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ABSTRACT
In this work we study the dynamics of geographic choice, i.e., how
users choose one from a set of objects in a geographic region. We
postulate a model in which an object is selected from a slate of can-
didates with probability that depends on how far it is (distance) and
how many closer alternatives exist (rank). Under a discrete choice
formulation, we argue that there exists a factored form in which
unknown functions of rank and distance may be combined to pro-
duce an accurate estimate of the likelihood that a user will select
each alternative. We then learn these hidden functions and show
that each can be closely approximated by an appropriately parame-
terized lognormal, even though the respective marginals look quite
different. We give a theoretical justification to support the presence
of lognormal distributions.

We then apply this framework to study restaurant choices in map
search logs. We show that a four-parameter model based on com-
binations of lognormals has excellent performance at predicting
restaurant choice, even compared to baseline models with access to
the full (densely parameterized) marginal distribution for rank and
distance. Finally, we show how this framework can be extended to
simultaneously learn a per-restaurant quality score representing the
residual likelihood of choice after distance and rank have been ac-
counted for. We show that, compared to a per-place score that pre-
dicts likelihood without factoring out rank and distance, our score
is a significantly better predictor of user quality judgments.

1. INTRODUCTION
We consider the problem of modeling geographic choice: how

users choose one among a set of objects in a geographic region. We
study this problem and postulate a general model by analyzing a
large maps query log for directions to the single-largest consumer
business type [38]: restaurants. More specifically, for each request
for directions to a particular restaurant, we consider that restaurant
as the chosen one among all possible alternatives in the region.

The list of important covariates on restaurant choice is long and
well-studied. Restaurant choice can be affected by cuisine type,
price, quality, and other venue-specific metadata. Breaking reviews
or word of mouth may lead to local bursts of activity. Group social
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dynamics may play a significant role. These factors are similar to
ones affecting people’s choices over various consumer products and
have been relatively well-studied. But choices over geo-entities like
restaurants must also take into account the actual physical locations
of the candidate restaurants under consideration. The most obvious
contribution comes from the distance between the user and a partic-
ular candidate. However, the likelihood of selecting a restaurant at
a particular distance must also depend critically on the nature of the
other candidates. A restaurant 5km from the user in Tokyo is van-
ishingly likely to be selected, while another restaurant at the same
distance in Iowa may be the overwhelmingly most likely choice.

Our goal in this paper is to study how these different factors op-
erate, rather than to optimize prediction accuracy by incorporating
as many features as possible. While we do give specific functional
forms for transformations by which these factors should be incor-
porated into general place recommendation systems, this work is
not a proposal for a place recommender.

1.1 Distance, rank, and popularity
We now describe the three key factors we study in more detail.

First, we consider the absolute distance to the restaurant. Second,
to capture a candidate’s role relative to alternatives, we consider
the number of these alternatives that are closer to the user; we use
rank to denote this number. Finally, after a detailed study of rank
and distance, we incorporate a per-restaurant residual popularity
score to improve the prediction; we believe this score has value in
its own right as a measure of quality. The score may be viewed as
the residual likelihood of an object to be chosen after distance and
rank have been accounted for.

There is a significant body of work studying the dynamics of
geographic choice. Much of this work focuses on the distance to
each object, and in many cases falls under the rubric of “gravity
laws,” in which the desirability of an object at a particular distance
is proportional to an inverse polynomial function of the distance;
see the book [10]. We will show that predictions of geographic
choice based on distance alone is insufficient.

Alternative proposals based on rank rather than distance, dating
back to Stouffer’s original proposals from 1940 [34], have shown
improvements in predictive power. Noulas et al. [24] have observed
a good fit between the rank of a destination and the probability of
its selection, showing that the log of the probability drops inversely
with the log of the rank of the object. In the context of restaurants,
we observe the same form as theirs roughly from rank 150 and
above, but for lower ranks, the marginal likelihood drops slower
than what they observed. While there may be more sophisticated
approaches to predicting based on distance, our baseline measures
show rank alone outperforming distance alone. Consistent with pre-
vious work, we observe that rank, as an implicit measure of the
competitive landscape, provides good predictions of choice.



However, the form of the rank marginal varies when we stratify
by the density of restaurants in the area of the query, suggesting that
predictions based solely on rank are limited in the accuracy they can
attain. We provide evidence to suggest that human decision making
involves an interplay of both rank and distance and that simply con-
sidering rank, either alone or bucketed by average density, will not
suffice. Our proposed model captures this interplay with only four
parameters, and significantly outperforms dense models based on
the entire marginal distributions of rank or distance.

Thus, a natural approach to predict the likelihood of selecting a
particular candidate restaurant is to use its rank, distance, or other
features. One could imagine a function of rank, distance, cost, cui-
sine, etc., that returns the likelihood of a restaurant being selected.
However, this approach is problematic, as the likelihood of select-
ing a restaurant depends on not just the restaurant’s features but
also the attractiveness of the alternatives. To address this issue, we
propose a simple model based on modeling an intrinsic desirability
of each option and normalizing across different alternatives via a
discrete choice framework.

1.2 A discrete choice model
The appropriate formulation, therefore, is slightly more general:

given a set of alternatives with their features, determine a distribu-
tion over the alternatives so as to maximize likelihood of the data.
We derive such a distribution by making a simplifying assumption.
R. Duncan Luce in 1959 [20] formulated the Choice Axiom, which
states that a user’s likelihood to select an object A over object B is
unaffected by the nature of the other alternatives. While this axiom
is likely not strictly true for geographic choice in general, it pro-
vides a good approximation that yields a valuable functional form
for our analysis. Luce’s Choice Axiom implies that each alterna-
tive i may be assigned a score si such that Pr[user chooses i] =
si/
∑
j sj , i.e., the user’s likelihood to choose i is proportional to

si, but with a normalization factor that depends on the alternatives.
Hence, an object with some set of features might be likely in one
setting but unlikely in another, even though the score is unchanged,
because the stronger alternatives of one setting provide a larger nor-
malizing constant.

We must therefore determine the form of the score si of object i.
To begin, we will express this as a function of the rank and distance
of i with respect to the user; later, we will introduce the concept
of i’s overall quality. Consider a situation in which a user selects
object i from a set of alternatives. Our challenge will lie in teas-
ing apart the relative contribution of i’s distance versus its rank,
or some complex element of their interplay. We make a simplify-
ing assumption that will be borne out by our analysis: the score si
of object i, occurring with rank r at distance d, may be written as
si = fr(r) · fd(d), i.e., the score of a object is the product of some
unknown function fr of its rank and some unknown function fd
of its distance. One may view this as a univariate function of rank
capturing the rank-specific component of this mental process, mul-
tiplicatively modified by a univariate function of distance capturing
the travel cost. This form is fairly general, though not universal.

Given this functional form, we turn to the techniques of discrete
choice modeling to optimize the functions. As we have no precon-
ceptions about the forms of fr and fd, we will quantize ranks and
distances, then perform an optimization that will empirically es-
timate the value of fr and fd pointwise so as to optimize likeli-
hood. We then study the form of the resulting pointwise estimates
in order to model the shape and capture the aggregate behavior in
a more parsimonious fashion. We detail the algorithms to perform
the pointwise estimation optimally. Our approach has the pleasing
property that employing the resulting functions in order to select

objects will produce selections that simultaneously exactly repro-
duce the rank and distance marginals of the original data; it is not
in general obvious how to attain this property without such a tech-
nique.1

1.3 Parametric forms
After our optimization, we have learned non-parametric func-

tions of rank and distance that combine to give us a good approx-
imation of likelihood. We fit a large number of parametric func-
tion families to the resulting data, and show that both distance and
rank contributions are approximated well by lognormal univariates.
Note that these functions of rank and distance are quite different
from the marginal distributions in the data; these are instead hidden
distributions that are not directly observable, but which emerge as
the underlying factors that according to our model drive the process
of selecting an object. The lognormal form for the hidden functions
of both rank and distance was quite surprising to us, as the rank
marginal does not have a good fit to a lognormal distribution. None
of our earlier efforts to tease out the relationship between these fac-
tors led us to consider such a form. We present some discussion of
the implications of this finding below.

We fit the shape parameters for the lognormal functions of rank
and distance, resulting in a final likelihood model of choosing an
object i with rank ri and at distance di from a set C of alternatives:

Pr[user chooses i ∈ C] =
fr(ri) · fd(di)∑
j∈C fr(rj) · fd(dj)

,

where

fr(·) ∼ LogNormal(µr, σr), fd(·) ∼ LogNormal(µd, σd).

The parameters µr, σr, µd, σd fully specify the model.
We use both the parametric and non-parametric versions of these

imputed rank and distance functions, as well as a number of base-
lines, to compare the likelihoods generated by our model for the
restaurant directions case, and show that these two functions out-
perform other natural alternatives. The model performs well over a
variety of densities from urban to rural settings. We expand on this
observation by providing some theoretical justification. Under one
fairly weak assumption regarding the layout of places, and another
commonly-held assumption regarding human perception of the rel-
ative cost of growing time intervals, these lognormal functions are
in fact the optimal outcomes under an entropy maximization frame-
work (see Section 6).

1.4 Residual as quality
Having established a concise understanding of aggregate choice

given rank and distance, we turn to the question of incorporating a
quality score for each individual object. We may expect that certain
objects will be chosen more often than predicted by rank and dis-
tance alone; we would like to explain the residual (positive or neg-
ative) by a score representing “quality,” or more accurately, what-
ever attributes of an object cause it to be visited more often than its
physical location relative to its clientele would predict.

The machinery developed above applies naturally to this setting,
but the optimization problem we must solve now includes a much
larger number of parameters. In this new formulation, we assume
that each object i is endowed with a quality wi, and that the like-
lihood of selecting i is proportional to fr(ri) · fd(di) · wi, with
1Note that this result will hold in expectation if the optimizer is
allowed to fit parameters for each individual rank and distance. In
our experiments, we run the optimization on a quantized form, and
hence recover the marginals for the quantized ranks and distances,
which are less precise than the full marginals.



the usual normalization.2 In this general case, as well as the simpli-
fied version above, the gradients of the likelihood function have a
simple and easily interpretable form that we will describe later.

After the optimization, we find that for restaurants, the likelihood
of selecting any individual restaurant has on average increased by
87% over the best model we had available without per-place scores.
This figure is computed as the geometric mean of the increase in
likelihood over all candidate places.

2. DATA
We collected a random sample of anonymized direction queries

issued at Google Maps (maps.google.com) during a period of
170 days in 2012. Each direction query consisted of the timestamp,
the query normalized to the form “from: src to: dst”, and the
distance of travel as computed by Google Maps. Note that src or
dst can specify a location as a (lat, lon) pair or as an explicit
address (e.g., 1600 Amphitheatre parkway, Mountain
View, CA 94043). When src = (lat, lon), the direction
request is more likely to have originated from a mobile device.
Since it is common for users to keep updating directions en route,
resulting in a series of decreasing distances for a single trip, the dis-
tance distribution in this type of request may not reflect the actual
end-to-end distances people travel. Hence, unless otherwise speci-
fied, we restrict most of the analysis to directions where src is a
piece of text (denoted src = text).

We obtained a database of business listings and restricted it to a
large random subset of US/Canadian restaurants. We then extracted
directions where dst is recognized (by the system) to be one of the
restaurants in our subset.3 The final dataset consists of 15,454,095
directions where src = text; this covered 410,488 restaurants.
A small fraction of the traffic (∼5%) appeared to be “just checking”
(e.g., src and dst are oceans apart). If we consider 200km to be
the threshold of driving distance for the restaurant intent, 405,889
restaurants have at least one directions query within 200km, and
232,230 have at least 10 qualifying queries.

3. RANK VS. DISTANCE
In this section we explore the roles of rank and distance in the

geographic choice process, using the data described in Section 2.
Intuitively, the rank, or the number of objects closer than a particu-
lar object, corresponds to the amount of competition faced by this
object in the geographic area. In the context of our case study, we
first study the impact of the rank of the restaurant on the decision
process. We begin by showing that rank alone does not capture the
richness and variability of users’ actions.

In Figure 1(a) we show the global distribution of the rank of the
restaurant visited by the user. Note that the empirical distribution
can be approximated nearly perfectly with the decay proportional to
log(1/rank) for small ranks (under 150) and proportional to 1/rank for
ranks above 150. The same phenomenon holds even as we zoom in
on specific areas. Figure 1(b) shows the empirical rank distributions
for four areas with different restaurant densities. Observe that the
specific shapes of the curves differ for different regions; we will
consider a generalization of this effect later.

3.1 The effect of density
We now refine our analysis to take into account the density of

restaurants in the area of the query. We define the (restaurant) den-
2Note that we do not require a function fw(wi), as wi is inherently
non-parametric—the wi’s are the function.
3The details of these recognition methods are beyond the scope of
this work.
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Figure 1: Overall rank distribution and rank distribution for a
few urban areas.

sity (more specifically, average density at a rank) of the source loca-
tion of a query as follows. For a given source location and a given
rank r, we compute the distance dr of the restaurant at rank r to
the source location. The average density of the first r restaurants
is r divided by the area of the circle with radius dr , which is pro-
portional to d2r; we define ρr = r/d2r. We compute ρr at r = 100
and use it as the measure for the density of the source location. We
then bucket density values on log-scale and put each direction into
the appropriate bucket according to its ρ100 value. For each den-
sity bucket, we can plot the empirical distribution of the rank of the
restaurant visited as well as the empirical distribution of distance
traveled. The results are shown in Figure 2.

Figure 2(a) shows that the empirical distributions of rank are
well-separated for users originating from regions with different den-
sity values. Indeed, users in less dense regions (e.g., West Palm
Beach, Florida) are much more likely to choose restaurants at lower
ranks than those in denser regions (e.g., San Francisco, California).
The distribution corresponding to the latter is therefore flatter when
compared to that of the former. Hence rank alone, when conflated
across a wide range of densities, misapprehends user choice sig-
nificantly. On the other hand, Figure 2(b) shows that employing
distance alone is just as bad. The distributions of distances traveled
by users in dense and sparse regions are again well-separated, if not
worse: users in dense regions do not need to travel long distances
to have plenty of options and hence their distance distribution is
correspondingly left-shifted.
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Figure 2: Distribution of rank and distance for different densi-
ties. Each curve corresponds to a set of directions from a source
location whose density (ρ100) is in the given range.

Note also that while most curves more or less follow the lognor-
mal shape, the curve for the least dense region (red curve, ρ100 ∈
[0.0001, 0.001)) is bimodal. In comparison, the different curves
in Figure 2(a) seem to correspond to functions with different pa-
rameters, but coming from the same family. This prompts us to ask
the following question: can we describe the empirical observations
with a set of rank distributions parameterized by density?

3.2 A closer look at density
We consider a region as smooth if ρr is a constant (relatively

speaking) at least for reasonably small r (e.g.,≤ 200). More specif-
ically, we consider a region encircling r restaurants as ε-smooth if
for a small ε and a constant ρ, we have |ρr′ − ρ| ≤ ε for all r′ ≤ r.
If the local neighborhood of a source is smooth, then we can cap-
ture its local density with a single parameter ρ rather than a family
of ρr’s. Hence we can model all directions originating from regions
with density ρ with a single rank distribution.

Figure 3 plots ρ200 (y-axis) vs ρ100 (x-axis). If ρr were rela-
tively constant for most regions encircling 200 restaurants, then
most points would fall within a narrow band along the diagonal
line of y = x. Figure 3(a) shows the heat map on a log-log scale
(where the color corresponds to log of count for that cell). While
this gives us the entire range, it compacts the data in a way that is
hard to interpret. Figure 3(b) shows the heat map for density values
between 1 and 10. Here we can clearly see that many points fall
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Figure 3: ρ200 (y-axis) vs ρ100 (x-axis).

outside of a close band around y = x. Indeed, if we compute the
CDF for |ρ200−ρ100|/ρ100, we observe that ρ200 is within 20% of
ρ100 for only about half of the time. This phenomenon also repeats
itself at smaller r: e.g., the CDF for |ρ100 − ρ50|/ρ50 has a similar
shape.

One might suspect that the variability in the densities observed
is due to the natural tendency of many restaurants to be located in
groups close together; zoning ordinances further enforce this phe-
nomenon. However, this hypothesis is not borne out in the data—
while restaurants do occur in groups, we observed that these groups
are (essentially) uniformly distributed as a function of the distance
from a randomly placed user. Therefore, the cumulative distribution
is not affected by the natural clustering of eateries.

These observations suggest that it is hard to capture the local
density of a source location with a single parameter ρ, since objects
may not be uniformly distributed geographically. Indeed, for the
restaurant case, we could not find a simple analytic form to capture
the relationship between rank and distance; we believe this is true
for other types of objects as well. Instead, we propose a unified
model of user choices that depends on both rank, distance, and a
per-object quality measure.

4. A GEOGRAPHIC CHOICE MODEL
We saw above that multiple factors play a role in determining the

probability a user will choose a particular geographic object (i.e.,
driving to a specific restaurant in the context of restaurants). The
rank plays a role, as one is more likely to go to a closer object; the
absolute distance is also crucial, as one is not likely to drive hours
for it; and it is intuitive that some inherent quality of the object also
plays a role. In this section we set up a framework to model how
these different factors can be combined to give a prediction of a
user’s choice, and how we can learn about the quality of objects by
estimating the underlying model parameters.

At the heart of our model is a discrete choice model that de-
scribes how an agent chooses among a set of alternatives. For this,
we use a classical model due to [20], which is based on the follow-
ing axiom: the relative probability of choosing between two options
a and b is independent of the presence of other options. This axiom
results in the following probabilistic model. Suppose that every ob-
ject i has some total score si; this score can be a function of many
factors. In particular, we consider a model where the score is a func-
tion of the distance between the user and the object, the rank of the
object among all options available to the user, as well as some in-
herent metric, which we will refer to as wonderfulness. Presented
with scores for all objects in a set C of alternatives,

Pr[user selects object i] =
si∑
j∈C sj

.



Given such a simple model of user behavior, we ask for the best
set of scores si that explain the data. Assume we are given a set
Q of observations about a user’s choice. For each observation, we
know the set of alternatives, as well as the alternative chosen by the
user. In the context of restaurant direction queries, Q is the set of
direction queries to restaurants; the restaurant to which query q is
directed is denoted by r(q), and the set of restaurants that the user
could have queried for is denoted byC(q). The score of a restaurant
i for the query q is denoted by si,q . Given these, the likelihood of
these observations in our model can be written as:

L(Q) =
∏
q∈Q

sr(q),q∑
j∈C(q) sj,q

.

The log likelihood, LL(Q) is then:

LL(Q) =
∑
q∈Q

log sr(q),q −
∑
q∈Q

log

 ∑
j∈C(q)

sj,q

 .

In order to efficiently find the best scores, we show that LL(Q)
is a concave function in the logarithm of all variables, and there-
fore gradient ascent on LL(Q) amounts to a natural multiplicative
update step on all of the scores.

LEMMA 1. LL(Q) is a concave function of all of log si,q’s si-
multaneously.

PROOF SKETCH. We show that the second partial derivatives
are always non-negative. Let zi,q = log si,q . Then we can rewrite
the likelihood as:

LL(Q) =
∑
q∈Q

zr(q),q −
∑
q∈Q

log

 ∑
j∈C(q)

ezj,q

 .

Computing the first partial derivative, we have:

∂LL

∂zi,q
= [i = r(q)]− ezi,q∑

j∈C(q) e
zj,q

. (1)

The second partial with respect to another variable zk,q′ is zero if
q′ 6= q. If q′ = q, this second partial is equal to:

∂2LL

∂zi,q∂zk,q
=

ezi,qezk,q∑
j∈C(q) e

zj,q
.

The rest of the proof follows from the well-known properties of
log-partition functions [16].

We note two simple, yet powerful consequences of the following
concavity result: first, since LL is a concave function, it is possible
to efficiently optimize it even when the variables zi,q are subject
to additional linear constraints. For example, we can optimize the
likelihood if zi,q is a linear combination of a rank factor, a distance
factor, and a quality factor. This is precisely what we will use next.

Second, note that in Equation (1), the first term is exactly the
number of times a particular object was selected. The second term
is exactly the expected number of times the object should be se-
lected, given the current setting of the weights. This means that the
optimum can be characterized by equations that state that the ex-
pected marginal over any variable should be equal to the observed
marginal.
ALGORITHM. Given the above observations, we can optimize the
function using a gradient ascent algorithm. Let δi be the discrep-
ancy between the expected and the observed value (i.e., the value
from (1). Then the gradient update is:

snew
i = η · eδi · sold

i ,

where η is the learning rate. This leads to a particularly simple al-
gorithm: at every iteration, compute the discrepancy between the
expected and the actual number of times each object was selected
and use that to perform a multiplicative update on the weights. Re-
normalize the weights to keep the maximum weight at 1 and repeat
until convergence.

4.1 Decomposing the scores
We have howed that it is easy to efficiently compute the best

scores associated with each object via a simple multiplicative up-
date algorithm, even when the variables are subject to linear con-
straints. We already know that the distance to the object, and its
rank play a large role in the decision process.

We model these three as having multiplicative effects, i.e., for a
user u considering an object i, the score si can be decomposed as
si = fd(d(i, u)) · fr(r(i, u)) · wi, where fd is a function of the
distance d(i, u) between the user and the object, fr is a function
of the rank r(i, u) of the object for the user, and wi is the inherent
wonderfulness.

Let gd(d(i, u)) = log fd(d(i, u)), gr(r(i, u)) = log fr(r(i, u)),
and yi = logwi. The likelihood maximization problem can be
written as a concave program:

Maximize:
∑
q∈Q

zr(q),u(q) −
∑
q∈Q

log

 ∑
j∈C(q)

ezi,u(q)

 ,

subject to: zi,u = gd(d(i, u)) + gr(r(i, u)) + yi ∀i, u.

We use the gradient ascent algorithm described below to solve
this problem: We proceed in phases, with each phase consisting
of three gradient ascent steps. In the first step, we only compute
the gradient on the coordinates related to the function fd, which
governs the influence of the distance of the object to the user. Upon
updating these coordinates, we then perform a gradient ascent step
only on the coordinates related to fr , which is responsible for the
influence of the rank of the object; finally, in the third step, we
update the intrinsic quality parameters referred to by wi.

Note that this simple gradient ascent algorithm is not one of the
polynomial-time algorithms for solving a concave maximization
problem subject to linear constraints. In fact, it is not hard to see
that if we write the objective as a function of the variables fd, fr ,
and wi, this function is a concave function of individual variables,
but it is not necessarily a concave function of the vector of all these
variables. This means that the gradient ascent will converge to a
local maximum, but not necessarily to a global maximum.

5. ANALYZING RESTAURANT CHOICE
We have now defined a geographic choice model that learns un-

known functions of rank and distance, and optionally simultane-
ously learns a per-place wonderfulness score. We have shown how
to learn this model, and how to use it for prediction. Model in hand,
we now turn to an analysis of restaurant choice via driving direc-
tions in map search logs, using the data described in Section 2.

First, to get a good understanding of the effect of both rank and
distance, we perform the gradient ascent in Section 4.1 while ig-
noring the wonderfulness parameter for each restaurant. We factor
the score for a restaurant at distance d and rank r as:

s(d, r) = fd(d) · fr(r).

In the context of restaurants, to estimate fd and fr , we discretize
both distance (between 1km and 300km4) and rank (up to 10K) into
4Everything below 1km is folded into 1km and distances beyond
300km are thrown out.
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Figure 4: The maximum likelihood functions of impact of dis-
tance and rank on user’s choice.

20 buckets each, binned on the log-scale. We can compute a non-
parametric fit for fr and fd in the factored joint model by iteratively
re-computing fr(r) and fd(d) for the 20 r values and 20 d values
on a set of 100K training instances. We refer to the resulting fd and
fr values as the Non-Parametric Fit (or NPF) coefficients, which
are shown in red solid curves in Figures 4(a), 4(b) respectively.

The figures show that the distributions have a remarkably good
fit to a lognormal distribution. Roughly speaking this shows three
regimes that people face when deciding on a restaurant—for restau-
rants that lie in the head of the rank distribution (the closest half
dozen establishments), there is little difference between the top few
restaurants; for those that lie in the body (about top 250) there is a
definite decline in probability as a function of the rank. For those in
the tail, the decline is still prominent, but is much less significant.
A similar explanation applies to the distance trade-off function: for
the closest 20km or so, the score drops linearly with the log of the
distance; however, the distance effect flattens out beyond the 20km
driving range.

5.1 Comparing against baselines
Next, we examine how well these NPF coefficients (and their

parametric fit) capture the data, in comparison to a number of base-
line models. In what follows, all models were trained on the same
set of 100K training instances as NPF, and the likelihood of each
chosen destination was computed for a separate set of 100K test in-
stances. We report the geometric means of these per-instance like-
lihoods for each model in Table 1.

The scoring function using the NPF coefficients provides the best
performance in terms of yielding the highest likelihood over the test
data. We then fit a parametric model to these NPF coefficients for
fr(r) and fd(d) respectively. We experimented with both a lognor-

mal form and a sigmoid form. While the performance is slightly
worse than NPF, both yielded significant improvement over mod-
eling rank (or distance) alone, with lognormal fit being the slightly
better of the two.

Setting fr and fd to other forms can result in useful degenerate
scoring functions. If both fr and fd are constants, then we get back
a uniform scoring function, where each restaurant is equally likely.
If we take fr to be a constant c, then we get back a scoring function
based on distance alone (i.e., a distance marginal). We estimate f̂d
as the ratio of the number of times d was chosen to the number of
times d was an option. Similarly setting fd to be a constant yields a
rank marginal. While both are significantly better than the uniform
baseline, rank marginal is much more effective.

At first glance, it might look like modeling rank alone explains
unseen data better than modeling distance alone. However, there is
a caveat for using the empirical distance marginal as fd. While the
rank marginal can be interpreted as the probability of observing a
candidate restaurant at rank r being chosen, the distance marginal
can only be interpreted as the probability of choosing restaurants
whose distance is between d and d + ∆d. That is, Pd(d) needs
to be shared among restaurants at distance d away (or between d
and d + ∆d for a small ∆d). And for larger d, Pd(d) needs to
be shared among more instances to yield the probability of going
to one restaurant at distance d. If we have a function n(d) that
captures the number of restaurants at distance d, we could have
set fd(d) = Pd(d)/n(d). By setting fd(d) = Pd(d), restaurants
farther away are given more probability mass than they should.

Nonetheless, for both baselines using empirical marginal distri-
butions, we did not (need to) bucket the data in the same coarse
granularity as we did for NPF coefficient estimation. In that sense,
NPF is a more parsimonious model, but it still outperforms all the
baselines. Indeed, even the model using lognormal fits parameter-
ized by only four parameters (two for fr and two for fd) outper-
forms the marginals. This validated our intuition that it is impor-
tant to model the rank and distance jointly, and neither sufficiently
captures geo-related aspects of restaurant choice.

5.2 Incorporating quality scores
In the above computation we did not include a parameter specific

to each restaurant. We run the full optimization with per-restaurant
wonderfulness scores. We restrict our attention to those restaurants
in the Bay Area (those within 100km of Chez Panisse, Berkeley).

One should interpret the wonderfulness score as follows. Once
rank and distance have been taken into account, wonderfulness cap-
tures the relative likelihood of a user to visit one place over an-
other. For uniformly distributed users and places, this will exactly
equal popularity, but in fact users and places are not uniformly dis-
tributed. As an example, consider Figure 5. This shows two pop-
ular restaurants: In-N-Out Burger (in Mountain View), and House
of Prime Rib (in San Francisco). The figure shows the distances
traveled to each. In-N-Out draws traffic from further afield, garner-
ing more visits relative to rank and distance-based likelihood, and
hence scores higher under wonderfulness.

To evaluate our approach, we compare the induced ordering of
the restaurants to two different ratings: one set of well known critic
ratings, which we denote by C, and a set of user-generated ratings
U . As a baseline, we take a simple measure of popularity of a par-
ticular establishment, based on counts from our data. For each pair
of ratings, we compute the Kendall’s tau rank correlation; the re-
sults are shown in Table 2.

The orderings provided by W and P are highly correlated with
each other, this is expected as the wonderfulness scores provide
a residual popularity once the rank and distance effects are taken



Scoring function Likelihood
NPF Non-parametric factored model: red solid curves in Figures 4(a) and 4(b) 5.3

NPF-lognormal Lognormal fit to NPF coefficients: green dotted curves in Figures 4(a) and 4(b) 5.1
NPF-sigmoid Sigmoid fit to NPF coefficients 4.9

Rank only fr(r) = rank marginal, fd(d) = const 4.6
Distance only fd(d) = distance marginal, fr(r) = const 3.9

Uniform Each restaurant equally likely: s(r, d) = const 1.1

Table 1: Likelihood (in 10−4) of different estimation procedures.

(a) In-N-Out Burger (b) House of Prime Rib

Figure 5: Distribution of distance traveled (km). Note that In-
N-Out Burger will have a higher wonderfulness score since it
draws a large fraction of its visits from further away.

P C U
W 0.86 0.14 0.16
P – 0.12 0.06

Table 2: Kendall tau rank correlation between rankings in-
duced by different restaurant rating systems.
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Figure 6: Scatter plot of wonderfulness versus critic score.

into consideration. In that sense W provides a refinement to P . As
the correlations with U and C show this refinement significantly
improves the observed correlation and wonderfulness is a better
estimate of user generated scores. The result is significant with p <
0.05.

Figure 6 shows a scatter plot of wonderfulness versus the critic
score. Kendall’s tau is unforgiving, but the scatter plot shows that
the score does correlate with the critics.

While it is encouraging that wonderfulness shows good corre-
lation with both critics and users, our actual goal in introducing
the measure is to improve likelihood, as this represents a baseline
model for personalization and other extensions. For our Bay Area
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dataset, we recomputed likelihood scores of restaurant choice us-
ing our most effective model of rank and distance. We also mea-
sured the improvement in likelihood by incorporating wonderful-
ness scores. Recall that our empirical measurement of the rank
and distance univariates require 40 parameters to fit, and are well-
approximated by the four-parameter lognormal fit. Wonderfulness,
on the other hand, incorporates a parameter for each restaurant, so
we would expect higher likelihood. The result shows that incorpo-
rating these scores further improves the likelihood by a multiplica-
tive factor of 1.87.

5.3 Other trends
Before switching to a theoretical discussion of the lognormal

forms we have observed for rank and distance, we close our empir-
ical analysis with a brief exploration of the spatial, temporal, and
quality trends in restaurant choice. For the analysis, in addition to
src = text, we used a sample of the driving distances for src
= (lat, lon) directions but with src information removed.

Spatial trends: 12km to food. Figure 7 shows the distribution of
direction queries at varying distances plotted on a log scale. Sim-
ilar to previous works on human mobility, we observe that as the
distance goes up, the fraction goes down. For src = text, we
observe that the median distance is 12km. The empirical observa-
tion over distances is symmetric along this point: the fraction of di-
rections with distance between (1.2, 12) is 42.9%, and the fraction
of directions with distance between (12, 120) is 42.3%. One may
argue that this distribution is underestimating the actual foot traf-
fic at smaller distances—clearly one does not need to look up for
directions for a trip to the main cafe at work. More generally, our
dataset may under-represent “neighborhood” traffic where people
already knew how to reach a nearby venue. Nevertheless, 50% of
the directions are trying to reach a destination within a small radius
of 12km. For src = (lat, lon), we observe higher fraction
of traffic at shorter distances as expected—refreshing directions en
route alone would have caused the distance distribution for src =
(lat, lon) to shift to the left.

Temporal trends: TGIF. Figure 8(a) plots the median distance
traveled on each day (relative to Monday), which clearly peaks



 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

Mon Tue Wed Thu F Sat Sun

R
e

la
ti
v
e

 m
e

d
ia

n
 d

is
ta

n
c
e

Day of week

src=text
src=(lat, lon)

(a) Average weekly distance.

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

Mon Tue Wed Thu F Sat Sun

P
e

rc
e

n
ta

g
e

 o
f 

tr
a

ff
ic

Day of week

src=text
src=(lat, lon)

(b) Average weekly direction queries.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  6  12  18  24

P
e

rc
e

n
ta

g
e

 o
f 

tr
a

ff
ic

 f
o

r 
C

a
lif

o
rn

ia
 r

e
s
ta

u
ra

n
ts

Hour

src=text
src=(lat, lon)

(c) Hourly direction queries to California
restaurants.

Figure 8: Temporal trends.
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Figure 9: Quality trends.

during the weekend for both src = text and src = (lat,
lon). Figure 8(b) plots the fraction of direction queries associated
with different days of the week. We observe that src = text di-
rections peak on Fridays, while src = (lat, lon) directions
peak on Saturdays. One hypothesis is people are more likely to
go to unfamiliar and farther away places during the weekends, for
which direction queries en route are sometimes inevitable.

Lastly, we plot the hourly trend of direction queries in Figure
8(c). To avoid any complication due to timezones, we restricted to
directions ending in a California restaurant. There is clearly a lunch
peak and a dinner peak. Compared to the src = text direc-
tions, the distribution of src = (lat, lon) direction traffic
is slightly right-shifted, reflecting a more real-time direction need.

Quality trends: Star value. We examine the relationship between
a restaurant’s popularity measure and the number of directions it
gets as well as the median distance users are willing to drive. To
this end, we aggregate src = text directions by their destina-
tions and pick restaurant with at least 10 directions. We then obtain
the number of user ratings associated with each restaurant (from a
popular online rating service), and group the restaurants into those
with no ratings at all, and those with at least one rating. We also
extract a subset of the second group as restaurants with at least
five ratings. Figure 9(a) plots the cumulative fraction of restaurants
with different number of directions. If a restaurant has no user rat-
ings, then it is more likely to have fewer number of directions di-
rected at it. And a restaurant with more user ratings is more likely
to receive more directions. More interestingly, as we can see from
Figure 9(b), a restaurant with more ratings is also more likely to
have a higher median distance than one with fewer or no ratings.
In other words, restaurants with (more) ratings are more likely to
attract people from further away.

6. RATIONALE FOR LOGNORMALS
There are a few instances of lognormally-decaying functions of

distance in the literature. A notable example is the log-distance path
loss model for radio signal strength as a function of distance [27];
this process however applies to the distribution of signal strength
at fixed distance from the transmitter, which is not applicable to
our situation. On the other hand, lifetime distributions of biotic
(longevity analysis) and abiotic (failure analysis) entities are fre-
quently modeled by lognormal distributions ever since the classi-
cal work of [17]. According to these models, under multiplicative
degradation a set of small multiplicative shocks apply over the evo-
lution of the process, which results in a lognormal distribution of
total degradation at fixed time t, and also a lognormal distribution
of time to failure.

We may however speculate another root cause for the lognor-
mal shape of the hidden rank and distance functions that our model
learns. We had shown that the density is non-uniform and complex.
For the sake of modeling, however, let us make a weaker assump-
tion: the number of candidates at distance d for most individual in-
stances of choice is reasonably approximated by some polynomial
of d. For uniform density, this polynomial would be a quadratic,
but we will allow any polynomial. Say object i will occur at some
polynomial distance α(i), and will hence attain score

fr(i) · fd(α(i)) =
1

iα(i)2πσdσr
e
− (ln i−µr)2

2σ2
i

− (lnα(i)−µd)
2

2σ2
d .

This function follows the general form of a lognormal in rank, as
do the resulting likelihoods, as the normalizing constant is the same
for all candidates. We may therefore ask why a lognormal distribu-
tion is a natural function. A possible explanation comes from work
of [13] and [33], who introduce an explanation based on entropy
maximization. In our domain, the explanation proceeds as follows.

First, we argue that a user selecting an object incurs two costs.
First, there is a consideration cost: the amount of time spent delib-
erating about where to go. We again make a simplifying assump-
tion that users begin by considering closer places, and then only
later consider more distant alternatives. Assuming a constant cost
of consideration for each object, this results in cost linear in i to
consider the first i places. Second, the user incurs a travel cost,
which is proportional to the distance.

The next step of the derivation is to appeal to a well-studied law
in human behavior: the Weber–Fechner law, which states that for
a broad range of external stimuli, human perception of the inten-
sity of the stimulus is proportional to the logarithm of the inten-
sity [21, 23]. The law has been observed broadly to hold for human
perception of time. Thus, assuming that a user examines candidate



places until finding an acceptable one, the number of distinguish-
able buckets of places in terms of travel and consideration time
grows as (log r)(log d), which is proportional to log2 r according
to our simplifying assumption.

Assuming the user has some upper bound on how much cost
they are willing to incur in choosing an object, we may now ask
for the maximum entropy distribution under this cost function. By
an application of Lagrange multipliers, the resulting distribution is
seen to be lognormal in distance or rank. Indeed, the problem is to

Maximize:
∑
i

p(i) log p(i),

subject to:
∑
i

p(i) log2 i ≤ B.

The resulting Lagrangian is

∑
i

p(i) log p(i) + λ

(∑
i

p(i) log2 i−B

)
.

Taking derivatives gives

log p(i) = −1− λ log2 i,

which yields our lognormal:

p(i) ∝ exp
(
−λ log2 i

)
.

To summarize, we began this work plotting likelihood to choose
a place as a function of rank, and separately of distance. These
marginal distributions showed particular forms that were not well
approximated by lognormal functions. We then applied our choice
model in order to factor likelihood of choice into a product of un-
known functions of rank and distance. To our surprise, even though
the marginals have different forms, both unknown functions are
well-approximated by lognormals. In this section we have shown
that under two mild assumptions, these forms are in fact predicted
by an entropy maximization framework. This suggests that the sur-
prisingly good fits we saw in Figures 4(a), 4(b) are no coincidence,
but capture an underlying process with a formal justification.

7. OTHER RELATED WORK
We already discussed the past work on geographic choice in Sec-

tion 1. Other related work includes the work on human mobility
patterns, rank-based models, geographic data mining, and mining
directions in map search logs.

Human mobility patterns have been studied for decades; we list a
few recent ones. Brockmann et al. [2] study the circulation of bank
notes in the United States and found that the distribution of travel
distances follows a power law; they conclude that human travel is
a Lévy flight (see also [28]). In contrast, by tracking the location of
mobile phone users, Gonzalez et al. [12] argue that human move-
ments exhibit high degree of spatial and temporal regularity. The
gravity model has been a popular model for explaining migration
patterns; see the work of Simini et al. [32] and Jung et al. [15], the
book [10], and the survey on urban trip distribution [8]. Levy [18]
studies the migration patterns of humans and uses that to explain
the gravitational law of social interaction. Social ties have also been
used to explain human movements [4]. Taplin and Qiu [35] model
the tourist attractions in Australia using population, travel times,
and traffic. All these works deal with studying and modeling hu-
man travel patterns. Our work, on the other hand, is focused on
directions with distances at finer granularities. In addition, rather

than conflating different types of human mobilities, we pick a par-
ticular and important type of human travel: to restaurants.5

Rank-based models have been rediscovered several times in the
past. They have been proposed as a better alternative to distance-
based models since they can handle regions of varying densities in
a mathematically clean manner. The related notion of intervening
opportunities was first proposed by [34]: “the number of persons
going a given distance is directly proportional to the number of op-
portunities at that distance and inversely proportional to the number
of intervening opportunities.” It has subsequently been studied in
various settings [11, 14, 22, 37]. Liben-Nowell et al. [19] use rank-
based friendships to explain the small-world phenomenon in social
networks. Using FourSquare checkin data, Noulas et al. [24] pro-
pose a rank-based model for explaining urban mobility. They argue
that rank-distance is a much better measure than physical distance,
when it comes to mobility. Our work also considers rank as an al-
ternative measure to distance. However, our findings are far more
intricate: in a geographic choice context, we argue that neither suf-
fices by itself.

The use of geographic information in various search and data
mining tasks has been a hot area of research. Backstrom et al. [1]
and Crandall et al. [6] study the role of IP-based geography in
queries and geotagged images. Using geographic information in
tweets has also been explored in a variety of topics including lin-
guistics, entity matching, and geolocation [9, 25, 7, 29, 5, 31]. Data
mining of GPS is also a well-studied topic. Cao et al. [3] consider
mining significant semantic locations from GPS data and Zheng
et al. [40] use GPS data for location-based recommendation; see
also [41, 26, 30, 39]. Our work does not rely on IP/tag/GPS ge-
olocation but uses the online direction queries as a powerful in-
tent for physical visits: a user issuing a direction query to a place
is more likely to visit the place than a user merely searching for
the place. Furthermore, GPS data applies to a lot of locations from
a few number of users, whereas direction queries correspond to a
much broader range of users.

To the best of our knowledge, there has been very little work on
studying directions in map query logs. Venetis et al. [36] use map
queries to determine the importance of places of interest; their work
is more on the efficient indexing of direction queries and a ranking
methodology based on it. Xiao et al. [38] study map search logs, but
their analysis is mainly focused on its general statistical properties
rather than on directions. However, they also find that restaurant is
the most popular map query category.

8. CONCLUSIONS
In this work we studied the dynamics of geographic choice. We

analyzed the role of the geometric distance to an object as well as
the rank-distance and found intricate connections between the two
notions. We used these insights to propose a model of user behavior
that captures the effects of rank, distance, and quality. We applied
this model to study the properties of direction queries to restaurants
on Google maps. Our work opens up an array of future research di-
rections, e.g., using these insights to improve the recommendation
and studying mobility patterns via direction queries as a proxy for
non-routine adventure-seeking human behavior.
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