is a combination of two competing costs: the
cost of choosing the segmentation points (the nodes) them-
selves and the cost of assigning the leaves to the closest cho-
sen nodes. Intuitively, the node selection cost models the
requirements for a node to serve as a segmentation point,
while the cohesiveness cost models how the selection of a
node as a segmentation point improves the representation of
the content within the subtree rooted at it. For example, in
a particular instance of the problem, the node selection cost
can capture the requirement that the segments be distinct
from one another and the cohesiveness cost can capture the
requirement that the segments be pure. The underlying tree
structure enables us to obtain an efficient polynomial-time
algorithm to solve the HTS problem.

To complete the overview of HTS, we provide a brief dis-
cussion of the difference between segmentation and classi-
fication. The general website classification problem tries
to assign topics to websites by employing features that are
broad and varied. A few example features for this broader
problem include the topic of each page, the internal hyper-
links on the site, the commonly link-to entry points to the
site, with their anchor-text, the general external link struc-
ture, the directory structure of the site, the link and content
templates present on the site, the description, title, and h1-6
tags on key pages on the site, and so forth. The final classes
in a website classification problem may be distinct from the
classes employed at the page level. HTS, on the other hand,
specifically focuses on aggregating the topic labels on web-
pages into subtrees according to the hierarchy of a site, in
order to convey information such as, “This entire sub-site
is about Sports.” Thus, HTS attacks the problem of deter-
mining whether and how to split the site, but is only the
beginning of a broader research problem of classifying web-
sites using rich features. The broader problem is of great
interest in both binary cases (is the site spam? is it porn?)
and multi-class cases (to what topics should I assign this
site?). We believe that a clean and elegant solution to the
HTS problem is essential to fully address the more general
site classification problem.
Summary of Contributions. We provide a rigorous for-
mulation of HTS for websites that is general enough to cap-
ture many different hierarchical topic segmentation schemes.
We show how to encode two natural requirements within our
formulation: the segments themselves should be sufficiently
‘distinct’ from each other and the webpages in a segment
should be reasonably ‘pure’ in topic. We also present a
polynomial-time algorithm to solve the HTS problem op-
timally.

We conduct an extensive set of experiments to evaluate
the performance of our algorithm with various natural cost
measures on hand-labeled as well as semi-synthetic websites.
We show that a judicious choice of the node selection cost
and cohesiveness cost can vastly improve the performance
of the algorithm.
Organization. Section 2 contains relevant work on hier-
archical classification and segmentation. Section 3 presents
the framework for the HTS problem. Section 4 contains al-
gorithm for the HTS problem as well as definitions for the
cohesiveness and node selection costs. Finally, the experi-
mental results are presented and discussed in Section 5.

2. RELATED WORK
HTS operates upon a tree-structured object with a class

distribution at each node. The goal is to segment the tree
structure into connected components that are cohesive in
terms of the class distributions. While HTS is not classifi-
cation per se, we nonetheless turn to the machine learning
community for related work on such objects. We have not
been able to find references to previous direct study of such
objects, but there are a number of related areas.
Site Level Classification. There has been some prior
work on treating websites or groups of webpages as the basic
unit of analysis [22, 30, 31]. Kriegel et al. [21, 11] present
various website classification schemes based on features ex-
tracted from the individual webpages. Some of their schemes
consider topics at individual webpages but they use these as

features for the site level classifier. They have no notion of
segmenting a website into sub-parts, and they learn models
for websites as a whole. More recent work by Tian et al. [33]
uses “hidden Markov trees” to model both the site directory
trees as well as the DOM trees of the webpages. They then
employ a two-phase system through a fine-to-coarse recur-
sion to classify the site. Sun et al. [28] propose a technique
to partition websites into “Web Units”, which are collections
of webpages. These fragments are created using heuristics
based on intra-site linkages and the topical structure within
the website is not considered.

Classification of Hierarchical Documents. There is
a rich body of literature around classification of other tree-
structured objects, including semi-structured documents in
either HTML or, more commonly, XML.

Theobald et al. [32] discuss classification of XML docu-
ments, using features that derive from the tree structure of
the XML document. However, these features are extracted
from simple types of path relationships, and are then pro-
cessed by a traditional classifier. They do not discuss the
partitioning of the XML tree based on the classification.

Diligenti et al. [10] consider classification of semi-structured
documents using a “hidden tree Markov model”, in which
each subtree is generated by a particular Markov model.
Piwowarski et al. [23] and Denoyer and Gallinari [9] con-
sider a similar model in which document trees are modeled
using Bayesian networks.

Classification using Hierarchical Models. Other re-
searchers have employed hierarchical models, not to the prob-
lem of classifying hierarchical objects, but in order to con-
sider flat objects at different levels of granularity.

Hierarchical HMM, introduced by Fine, Singer, and Tishby
[14], is a hierarchical generalization of the widely used hid-
den Markov model. Hierarchical HMMs can be useful for
unsupervised learning and modeling of complex multi-scale
structures that occur in language, handwriting, and speech;
in particular, they were used to construct hierarchical mod-
els of natural English text.

Koller and Sahami [20] show a hierarchical generative model
called tree-augmented naive Bayes. The goal is to capture
local similarities in vocabulary within a document. Blei and
Jordan [5] consider the problem of modeling annotated data
and derive hierarchical probabilistic mixture models to de-
scribe such data.

Graph-based Approaches. Finally, there are many ap-
proaches to processing of objects as nodes of a graph, where
edges denote relationship to other objects. Extensions to
our model to include hyperlinks would make use of such
techniques.

Chakrabarti et al. [6] present Hyperclass, a hyperlink-
aware classifier operating upon documents in a graph that
takes into account the classes of neighboring documents via
a technique based on Markov Blankets. This approach is
similar in spirit to our work, but their main goal was to clas-
sify documents, rather than partition the underlying graph.
Agrawal et al. [1] consider partitioning a graph so as to max-
imize the dissimilarity between the two sides. They propose
a maximum cut-version of the problem and argue that spec-
tral methods work well on their instances.

Hierarchical Partitioning. Moving beyond the purview
of machine learning, there are numerous approaches to par-
titioning hierarchical objects. Fagin et al. [12, 13] consider a

Figure 1: Two hypothetical sites with different top-
ical organization along directories.

general notion of partitioning hierarchical structures based
on a variety of different quality measures.

Our problem is closely related to the problem of facil-
ity location on trees. While the problem on general graphs
is NP-hard [19], lot of work has been done to obtain fast
exact algorithms for the facility location problem on trees
with n nodes; the goal is to find k facilities. Tamir [29] ob-
tained a dynamic programming algorithm that runs in time
O(kn2); this was an improvement over the O(k2n2) algo-
rithm of Kariv and Hakimi [19] and O(kn3) algorithm of
Hsu [17]. For some important special case distance func-
tions, the best running time bound of O(n log n) is due to
Shah and Farach-Colton [27].

3. FORMULATION
We begin this section with a brief discussion of HTS, and

then present a general mathematical formulation.

3.1 Hierarchical Topic Segmentation
Consider the problem of describing the topical content of

a website to a user. If the site is topically homogeneous
we could provide the user with the URL of the site and a
topic label representing the content. Our segmentation al-
gorithms should do exactly this. However, most sites are not
homogeneous, and in fact the organization of topics within
directories can determine the best way to summarize site
content for the user.

For instance, consider the two hypothetical websites shown
in Figure 1. The site in panel (a) contains sub-sites on differ-
ent topics, while the site in panel (b) contains a single topi-
cally coherent tree expect for a small directory deep in the
site structure. In the first case we could describe the site us-
ing the top-level directories, such as www.my-sports-site.
com/tennis, and for each such directory give its prevail-
ing topic, such as Sports/Tennis. For panel (b) on the
other hand, we could tell the user that the entire site (www.
my-cycling-site.com) is about Sports/Cycling, except that
a small piece at www.my-cycling-site.com/.../first-aid/
is about Health/First-Aid. As this example shows, it is quite
reasonable to describe a site using nested directories if this
is the best explanation for the content.

In general, we wish to make optimal use of the user’s
attention and convey as much information about the site as
possible using the fewest possible directories, i.e., internal
nodes. Hence, each directory we call out to the user should
provide significant additional information about the site.

This informal description of the problem is in terms of
explaining the contents of a website to a user. The other
application areas listed in Section 1 leverage the same frame-
work, but make use of the final description in other ways.
Generally, the goal is to return a concise segmentation of a
website into topically coherent regions.

Here we note that while in this paper we restrict ourselves
to segmentations that follow the directory (URL) tree, our
approach can be applied to any hierarchical structure within
a website. Indeed, websites with trivial URL based hierar-
chical structure, for instance dynamic pages with URLs of
the form http://mysite.com/show.php?productid=42, are
increasing in number, especially in the e-commerce domain.
However, besides being the first step to study the segmen-
tation problem, our restriction to URLs captures the vast
majority (85−90%) of websites, and allows us to study how
to make use of this key element of site structure. Our ap-
proach could be applied to the remaining websites by first
mining their latent hierarchical structure by a deeper anal-
ysis of links, content, or URL [26], but that is beyond the
scope of this paper.

3.2 Formal Definition
The natural approach to modeling a directory structure

is by a rooted tree whose leaves are individual pages.1 We
assume that there is a page-level classifier that assigns class
labels or a distribution over class labels to each page of the
directory structure. This induces a distribution on the in-
ternal nodes of the tree as well, by uniformly combining the
distribution of all descendant pages. Our notion of cohesive-
ness of a subtree will be based upon the agreement between
each leaf with the distribution at its parent. We require a
few definitions to make this notion formal.

Let T be a rooted tree with n leaves; let leaf(T) denote
the leaves of T and let root(T) denote its root. Let ∆ be
the maximum degree of a node in T . Let L be the set
of class labels. We assume that each leaf x in the tree T
has a distribution px over L, generated by some page-level
classifier. We will write px(i) to denote the probability that
leaf x has class label i. For an internal node u with leaves
leaf(u) in the subtree rooted at it we define the distribution
of labels at u as follows:

pu(i) =
1

|leaf(u)|
X

x∈leaf(u)

px(i).

A subset S of the nodes of T is said to be a segmentation
of T if, for each leaf x of T , there is at least one node y ∈
S, such that x is a leaf in the subtree rooted at y. For
example, S is always a segmentation if root(T) ∈ S. Given
a parameter k, the goal now is to find a segmentation of
size at most k whose components are cohesive. For a leaf
x ∈ leaf(T) let Sx ∈ S be the first element of S on the
ordered path from x to root(T). We will say that x belongs
to Sx, and we will define a cohesiveness cost d(x, Sx) that
captures the cost of assigning x to Sx. Further, we will define
a node selection cost c(y, S) that gives the cost of adding y
to S. The overall cost of a particular segmentation S is then

β
X
y∈S

c(y, S) + (1− β)
X

x∈leaf(T)

d(x, Sx), (1)

1If internal nodes also correspond to pages, we simply model
them using the standard “index.html” convention.

where β is a constant controlling the relative importance of
the node selection cost and the cohesiveness cost. Our algo-
rithms then find the lowest-cost segmentation, given func-
tions c(·) and d(·) representing the problem instance.

The formulation in (1) is reminiscent of the uncapaci-
tated facility location (UFL) problem in combinatorial op-
timization. In UFL, we are given a graph (V, E), a pa-
rameter k, and each vertex v has a cost c(v) and the goal
is to choose S ⊆ V with |S| = k such that

P
v∈S c(v) +P

u∈V minv∈S d(u, v) is minimized. Here, d is the graph
metric defined by E. In this most general version, UFL is
NP-hard. In our case, G is only a tree and the distance
function is more general and is not necessarily a metric.

4. SEGMENTATION ALGORITHM
Our algorithmic approach is based on a general dynamic

program that optimizes the objective function of (1). This
dynamic program works for any cohesiveness cost d(·) and
node selection cost c(·). It runs in time O(k2nd). After
describing the dynamic program, we then present a set of
candidate cohesiveness costs and node selection costs. We
compare these different approaches empirically in Section 5.

4.1 A Generic Algorithm
The idea behind the dynamic program is the following.

Given a subtree whose root has δ children, the optimal way
of adding at most k nodes from the subtree to the segmenta-
tion must follow one of two patterns. In the first pattern, we
add the root of the subtree and then recurse on the children
with a budget of k − 1. In the second pattern, we do not
include the root of the subtree, and instead recurse on the
children with a budget of k. A naive way of implementing
the recursion would result in segmenting k (or k − 1) into δ
pieces in all possible ways. This is expensive, if δ � 2. To
circumvent this, we show a simple transformation that will
convert the tree to binary, without changing the optimum.

Construct a new tree from the original tree T in the fol-
lowing way, starting from root(T). Suppose y is an internal
node of T with children y1, . . . , yδ and δ > 2. Then, this
node is replaced by a binary tree of depth at most lg δ with
leaves y1, . . . , yδ. The cost c(·) of y, y1, . . . , yδ are the same
as before and the cost of the newly created internal nodes
are set to ∞; this is so that they never get selected in any
solution. The construction is recursed on each of y1, . . . , yδ.
It is easy to see that the optimum solution of (1) on the new
tree is the same as on T . Furthermore, the size of the new
tree at most doubles and the depth of the tree increases by
a factor of lg ∆, where ∆ is the maximum degree of a node
in T . This construction has been used previously; see for
instance [12, 29].

From now on, we will assume that the tree is binary. Let
S denote the current solution set. Let C(x, S, k) be the cost
of the best subtree rooted at node x using a budget of k,
given that S is the current solution. Recall that Sx, if it
exists, is the first node along the ordered path from x to the
root of the tree T in the current solution S. If Sx exists,
then all x′ ∈ leaf(Tx) (leaves in the subtree under x) can
always be covered by Sx, each with cost d(x′, Sx).

Let x1, x2 denote the two children of x. The update rule
for the dynamic program is given by

C(x, S, k) = min

8>><>>:
mink

k′=1(C(x1, S, k′)
+ C(x2, S, k − k′))

c(x, S) + mink−1
k′=1(C(x1, S ∪ {x}, k′)

+ C(x2, S ∪ {x}, k − k′ − 1)).
(2)

The top term corresponds to not choosing x to be in S and
the bottom term corresponds to choosing x to be in S.

The base cases for the dynamic program are

• C(x, S, k) where x ∈ leaf(T). If we forbid including
leaves in the solution and Sx doesn’t exist, we set this
cost to be ∞. If leaves of T are permitted to be part
of the solution, the cost is given by

C(x, S, k) =

min{c(x, S), d(x, Sx)} if Sx exists
c(x, S) otherwise

(Note that if exactly k nodes are desired, then we can
set C(x, S, k) to ∞ whenever k > 1.)

• C(x, S, 0), where the cost is given by

C(x, S, 0) =

 P
x′∈leaf(Tx)

d(x′, Sx) if Sx exists
∞ otherwise

This corresponds to assigning all nodes in the subtree
Tx to the node Sx, if it exists, since we are out of
budget in this case.

The dynamic program is invoked as C(root(T), ∅, k). There
are knd lg ∆ entries in the dynamic programming table and
each update of an entry takes O(k) time as given by (2). So,
the total running time of the dynamic program is O(k2 · n ·
d · lg ∆). Note that in the dynamic program, we compute
c(x, S) in terms of a partial solution set S that has been
constructed so far and not in terms of the final solution set
S as indicated in (1); however, since c(x, S) depends only
on the elements in S that are on the path from x to root(T)
and since we compute S top down, these are equivalent.

Proposition 1. The above algorithm solves the optimiza-
tion problem in (1). The running time of the algorithm is
O(k2 · n · d · lg ∆).

Notice that the node selection cost c(·) is helpful to incor-
porate heuristic choices and requirements. For instance, we
might want to ensure that if two nodes, one of which is a par-
ent of the other, are chosen in the solution, then they are
guaranteed to have different distributions. This is accom-
plished by setting c(·) for the child node to be sufficiently
high in such situations.

4.2 Cost Measures
We now suggest some different variants of the node selec-

tion cost c and the cohesiveness cost d that appear in (1).
The different choices of these functions result in algorithms
that make different trade-offs and are optimized for different
conditions.

4.2.1 Cohesiveness Costs
We propose three cohesiveness costs that capture the pu-

rity of a topical segment. The first cost is based on infor-
mation theory and the next two are geometric in nature.

KL-cost measure. This cost measure is based on the
Kullback–Leibler divergence in information theory. For ev-
ery page x and the node Sx to which it belongs we define
the cost of the assignment to be

d(x, Sx) = KL(px ‖ pSx) =
X
`∈L

px(`) log

„
px(`)

pSx(`)

«
.

The KL-divergence or the relative entropy of two distribu-
tions px and pSx over an alphabet L is the average number
of extra bits needed to encode data drawn from px using a
code derived from pSx . This corresponds to minimizing the
wastage in description cost of leaves of the tree using the
internal nodes that are selected. This properties make the
KL-divergence an intuitive choice for the cohesiveness cost.
Squared Euclidean cost measure. The distance be-
tween a leaf x (webpage) and an internal node Sx (directory)
can be computed using the squared Euclidean distance be-
tween the corresponding class distributions. Therefore,

d(x, Sx) = ‖px − pSx‖
2 =

X
`∈L

|px(`)− pSx(`)|2.

The sum of squared Euclidean cost has previously been ex-
tensively used in many applications.
Cosine cost measure. Drawing from information retrieval,
the negative cosine dissimilarity measure may be employed
as a cohesiveness cost, as follows:

d(x, Sx) = −〈px, pSx〉 = −
X
`∈L

px(`)pSx(`).

The cosine cost measure has previously been successfully
used for clustering documents [3].

4.2.2 Node Selection Costs
Having presented three possible cohesiveness costs d(·),

we turn now to the node selection cost c(·), representing the
penalty for adding a new element into S. Our goal is to
penalize a new node if it provides little information beyond
its parent. We propose a cost measure to implement this
condition, which we call the α-measure. This cost measure
in the context of decision tree induction was introduced by
Quinlan [24] and is referred to as information gain ratio. It
is defined as follows.

Let T be a tree consisting of subtrees T1, . . . , Ts. Say we
wish to encode the label of a particular leaf of T , and are al-
lowed two possible encoding schemes. In the first scheme, we
simply communicate the label using an optimal code based
on the distribution of labels in T . In the second scheme, we
first communicate whether or not the designated leaf lies in
T1, and then encode the label using a tailored code for either
T1 or T \T1 as appropriate. The second scheme corresponds
to adding T1 to the segmentation. Its overall cost cannot be
better than the first, but if T1 is completely distinct from
T \ T1 then (and only then) the cost of the second scheme
will be equivalent to the first. Let p1 = |T1|/|T | be the prob-
ability that a uniformly-chosen leaf of T lies in T1. Then the
cost of communicating whether a leaf lies within T1 is H(p1).
In the worst case, T1 will look identical to T \ T1 and the
second scheme will actually be H(p1) bits more expensive
than the first: the information about the subtree provides
no leverage to the user. We may therefore characterize the
value of subtree T1 relative to its parent by asking where
on the scale between H(T) and H(T) + H(p1) the cost of

Figure 2: Cumulative distribution of number of can-
didate segments for all sites in our sample and for
the sites we sampled for manual segmentation.

the second scheme lies. With this intuition in mind, we now
provide the formal definition of the cost measure.

Let x denote the current node we are considering adding
to the solution S. Recall that Sx is its nearest parent that
is already a part of the solution S. We assume Sx ex-
ists (we will discuss this restriction further below) and for
simplicity, denote Sx by y. Then let x′ be a hypotheti-
cal node such that leaf(Tx′) = {leaf(Ty) \ leaf(Tx)}, i.e.,
the leaves under the subtree rooted at y but not x. Let
n = |leaf(Ty)|, nx = |leaf(Tx)|, and nx′ = |leaf(Tx′)|. Here,
the split cost is H2(nx/n), the binary entropy. Then, the
α-measure is defined to be

α(x, y) =
(nx/n)H(x) + (nx′/n)H(x′) + H2(nx/n)−H(y)

H2(nx/n)

It can be seen that α takes values between 0 and 1, with
lower values indicating a good split. The cost of adding a
node to the solution is then

c(x, S) = c(x, y) = α(x, y) · nx.

One requirement of using α-measure in the dynamic pro-
gram is that we always need to select the root of T , i.e.,
root(T) ∈ S, in order to compute the cost of adding addi-
tional internal nodes. The requirement is not entirely unrea-
sonable since the root directory of most sites contain a large
number of files that cannot be made part of the solution on
their own right and need the root to cover them.

5. EXPERIMENTS
In this section we evaluate our algorithms on their ability

to segment sites obtained from the World Wide Web. First,
Section 5.1 describes the hand-labeled and semi-synthetic
benchmark datasets we created, and Section 5.2 gives an
overview of the experiments we run based on these bench-
marks. Then in Section 5.3 and Section 5.4 we study the
performance of our algorithm on both the benchmarks. In
Section 5.5, we study the performance of the three cohesive-
ness cost measures with and without the node selection cost
based on α-measure.

5.1 Website Segments: Obtaining Labeled Data
We used a page-level classifier available within Yahoo!

that classifies pages into a taxonomy of 90 topics selected
from the Yahoo! directory. From the site listings of these

90 topics we picked a random set of 2150 sites. For each of
these sites we fetched all the URLs indexed by Yahoo!, (up
to a maximum of 1000 per site) and applied the classifier
in order to determine their assigned category labels. The
category labels have an associated confidence measure that
is ignored for the purposes of these experiments.

Hence, a site is represented by a set of URLs, each of
which is labeled by one of 90 topics. In the URL tree cor-
responding to a particular website, a candidate segment is
defined as a node of the tree that has at least 1% of the to-
tal pages on the site under its subtree. In Figure 2 we plot
the cumulative distribution of sites with different numbers
of candidate segments. As we can see almost 25% of all sites
have fewer than 5 nodes that can be selected as segments,
and more than 50% have less than 15. We should note that
in order to avoid uninteresting solutions to the HTS prob-
lem, we only consider sites that have at least two candidate
nodes and more than 300 pages.

From this dataset, we generated two benchmark datasets.
We refer to the first set as the hand-labeled website seg-
ments; this set contains 100 sites manually segmented into
topically-cohesive regions. We refer to the second set as
semi-synthetic website segments; it contains 1750 synthetically-
generated websites. Each such site is created by artificially
grafting together uniform regions from varying numbers of
other websites, thus representing a benchmark with an un-
ambiguous, known segmentation. We now describe the cre-
ation of each benchmark dataset in more detail.
Hand-Labeled Website Segments. We randomly sam-
pled and manually segmented 100 websites from the Ya-
hoo! directory. While sampling the sites around 10% were
deemed to have a trivial directory structure based on URLs
and were skipped. The cumulative distribution of the num-
ber of candidate segments in sites we labeled is plotted in
Figure 2. As seen, only 10% of sites sampled for labeling
have fewer than 5 candidate segments as compared to nearly
25% of the set of randomly sampled sites. Hence, while
skipping websites with no directory structure we biased our
sample towards sites that have larger number of candidate
segments. This serves our purpose of robust evaluation of
our approach as segmenting sites with very few candidate
segments is a trivial and uninteresting task. Of 100 web-
sites that were segmented 74 were segmented into two or
more parts while the rest were labeled completely homoge-
neous (only one segment at the root directory). Among the
former set of websites, the average number of segments per
site was around 7, with the maximum being 18.

The criteria employed for manually selecting segments
were the following. We always assumed that one segment is
anchored at the root-level directory of the site; this was done
to ensure complete coverage of all webpages. Subsequently,
any directory that contained pages on a topic different from
the aggregated topics at the root directory of the site was
selected as a segment. We avoided selecting segments that
were smaller than 1% of the site’s size and those that were
immediately enclosed within another segment on the same
topic. These criteria were chosen to model the requirements
mentioned in Section 3.1.
Semi-Synthetic Website Segments. The hand-labeled
data can be used to measure our algorithm’s ability to de-
tect website segments as identified by humans. However,
in order to perform more controlled evaluation of the algo-
rithm’s behavior we created a dataset with semi-synthetic

segments. For this purpose we used the 26 sites that were
manually labeled as homogeneous. We created a new site T ′

from site Ta by grafting k subtrees, from another set of sites
T1, T2, . . . , Tk, to internal directories of Ta. Since Ta and Ti

are all relatively homogeneous w.r.t. topics, the new site
tree T ′ should have k + 1 segments (including the root di-
rectory), one from each of its constituent sites. We can now
test our algorithms by measuring how many of the k+1 seg-
ments they discover. Certain precautions were taken while
creating these hybrid sites. We only grafted subtrees that
had 20 to 100 leaves under them. This ensures that the
grafted subtree is larger than 1% of the hybrid site’s size
and that the grafted content doesn’t overwhelm the existing
content of Ta. If that happens, our algorithms might create
segments of subtrees from the original Ta as they will now
be significantly different from the topic distribution at the
root directory. We created 7 such datasets for k = 1, . . . , 7,
each with 250 hybrid sites.

5.2 Measuring Segmentation Performance
We detail our methodology and metrics. In Section 3.2

we hypothesized that the “correct” segmentation (including
the number of segments) can be detected by finding the k
that minimizes (1). We perform experiments on the hand-
labeled as well as semi-synthetic datasets to verify whether
this hypothesis holds. All experiments are run to select at
most k′ = 30 segments from the set of candidate segments
(nodes with at least 1% of website’s webpages under them).
The root always selected as a segment. As the final number
of segments in solutions can vary, the best way to report
results is by computing the precision and recall w.r.t. to the
manually labeled segments, i.e., the true solution. The pre-
cision of a solution is the fraction of segments in the solution
that were identified by our human judges as appropriate seg-
mentation points. Similarly, the fraction of hand-identified
segments that are found by the algorithm represents the
recall of its solution. The f-measure—the harmonic mean
2pr/(p + r) of the precision p and recall r—can be used to
report the quality of a solution as a single number. For each
combination of cohesiveness cost and node selection cost,
by varying β we can obtain solutions with different preci-
sion and recall values. We expect that configurations with
high β would be very conservative in the number of segments
they find, since they bias the cost function in (1) towards
not adding a node. Hence, these configurations should have
high precision but low recall. We expect the opposite be-
havior for low β values, with these configurations achieving
low precision and high recall scores.

5.3 Performance on Semi-Synthetic Benchmark
The precision–recall curves for the performance of differ-

ent cohesiveness and node selection cost combinations over
the semi-synthetic websites are plotted in Figure 3. The pre-
cision and recall values on the plot are averaged over all the
7 datasets with k = 1, . . . , 7. These curves were computed
by varying β from 0 to 1 in increments of 0.1. It can be seen
that as we increase the value of β from 0 to 1, the curves
move from the area of low precision, high recall to the area
of high precision, low recall. On the plot we identify β val-
ues that provide good trade-off for the three combinations
of cost measures. For KL+Alpha, β = 0.8 results in a pre-
cision/recall value of 0.94/0.94, while for Euclidean+Alpha
and Cosine+Alpha the values at β = 0.5 are 0.94/0.91 and

Figure 3: Precision–recall curves (with varying β)
over the semi-synthetic benchmark. The values are
averaged over all hybrid sites created (over different
number of grafts settings).

Figure 4: Precision–recall curves (with varying β)
obtained by using KL+Alpha cost measures over the
semi-synthetic benchmark. Different curves corre-
spond to different number of grafts.

0.94/0.85 respectively. This shows that in the case semi-
synthetic websites, all three cost combinations are able to
find the correct number of segments and their locations.

Figure 4 plots the precision–recall curves of the KL+Alpha
algorithm on semi-synthetic sites with varying number of
grafts separately. Here we plot the data for k = 1, 3, 5, 7.
We can see that the behavior of all the curves is similar,
with best precision–recall trade-off at β = 0.8. The only
difference between the four curves is at β = 0, 1. This is
because when β = 0, the algorithm adds a large number of
segments to the solution and hence the precision suffers for
all curves. But number of true segments is different for each
curve causing a different lowest precision value. Similarly,
the lowest value of recall attained depends on the number of
true segments and hence this value is lower for k = 7 than
for k = 1. Finally, the best precision–recall values obtained
are around 0.94/0.94 for all curves.

5.4 Performance on Hand-Labeled Benchmark
We consider the more difficult task of segmenting actual

websites obtained from the World Wide Web. Figure 5 plots
precision–recall curves for the performance of different cohe-
siveness and node selection cost combinations over the hand-

Figure 5: Precision–recall curve (with varying β)
over the hand-labeled websites.

Figure 6: Cumulative distribution of the absolute
error in the number of segments detected for the
hand-labeled websites.

labeled dataset. These curves were computed by varying β
from 0 to 1 as in Section 5.3. On the plot we identify β values
that provide reasonable trade-off of precision and recall for
the three combinations of cost measures. For the KL+Alpha
combination, β = 0.8 results in a precision–recall value of
0.79/0.62, while for Euclidean+Alpha and Cosine+Alpha
the values at β = 0.3 are 0.76/0.69 and 0.8/0.67 respec-
tively. The curves in Figure 5 show that for a robust set of
values of β our algorithm produces very good segmentations
of websites.

Now that we have seen that the algorithm finds more or
less the correct segments, lets take a closer look at how well
the algorithm performs in estimating the “correct” number
of segments. Figure 6 shows the cumulative distribution of
error in the number of segments detected. Here, the mag-
nitude of error is the absolute difference in the number of
segments found by our algorithm and the manual labeling.
As seen, our algorithm finds the correct number of segments
in nearly 40% of the cases and for more than 70% of cases
the number of segments found is within ±2 of the number of
manually labeled segments. Furthermore, the performance
of all three cost combinations is very similar.

Comparing with performance on semi-synthetic web-
sites. The results in Figure 5 are similar to those for semi-
synthetic benchmarks (Figure 3) in that the curves move
from the area of low precision, high recall to the area of
high precision, low recall as we increase β. There are, how-
ever, a couple of differences; the “knee” of the curves is
more prominent and precision–recall values are higher for
the semi-synthetic dataset.

Figure 7: Adjusted Omega score obtained over the
hand-labeled websites (with more than one true seg-
ment) for different values of β.

Figure 8: The averaged f-measure of segmentation
found by the algorithm for websites with different
number of segments in the labeled solution.

These differences can be explained by pointing out that
the true segments are much more unambiguously defined
in the case of the semi-synthetic websites than the hand-
labeled ones. In other words, in the case of semi-synthetic
websites the benefit of adding a graft as a separate segment
is much higher than the benefit of adding a subtree of Ta

(see Section 5.1) as a segment to the solution. This makes
it easier to distinguish the true segments from Ta and hence
we obtain very high precision and recall values. In the case
of real websites, the benefit of adding nodes as segments are
often very close to each other and in many cases the segment
boundaries are fuzzy. Hence, even though we get fairly high
values of precision and recall, there is a large range of β
values over which the precision–recall trade-off is good.

A relaxed performance criterion. The precision–recall
curves plotted above take into account only segmentation
points (directories), and treat even small differences in seg-
mentation boundaries as total errors. Two segmentations
with slightly different boundaries are equally acceptable if
these differences do not impact too many webpages. Here we
evaluate our algorithms using a measure that considers the
context of segments as well as the segmentation points: the
Omega measure, which has been previously used for compar-
ing overlapping clusterings [7]. The solutions found by our
algorithms can be considered overlapping clusterings, with
each segment in the solution acting as a cluster and each
webpage belonging to all segments on its path to the root.
In this context, the Omega measure computes the fraction of
pairs of webpages that occur together under the same num-
ber of segments in both the segmentation being evaluated
and the manually created segmentation. In Figure 7, we

Figure 9: The fraction of runs in which all grafts in
the hybrid tree were found vs number of grafts.

plot the Omega measure adjusted so that the expected per-
formance value of a random segmentation is zero. Hence, a
value of 0.5 can be interpreted as meaning that the segmen-
tation under evaluation shows a 50% agreement with the
manual segmentation, over and above any agreement that
can be expected due to chance. The results in this plot are
similar to the results in Figure 5, though with the higher
recall (low β) region translating to slightly higher omega
scores. The interesting point to note is that while the best
performance of all cost measure combinations is similar, the
KL+Alpha combination has the desirable property of giving
good results over a much larger range of β than the other
two cost measures.
Performance variation with number of segments.
Here we want to evaluate our algorithm’s performance on
tasks of varying difficulty. In general, it is easier for the al-
gorithm to find all the labeled segments in a site-tree if the
number of segments is small. A partial reason is that the
variance in the manual segmentation of site-trees increases
as the number of prospective segments increases. Relatively
cohesive sites with few directories of topically different con-
tent are easy for a human (and our algorithms) to segment.
In Figure 8 we plot the f-measure of the segmentation found
by our algorithm for websites in the hand-labeled set with
different number of segments. From the plot we see that
as the number of segments in the true solution increases,
the f-measure drops to around 0.6 for both Euclidean and
Cosine cohesiveness cost measures. The performance of the
KL+Alpha combination, however, decreases significantly as
the number of segments in the solution increases.

5.5 Exploring the Role of α-Measure
The α-measure acts as a regularization term in our objec-

tive function and is necessary to discover the correct number
of segments. In this section we want to evaluate whether
the α-measure also plays a role in the selection of good seg-
ments, or at least in avoiding bad candidates. For this ex-
periment we use our algorithm to segment the website trees
in the semi-synthetic dataset into a specified number of seg-
ments. The intuition behind these experiments is that since
the number of segments is fixed, the α-measure will only be
able to affect the specific segments selected for the solution
and not how many are selected. This will give us a way
to compare solutions obtained with and without the use of
α-measure to determine its impact. The reason we use the

Figure 10: The recall of grafts in the hybrid tree vs
number of grafts.

semi-synthetic dataset is because unlike the hand-labeled
dataset, here the number of true segments is well-defined.

As stated in Section 4.1, our algorithm can be modified
to work when the number of segments is fixed a priori. We
used this modified algorithm to segment each tree into k′ =
k + 1 segments (number of grafts plus the root). The β
value used for KL+Alpha combination was 0.8, while for
Euclidean+Alpha and Cosine+Alpha it was 0.3. To run our
algorithm without the α-measure, β was set to 0. Results
for each different value of k are summarized in Figures 9 and
10. Each point in the plot is averaged over 250 websites.

Figure 9 plots the average fraction of sites (out of 250) for
which all the graft points in the hybrid tree were detected by
the algorithm as a function of the number of grafts (k). As
we increase the number of grafts, the difficulty of identify-
ing all the grafts increases and the fraction of sites perfectly
segmented decreases. All cost measure combinations other
than Cosine perform almost identically for k = 1, but as we
increase k, their performance numbers diverge significantly.
In all cases, techniques that use the α-measure perform bet-
ter than their counterparts that don’t. Moreover, as the
difficulty of the task increases, the decrease in accuracy of
techniques using α-measure is gentler.

Figure 10 plots the fraction of total grafts that were dis-
covered (recall) by the algorithm for each value of k. The
root segment of the hybrid tree, which is always detected, is
not considered a graft and hence not counted in the fraction
of grafts detected. As we can see, in spite of the fact that
performances in Figure 9 fall drastically as k is increased,
the values in Figure 10 stay relatively the same. This shows
that even though the algorithms aren’t able to segment the
entire hybrid tree perfectly as the problem becomes harder,
they do discover most of the segments. As in the earlier ex-
periments, techniques that employ the α-measure perform
better than their counterparts that do not. These two ex-
periments show that the α-measure is useful not just in reg-
ulating the size of the solution but also in identifying the
“correct” segments when the solution size is specified.

6. CONCLUSIONS
We considered the problem of identifying and segmenting

topically cohesive regions in the URL tree of a large web-
site. We developed a general framework to use various cost
measures for describing the quality of a segmentation; we
also provided an efficient algorithm to find the best segmen-

tation in this framework. Our experiments on hand-labeled
and semi-synthetic benchmarks confirm the soundness of our
framework and suggest that a judicious choice of cost mea-
sures can improve significantly improve precision/recall. In-
teresting future work includes extending our framework and
algorithms to deal with general graphs, especially those in-
duced by hyperlinks.

7. REFERENCES
[1] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu.

Mining newsgroups using networks arising from social
behavior. In 12th WWW, pages 529–535, 2003.

[2] D. J. Aumueller. A tool for gathering, analysing,
exporting, and visualizing the structure of a website.
Master’s thesis, University of Leeds, Institute of
Communications Studies, 2003.

[3] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra.
Clustering on the unit hypersphere using von
Mises–Fisher distributions. JMLR, 6:1345–1382, 2005.

[4] K. Bharat, A. Broder, J. Dean, and M. R. Henzinger.
A comparison of techniques to find mirrored hosts on
the WWW. JASIS, 51(12):1114–1122, 2000.

[5] D. Blei and M. Jordan. Modeling annotated data. In
26th SIGIR, pages 127–134, 2003.

[6] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced
hypertext classification using hyperlinks. In SIGMOD,
pages 307–318, 1998.

[7] L. M. Collins and C. W. Dent. Omega: A general
formulation of the rand index of cluster recovery
suitable for non-disjoint solutions. Multivariate
Behavioral Research, 23(2):231–242, 1988.

[8] N. Craswell, D. Hawking, and S. Roberston. Effective
site finding using link anchor information. In 24th
SIGIR, pages 250–257, 2001.

[9] L. Denoyer and P. Gallinari. Bayesian network model
for semi-structured document classification.
Information Processing and Management,
40(5):807–827, 2004.

[10] M. Diligenti, M. Gori, M. Maggini, and F. Scarselli.
Classification of HTML documents by hidden
tree-Markov models. In 6th ICDAR, pages 849–853,
2001.

[11] M. Ester, H.-P. Kriegel, and M. Schubert. Web site
mining: A new way to spot competitors, customers
and suppliers in the world wide web. In 8th KDD,
pages 249–258, 2002.

[12] R. Fagin, R. Guha, R. Kumar, J. Novak,
D. Sivakumar, and A. Tomkins. Multi-structural
databases. In 24th PODS, pages 184–195, 2005.

[13] R. Fagin, P. Kolaitis, R. Kumar, J. Novak,
D. Sivakumar, and A. Tomkins. Efficient
implementation of large-scale multi-structural
databases. In 31st VLDB, pages 958–969, 2005.

[14] S. Fine, Y. Singer, and N. Tishby. The hierarchical
hidden Markov model: Analysis and applications.
Machine Learning, 32(1):41–62, 1998.

[15] D. Gibson. Surfing the web by site. In 13th WWW,
pages 496–497, 2004.

[16] D. Gibson, K. Punera, and A. Tomkins. The volume

and evolution of web page templates. In 14th WWW,
pages 830–839, 2005.

[17] W. L. Hsu. The distance-domination numbers of trees.
Operations Research Letters, 1:96–100, 1982.

[18] S. D. Kamvar, M. T. Scholsser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in P2P networks. In 12th WWW, pages 640–651, 2003.

[19] O. Kariv and S. L. Haikim. An algorithmic approach
to network location problems, part II: p-medians.
SIAM J. on Applied Mathematics, 37:539–560, 1979.

[20] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In 14th ICML, pages
170–178, 1997.

[21] H.-P. Kriegel and M. Schubert. Classification of
websites as sets of feature vectors. In IASTED Intl.
Conf. on Databases and Applications, pages 127–132,
2004.

[22] J. Pierre. Practical issues for automated
categorization of web sites. In ECDL 2000 Workshop
on Semantic Web, 2000.

[23] B. Piwowarski, L. Denoyer, and P. Gallinari. Un
modèle pour la recherche d’information sur des
documents structurés. In 6th Journées internationales
d’Analyse statistique des Données Textuelles, 2002.

[24] J. R. Quinlan. Induction of decision trees. In J. W.
Shavlik and T. G. Dietterich, editors, Readings in
Machine Learning. Morgan Kaufmann, 1990.
Originally in Machine Learning 1:81–106, 1986.

[25] F. Ricca and P. Tonella. Web site analysis: Structure
and evolution. In 16th ICSM, pages 76–86, 2000.

[26] U. Schonfeld, Z. Bar-Yossef, and I. Keidar. Do not
crawl in the dust: Different urls with similar text. In
15th WWW, 2006.

[27] R. Shah and M. Farach-Colton. Undiscretized
dynamic programming: Faster algorithms for facility
location and related problems on trees. In 13th SODA,
pages 108–115, 2002.

[28] A. Sun and E.-P. Lim. Web unit mining: finding and
classifying subgraphs of web pages. In 12th CIKM,
pages 108–115, 2003.

[29] A. Tamir. An o(pn2) algorithm for the p-median and
related problems on tree graphs. Operations Research
Letters, 19:59–64, 1996.

[30] L. Terveen, W. Hill, and B. Amento. Constructing,
organizing, and visualizing collections of topically
related web resources. ACM Transactions on
Computer-Human Interaction, 6(1):67–94, 1999.

[31] M. Thelwall and D. Wilkinson. Finding similar
academic web sites with links, bibliometric couplings
and colinks. Information Processing and Management,
40(3):515–526, 2004.

[32] M. Theobald, R. Schenkel, and G. Weikum. Exploiting
structure, annotation, and ontological knowledge for
automatic classification of XML data. In 6th WebDB,
pages 1–6, 2003.

[33] Y. Tian, T. Huang, W. Gao, J. Cheng, and P. Kang.
Two-phase web site classification based on hidden
Markov tree models. In IEEE/WIC International
Conference on Web Intelligence, pages 227–236, 2003.

