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Abstract. Social networks are navigable small worlds, in which two ar-
bitrary people are likely connected by a short path of intermediate friends
that can be found by a “decentralized” routing algorithm using only local
information. We develop a model of social networks based on an arbitrary
metric space of points, with population density varying across the points.
We consider rank-based friendships, where the probability that person u

befriends person v is inversely proportional to the number of people who
are closer to u than v is. Our main result is that greedy routing can find a
short path (of expected polylogarithmic length) from an arbitrary source
to a randomly chosen target, independent of the population densities, as
long as the doubling dimension of the metric space of locations is low. We
also show that greedy routing finds short paths with good probability in
tree-based metrics with varying population distributions.

1 Introduction

The last few years have witnessed increased interest in measuring, modeling, and
exploiting social networks—collections of people connected by edges represent-
ing acquaintance, friendship, or other social relationships. Numerous internet
startups have arisen predicating that one’s social network requires the same
careful husbandry as one’s credit rating or investment portfolio. A common fo-
cus of scientific studies of social networks is the small-world phenomenon, the
observation that most pairs of people are connected through short chains of
friends. A remarkable experiment of Stanley Milgram [24] in the 1960s empir-
ically validated this hypothesis, showing that two typical people in the United
States were connected by a chain of acquaintances with an average length of six,
thereby introducing the concept of “six degrees of separation” into popular cul-
ture. It is surprising that short paths exist, but it is remarkable that members of
the network are able to discover these short paths with only information about
their local neighborhood and some scant information about the destination [16].
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Thus, Milgram’s experiment suggests not only that social networks have small
diameter but also that they admit efficient “decentralized” search.

There have been a number of recent models of social networks that attempt
to include an account of observed social-network properties like the small-world
phenomenon. Watts and Strogatz [31] proposed a model consisting of two super-
imposed sets of edges, a structured set of edges and a smaller number of random
edges. The former is meant to capture “typical” social friendships created, say,
by geographic proximity. The latter is meant to capture long-range connections;
these edges reduce the network’s diameter, but do not explain navigability. Klein-
berg [15, 16] proposed a simple model that suffices to produce a navigable small
world. The underlying network is a k-dimensional grid, and each person occupies
a unique grid location. As in the Watts–Strogatz model, the network has two
kinds of links. Each person is connected via short-range links to her immediate
neighbors in the grid, and she has one long-range link, chosen randomly so that
the probability that a person u befriends a person v is proportional to d(u, v)−α,
where d(u, v) is the lattice distance between u and v, and α ≥ 0 is a parameter
of the model. Kleinberg studied greedy routing—to route a message from s to t,
person s sends the message to the neighbor of s who is closest in lattice distance
to t—and showed that with high probability this simple algorithm finds paths
of length polylogarithmic in the population size if and only if α = k.

As with most models of complex real-world phenomena, Kleinberg’s mathe-
matically appealing model makes certain simplifying assumptions. In particular,
it postulates that each grid point is occupied by a single individual, and hence the
grid exhibits uniform population density—a significant deviation from most real-
world populations. This issue has been addressed by two subsequent models, both
designed to handle nonuniform population distributions without compromising
analytical tractability. The first is Kleinberg’s group-structure model, based on
set systems [17]. The second is rank-based friendship, which we proposed in joint
work with Jasmine Novak and Prabhakar Raghavan [21]. We showed empirically
that the geographic distribution of friendships in the LiveJournal blogging com-
munity closely matches rank-based friendship when the population is modeled in
two-dimensional Euclidean space, and we proved that short paths can be found
in two-dimensional grids by greedy routing [19, 21].

In this paper, we focus on rigorous analysis of rank-based friendship in a
wide variety of social-network settings. For intuition on this model, consider two
people u and v who live 500 meters apart. In rural Minnesota, say, u and v
are probably next-door neighbors, and are very likely to know each other; in
Manhattan, there may be more than 10,000 people who live closer to u than v
does, and u and v have probably never met. This discrepancy suggests why
distance alone is insufficient as the basis for a model of real friendships. Instead,
we model long-range links using a notion of “rank”: the rank of a person v with
respect to u is the number of people who live at least as close to u as v does.
Thus, the closest candidate friend to u has rank 1, the next one has rank 2, and
so forth. In rank-based friendship, the probability that u befriends v is inversely
proportional to the rank of v with respect to u. (Intuitively, to be befriended by



u, person v will have to compete with all of the more “convenient” candidate
friends for u, i.e., all people w who live closer to u than v does.) An important
feature of this model is that it implicitly accounts for the dimensionality of the
space in which people live. For example, in a k-dimensional grid of uniform
population density, for any k, the rank-based formulation induces exactly the
unique value of α proven by Kleinberg to generate a navigable network.

Our contributions. In this paper, we study the properties of rank-based friend-
ship. Our main theorem shows that greedy routing discovers short paths for
arbitrary (not necessarily uniform) population densities on any metric space of
low doubling dimension. We extend the main theorem in two directions. First,
we present a recursive formulation of a population in which it is possible to route
a message to the city of Manhattan, then to the appropriate block of the city,
and finally to the floor of the building where the target person lives. We show
that the theorem holds even for recursive structures of polynomial depth. Next,
we analyze greedy routing and rank-based friendship under tree metrics, which
have been proposed to capture non-geographic proximity between individuals in
a social network [17, 30]. (One can naturally model the proximity of two hobbies
or occupations, e.g., through a tree.) Through a more detailed analysis, we are
able to remove the notion of “local neighbors” entirely in this case.

In Sect. 2, we present background material on metric spaces, population
networks, and routing algorithms, and we define a notion of a social structure,
which can be formed from an arbitrary metric space. Points in the metric space
correspond to locations, at which many people may reside. In Sect. 3, we formally
define rank-based friendship, and we construct social networks with long-range
links generated via rank-based friendship. We also define a general notion of
short-range links based on the metric space. In Sect. 4, we present our main result
on greedy routing in these social networks. Specifically, we show that greedy
routing finds a path from an arbitrary source person to the location of a target
person chosen uniformly at random from the population. The expected length of
this path is polylogarithmic in the size of the population and exponential in the
doubling dimension of the metric space. Thus, if the underlying metric space has
low doubling dimension—like a constant-dimensional grid—greedy routing yields
expected polylogarithmic paths. We then turn to our two extensions. In Sect. 5,
we describe recursive population networks and analyze greedy routing in these
networks; due to potentially polynomial-depth leaves in the tree of locations, we
must adopt a more complex measure of progress towards the target. Finally, in
Sect. 6, we investigate tree social structures, in which the points of the population
network are leaves of a tree.

Other related work. There have been several relevant extensions to Kleinberg’s
original model, which we review here. In k-dimensional grids, there has also been
considerable work on upper and lower bounds for the diameter and the length
of the greedy path (e.g., [4, 23, 26]), and partially decentralized algorithms other
than greedy routing have also been considered [9, 20, 22, 23, 27]. Kleinberg has ex-
tended his model to tree-based structures and group structures [17]. Fraigniaud



analyzes circumstances under which a graph can be augmented to be naviga-
ble, and gives a positive answer in the case of bounded treewidth or bounded
chordality [8]. Analysis of navigability in (uniform-population) networks of low
doubling dimension has been performed by Duchon et al. [7] and Slivkins [28].
Broadly speaking, these papers give stronger bounds on network navigability
than the present work, but are limited to uniform populations; the treatment of
nonuniform population distributions is the major contribution of this paper.

In previous work with J. Novak and P. Raghavan, we defined rank-based
friendship and referenced a technical report that includes a theorem regarding
population networks on two-dimensional grids [19, 21]. The current paper gives
a significantly more general analysis of rank-based friendship, and subsumes the
particular theorem contained in that technical report. Notions similar to rank-
based friendships can also be found in geometric data structures [5, 10].

The question of searching in social networks was also considered by Adamic
et al. [1–3] and Kim et al. [13], and Milgram’s experiment was replicated in a
larger-scale email setting by Dodds et al. [6]. For a comprehensive treatment of
social networks, good sources include the book by Wasserman and Faust [29]
and a recent survey by Kleinberg [18].

2 Preliminaries

Background on metric spaces. Let 〈X, d〉 be a metric space. Denote by Br(x) :=
{y ∈ X : d(x, y) < r} the open radius-r ball around point x ∈ X. Define
the aspect ratio as ∆ := maxx,y∈X d(x, y)/minx,y∈X,x 6=y d(x, y). The doubling
dimension of 〈X, d〉 is the smallest α such that, for every r > 0 and every
Y ⊆ X of diameter 2r, Y can be covered by at most 2α subsets of diameter r.

Social structures and population networks. A social network is a graph 〈P,E〉,
where a node represents a person and an edge represents a friendship between
its endpoints. Edges are directed to allow nonreciprocal friendships. Let Γ (u)
denote the out-neighbors of u ∈ P .

A social structure is a quadruple 〈L, d, P, loc〉, where L is a finite set of points;
d : L×L → R

≥0 is a distance metric on the points (so 〈L, d〉 is a metric space);
P is an ordered finite set of people; and loc : P → L is the location function, which
maps people to the point in which they live. For convenience, we assume that d is
scaled so that minℓ,ℓ′∈L,ℓ 6=ℓ′ d(ℓ, ℓ′) = 1. Extend d to d : (P ∪L)×(P ∪L) → R

≥0

where d(u, ·) := d(loc(u), ·) and d(·, v) := d(·, loc(v)) for all people u, v ∈ P . We
use the ordering on P to break ties in comparing distances: for people u, v, v′ ∈ P ,
write d(u, v) < d(u, v′) as shorthand for 〈d(u, v), v〉 ≺lexicographic 〈d(u, v′), v′〉,
where the ordering on the second component is given by the ordering on P . This
tie-breaking role is the only purpose of the ordering on people.

A population network is a quintuple 〈L, d, P, loc, E〉 where 〈L, d, P, loc〉 is a
social structure and E ⊆ P × P is a set of friendships. (Thus 〈P,E〉 is a social
network.) Let pop(ℓ) := |{u ∈ P : loc(u) = ℓ}| denote the population of ℓ ∈ L.
Extend pop so that pop(L′) :=

∑
ℓ∈L′ pop(ℓ) for a subset L′ ⊆ L of the points.



Write n := pop(L) = |P | for the total population. Let dens : L → [0, 1] be a
probability distribution denoting the population density of each point ℓ ∈ L,
so that dens(ℓ) := pop(ℓ)/n. As before, we extend dens to allow us to write
dens(L′) :=

∑
ℓ∈L′ dens(ℓ) for L′ ⊆ L.

Routing algorithms. Given a population network 〈L, d, P, loc, E〉, a source indi-
vidual s ∈ P , and a target individual t ∈ P , a routing algorithm seeks a path
ρ = 〈u0, u1, . . . , uk〉 from s = u0 to t = uk in the graph 〈P,E〉.

We are interested in routing algorithms that compute the next step ui+1

from the current person ui without taking the entire graph 〈P,E〉 as input. The
algorithm is decentralized if, when computing the next step ui+1 in the path, the
only information used is ui, t, the social structure 〈L, d, P, loc〉, and the set of
neighbors Γ (ui) of the current node ui. (That is, the edges in E excluding those
incident to ui are not available as input to the decentralized algorithm.) In this
paper, we focus on one particular decentralized algorithm: the greedy algorithm
Greedy selects ui+1 := argminv∈Γ (ui)d(v, t).

3 Rank-based friendship

For two people u, v ∈ P , the rank of v with respect to u is the number of peo-
ple w ∈ P who are closer to u than v is. Formally, this quantity is given by
ranku(v) := |{w ∈ P : d(u,w) < d(u, v)}| , where we break ties in distance from
person u ∈ P using the linear ordering on P so that, for any i ∈ {1, . . . , n} and
any person u ∈ P , there is exactly one person v such that ranku(v) = i.

A rank-based friendship for a person u ∈ P is one generated as follows:
a friend v is chosen randomly for u according to the probability distribution
Pr[u links to v] ∝ 1/ranku(v). For any person u ∈ P , we have

∑
v 1/ranku(v) =∑n

i=1 1/i = Hn, the nth harmonic number. Therefore, by normalizing, we have

Pr[a particular rank-based link from u links to v] = 1/(Hn · ranku(v)). (1)

Up to constant factors, this rank-based formulation gives the same link probabil-
ities as Kleinberg’s distance-based model for a uniform-population k-dimensional
mesh. Thus Kleinberg’s results [16] immediately imply that rank-based friend-
ship produces a navigable grid for a uniformly distributed population:

Theorem 1. Let 〈L, d, P, loc〉 be a social structure where L is a k-dimensional
mesh for k = Θ(1), d is the Manhattan (L1) distance, and we have a uniform
population P in which exactly one person lives at each point on the grid. Endow
each person in the network with 2k “local” friends (the immediate neighbors in
each cardinal direction) and one “long-range” friend, chosen according to rank-
based friendship. Then, with high probability, the length of the Greedy path from
any s ∈ L to any t ∈ L is O(log2 n).

In this paper, we will consider networks with more complicated metrics on the
points. To do so, we will need a generalization of the 2k “local” neighbors from
Theorem 1. For a social structure 〈L, d, P, loc〉, construct a population network
〈L, d, P, loc, E〉 by generating friendships as follows:



– Endow each person p ∈ P with δ rank-based links, chosen according to (1).
– Endow each person p ∈ P with “local neighbors,” as follows. Let G = 〈L,EG〉

be a graph where shortest paths correspond to the metric d—i.e., the shortest
ℓ-to-ℓ′ path in G has length d(ℓ, ℓ′). For ℓ ∈ L, let ΓG(ℓ) be the neighbors
of ℓ in G. For every person p ∈ P with loc(p) = ℓ and for every ℓ′ ∈ ΓG(ℓ),
choose an arbitrary q such that loc(q) = ℓ′ and add the edge 〈p, q〉 to E.

We refer to a network satisfying the latter condition as a neighbor-connected
network. Neighbor connectivity ensures that, for any s and any t, the first step
taken by Greedy(s, t) will be to a person u such that d(u, t) < d(s, t). Among
other things, this condition guarantees that every person encountered by Greedy

is encountered only once. Thus we can invoke the Principle of Deferred Decisions
in our analysis (see [25]): we proceed as if the long-range links of each person are
generated only once the greedy algorithm encounters that person. Furthermore,
the greedy algorithm never gets “stuck”; a person u fails to link to a person v
such that d(v, t) < d(u, t) only if loc(u) = loc(t). (Notice also that neighbor
connectivity requires that every point has strictly positive population.)

4 Routing in networks with low doubling dimension

Let 〈L, d, P, loc〉 be an arbitrary social structure, where n := |P |. Let α and ∆,
respectively, be the doubling dimension and aspect ratio of 〈L, d〉. We derive
a neighbor-connected degree-δ rank-based population network 〈L, d, P, loc, E〉
by endowing each person p ∈ P with “local” neighbors as required to achieve
neighbor connectivity and δ rank-based friends. In this section, we show that
greedy routing finds a short path to a target location whenever α is small.

Lemma 2 (Greedy quickly (in expectation) halves distance to target).
For arbitrary s ∈ P and t ∈ P chosen uniformly at random from P , the ex-
pected number of rank-based links examined before Greedy(s, t) reaches a person
in Bd(s,t)/2(loc(t)) is O(log n · log ∆ · 2O(α)), where the expectation is taken over
both the random construction of the network and the random choice of t.

Proof sketch. An r-net, for any r > 0, is a set S ⊆ L such that (i) for all
x ∈ L, there is some s ∈ S with d(x, s) < r; and (ii) for all distinct s, s′ ∈ S,
we have d(s, s′) ≥ r. An r-net can be greedily constructed for any r > 0. Let
R := {1, 2, 4, . . . , 22+⌈log ∆⌉}. For every r ∈ R, we define a set of balls of radius r,
where the set Cr of ball centers forms an (r/2)-net. Let rt denote the minimum
r ∈ R such that s, t ∈ Br(s

′) for some s′ ∈ Cr. We show that 2rt ≥ d(s, t)/2 ≥
rt/8; thus it will suffice to show that the expected number of links examined
before Greedy(s, t) lands in Brt/8(t) ⊆ Bd(s,t)/2(t) is O(log n · log ∆ · 2O(α)).

Suppose that Greedy(s, t) has generated a partial path from s, where the last
element of the path so far is some person u ∈ P . Each step taken by Greedy

decreases the distance from the current point to the target t, so we have that
d(u, t) ≤ d(s, t) ≤ 2rt.

We refer to a link from u as good t if it connects u to any person living in
the ball Brt/8(t). Let βu,t denote the probability that a particular link from u is



goodt. We show that there is a point zt ∈ C16rt
such that B8rt

(t) ⊆ B16rt
(zt),

and that βu,t ≥ pop(Brt/8(t))/(pop(B16rt
(zt)) · Hn), independent of u. Define

βt := pop(Brt/8(t))/(pop(B16rt
(zt)) ·Hn). Thus the probability that a particular

link from u is goodt is at least βt for every person u along the Greedy path, and
is independent at each step. Therefore, the expected number of links examined
by Greedy before we reach a goodt link (or t itself) is at most 1/βt, where the
expectation is taken over the random construction of the network.

We now examine the expected value of 1/βt when t is chosen uniformly at
random from the population. We show that

Et[1/βt] ≤ Hn ·
∑

x∈L
dens(x) · dens(B16rx

(zx))/dens(Brx/16(z
′
x))

≤ Hn ·
∑

r∈R,z∈C16r

∑

z′∈Cr/16:z′∈B16r(z)

dens(B16r(z))

dens(Br/16(z′))

∑

x∈Br/16(z′)

dens(x),

where the second line follows by reindexing the summation to be over radii and
ball centers from the appropriate r-nets rather than over target locations x.
From this, we obtain

Et[1/βt] ≤ Hn ·
∑

r∈R

∑
z∈C16r

dens(B16r(z)) · |{z′ ∈ Cr/16 : z′ ∈ B16r(z)}|.

Using properties of r-nets, we are able to show that the inner summation is upper
bounded by 2O(α), independent of r. Thus, the expectation is upper bounded by
Hn · |R| · 2O(α), which is O(log n · log ∆ · 2O(α)) by definition of R.

Theorem 3. Let 〈L, d, P, loc, E〉 be a neighbor-connected degree-δ rank-based
population network. Let s ∈ P be arbitrary, and let t ∈ P be chosen uniformly
at random. Then the expected length of the Greedy(s, t) path from s to loc(t) is
O(max{log ∆, log n · log2 ∆ · 2O(α)/δ}), where the expectation is taken both over
the random construction of the network and over the random choice of t.

As a corollary, in the k-dimensional mesh under L1 distance, where each person
has δ rank-based friends and 2k local friends, for an arbitrary source s and a
uniformly chosen target t, the expected length of Greedy(s, loc(t)) is O(log3 n ·
2O(k)/δ), which is just O(log3 n) when δ = Ω(1) and k = O(1).

5 Recursive population networks

In this section, we describe a recursive model of population networks that allows
higher resolution of location, and that allows the routing of messages to an
individual, rather than just to that individual’s city or town.

Recursive social structures. In the model described previously, a point ℓ ∈ L
represents a collection of collocated individuals. Here, we extend the model so
that each ℓ ∈ L represents either a single individual or a substructure refining
distances between ℓ’s inhabitants.



A recursive social structure (RSS) is the following: we have a social structure
consisting of people living at various points, with a distance function describing
the separation between points. For each point ℓ in which strictly more than
one person lives, we have, recursively, a social structure for the people living in
point ℓ. Formally, an RSS σ on a nonempty set P of people is given as follows:

– If |P | = 1, then σ is simply the lone individual in P .
– If |P | ≥ 2, then σ = 〈L, d, P, loc,M〉, where 〈L, d, P, loc〉 is a social structure

with |L| ≥ 2 and pop(ℓ) ≥ 1 for every ℓ ∈ L, and, for every ℓ ∈ L, we have
that M(ℓ) = σℓ is an RSS on the set of people Pℓ := {u ∈ P : loc(u) = ℓ}.

For an RSS σ, define a tree T (σ) of social structures, where each social structure
〈L, d, P, loc〉 contained in σ has “child structures” for each point ℓ ∈ L with
|Pℓ| ≥ 2. The leaves of the tree are the points with a single resident. Let M (σ)
denote the internal nodes in T (σ). For N ∈ T (σ), let depth(N) denote the depth
of N in the tree T (σ), and let depth(T (σ)) denote the depth of the deepest leaf
in T (σ). (The root of T (σ) has depth one.)

For u ∈ P , let Nu = u denote the leaf of T (σ) where u is the lone person.
For a structure N ∈ M (σ), we write u ∈ N to denote that Nu is in the subtree
of T (σ) rooted at N—i.e., that u ∈ PN where N = 〈LN , dN , PN , locN 〉. Write
depth(u) := depth(Nu), and for any 1 ≤ i ≤ depth(u), write structurei(u) to
denote the unique structure at depth i in T (σ) such that u ∈ structurei(u).
Finally, for two individuals u, v ∈ P , let LCA(u, v) denote the least common
ancestor of u and v in T (σ)—i.e., the smallest-population structure N in T (σ)
such that u, v ∈ N .

From an RSS σ on a set P of people, we derive a (standard) social structure
S (σ), where the distances between people are derived from σ. Because the leaves
of T (σ) are just the people of P , there will be a unique location in S (σ) for each
person of P . To derive distances dσ(u, v) in σ, we consider only the coarsest-
resolution structure N in which u and v live in distinct points. Formally, let
N := LCA(u, v), where N = 〈LN , dN , PN , locN 〉. (Note that u, v ∈ PN and that
locN (u) 6= locN (v).) We define d(u, v) := 〈−depth(N), dN (locN (u), locN (v))〉,
and we use standard lexicographic ordering on pairs to compare distances.

Recursive population networks. Given an RSS σ on a set P of people, we can
generate a recursive population network (RPN) ρ = 〈σ,E〉 by endowing the
people of P with friendships. Let d = dσ be the derived distance function as
described above. (We will abuse notation and write T (ρ) := T (σ), etc.) In a
degree-δ rank-based RPN, we endow each person in P with δ long-range links,
chosen according to (1). We assume that ties in distance are broken randomly
for the purposes of generating rank-based friendships.

As before, we introduce local neighbors to guarantee (minute) progress from
any source to any target t. (The condition is similar to the one introduced in
Section 4, but slightly more complicated.) Let h : P → R be a function assigning
a “social height” to the people in the network. Consider any N ∈ T (σ) where
N = 〈LN , dN , PN , locN 〉, and let Pℓ denote the set of people living in point
ℓ ∈ LN . For a person p ∈ Pℓ, consider the following conditions:



1. Person p has a local link to a person q ∈ Pℓ so that h(q) > h(p).
2. Suppose that the metric dN on LN is a shortest-path metric in a graph

G = 〈LN , EN 〉. For every point ℓ′ for which the edge 〈ℓ, ℓ′〉 ∈ EN , there
exists a q where locN (q) = ℓ′ such that p has a local link to person q.

If every person in an RPN ρ satisfies one of these two conditions for every
structure in M (σ), then we say that ρ is neighbor connected.

We also add a tie-breaking rule to Greedy using the social-height function.
Suppose that source s seeks a greedy path to a target t 6= s, and there is no
friend u of s such that d(u, t) < d(s, t). (Thus s cannot fall into Case 2 of the
definition of neighbor connectivity for the structure N = LCA(s, t).) The next
step in the Greedy path is a neighbor u of s such that d(s, t) = d(u, t) and
h(u) > h(s). This tie-breaking rule guarantees that Greedy can “lift” itself out
of a substructure to reach a target in a different structure.

For non-local ties in distance—i.e., s has two distinct friends u, v such that
d(u, t) = d(v, t) < d(s, t)—we assume that ties are broken uniformly at random.

Routing on rank-based RPNs. We will prove that Greedy finds short paths in
expectation in any neighbor-connected rank-based RPN derived from an RSS σ
as long as the maximum doubling dimension of N ∈ M (σ) is small.

Notice the following fact, which follows immediately by definition of d = dσ:
for any u ∈ P and any depth i ≤ depth(u), all people in structurei(u) are closer
to u than any person outside structurei(u) is to u. An immediate consequence of
this fact is that the path found by Greedy aiming for a target t will never leave
structurei(t) once it enters this subtree.

The expected time required to reach a target t drawn uniformly from the pop-
ulation P is bounded by O(max{log ∆, log n · log2 ∆ ·2O(α)/δ} ·depth(T (σ))), by
Theorem 3: in expectation we reach the target point in any particular structure
in O(max{log ∆, log n · log2 ∆ · 2O(α)/δ}) steps, and we must find the correct
point depth(t) times before we have arrived at the target person herself. In the
following, we remove the dependence on depth(T (σ)).

Theorem 4. Let ρ be an arbitrary degree-δ rank-based neighbor-connected RPN
with n = |P | people, maximum doubling dimension α, and maximum aspect
ratio ∆. For an arbitrary source person s ∈ P and a target person t ∈ P chosen
uniformly at random from P , we have that the expected length of the Greedy path
from s to t is O(max{log ∆, log2 ∆ · log n · 2O(α)/δ} · min{depth(T (ρ)), log n}).

Proof sketch. Our proof proceeds by showing that within a polylogarithmic num-
ber of steps we will reduce by a factor of two the number of people closer to the
target than the current person on the greedy path is. Let NLCA := LCA(s, t),
and let PLCA := pop(NLCA) be its population. In the structure NLCA, we begin
at some point ℓs and we wish to reach some point ℓt. There are two cases to
consider. If pop(ℓt) ≤ |PLCA|/2 (i.e., the subpopulation containing the target is
not too big), then simply reaching ℓt as per Theorem 3 constitutes considerable
progress towards the target. If pop(ℓt) > |PLCA|/2, then any node encountered
on the Greedy path has a probability Ω(1/Hn) of linking to one of the |PLCA|/2



people closest to t. Thus in O(log n) steps with high probability we reach one of
the |PLCA|/2 people closest to t, which is also considerable progress towards the
target. In either case, we have reduced by a factor of two the number of people
closer to the target than the current person on the greedy path; a logarithmic
number of repetitions of this process will find the target individual herself.

To formalize the above intuitive argument, consider running Greedy starting
from person s until the completion of the following two-phase operation:

Phase 1 (“Halfway there”): Run Greedy starting from s until we reach a
person v such that either (i) v ∈ structuredepth(t)−1(t)—i.e., the structure
that directly contains the target t—or (ii) rankt(v) ≤ pop(LCA(s, t))/2.

Phase 2 (“One level deeper”): Run Greedy starting from v until we reach a
person w such that either w = t or depth(LCA(w, t)) > depth(LCA(v, t)).

We show the following:

– After Phase 2 has ended, either w = t or pop(LCA(w, t)) ≤ pop(LCA(s, t))/2.
– The expected number of steps before we complete a single two-phase oper-

ation is O(max{log ∆, log2 ∆ · log n · 2O(α)/δ}).

Thus after a logarithmic number of repetitions of the two-phase process—or
depth(T (ρ)) repetitions, if that quantity is smaller—we reach the target t.

6 Routing in trees

We now turn to tree social structures 〈L, d, P, loc〉, where the elements of L are
the leaves of a k-ary tree T . We abuse notation and also let T denote the nodes
of this tree. Let T [r] denote the subtree of T rooted at r ∈ T . We restrict d so
that, for every point x ∈ L and every node r that is an ancestor of x in T , the
point x is closer to every node in T [r] than it is to any node outside of T [r].
The population P consists of an arbitrary set of n people, and loc : P → L is an
arbitrary location function. In particular, we do not impose the condition that
pop(ℓ) be strictly positive for every ℓ ∈ L; we can simply treat zero-population
leaves as not appearing in the tree. If each person in a k-ary tree social structure
is endowed with δ edges chosen according to rank-based friendship, then we refer
to the resulting population network as a rank-based δ-degree k-ary tree population
network. Proofs of the following are omitted due to space constraints.

Lemma 5. Fix an arbitrary s ∈ P . Fix any internal node r ∈ T such that
loc(s) ∈ T [r]. Choose t ∈ P uniformly at random from {t : loc(t) ∈ T [r]}. Let
rt denote the child of r such that loc(t) ∈ T [rt]. Then, with probability at least
1− (k−1)·Hn

e·δ , within one step the path from s to t found by Greedy reaches T [rt].

Theorem 6. Let 〈L, d, P, loc, E〉 be a rank-based δ-degree k-ary tree population
network. Fix an arbitrary η ≥ 1. If the degree δ satisfies δ ≥ η ·k ·Hn ·depth(T )/e,
then the following holds with probability at least 1− 1/η: for an arbitrary source
person s ∈ P and a target person t ∈ P chosen uniformly at random from P ,
the Greedy path from s to loc(t) has length at most depth(T ).



As a corollary, consider a rank-based population network derived from a binary
tree with depth O(logk n) and with degree δ = Ω(η · logk+1 n). Then with prob-
ability at least 1 − 1/η, for arbitrary s ∈ P and uniformly chosen t ∈ P , the
length of the Greedy path from s to loc(t) has length O(logk n).

7 Discussion and future work

Here we highlight some interesting open questions for future study, focusing on
the model described in Sections 4 and 5. We have shown that Et[|Greedy(s, t)|] =
polylog(|P |) for any s ∈ P in rank-based networks. In contrast, Kleinberg has
shown that, for uniform populations, with high probability, Greedy(s, t) has poly-
logarithmic length for any s and for any t when link probabilities are chosen
according to the correct distance-based distribution. There may be population
distributions for which the “for all t” condition cannot be achieved in our con-
text, perhaps if there is a recluse who is very unlikely to be reached by long-range
links. It remains open whether Greedy finds a short expected path for any target.

We use the assumption that there are no empty locations in our network to
guarantee that Greedy never gets “stuck” at a person u without a local neighbor
closer to the target than u herself is. Investigating the limitations of Greedy in
a model with zero-population locations (like lakes and deserts in the real world)
is an intriguing direction, and would eliminate the most unrealistic limitation in
our model. Geographic routing via local-information algorithms in general, and
geographic routing around obstacles in particular, has been previously considered
in the wireless-networking community [11, 12, 14]. It is an interesting question
as to whether these results, where there is typically a technologically inspired
threshold on the geographic distance that a message can traverse in a single hop,
can be adapted to the social-network setting.

A number of partially decentralized algorithms (e.g., [9, 20, 22, 23, 27]) have
been shown to outperform Greedy theoretically or experimentally; it would be in-
teresting to analyze them in rank-based networks. More generally, our results can
be viewed as extending Kleinberg’s theorem to a dimension-independent model
that allows varying population density (and one that holds in real networks [21]).
There have been some recent theoretical results extending and refining Klein-
berg’s result—for example, considering routing on other types of underlying
graphs [7, 8, 28], among other results [4, 23, 26]—and we might hope to be able
to make analogous improvements to our results.

References

1. L. Adamic, E. Adar. How to search a social network. Social Networks, 27(3):187–
203, 2005.

2. L. Adamic, R. Lukose, B. Huberman. Local search in unstructured networks. In
Handbook of Graphs and Networks. Wiley-VCH, 2002.

3. L. Adamic, R. Lukose, A. Puniyani, B. Huberman. Search in power-law networks.
Physical Review Letters E, 64(046135), 2001.



4. L. Barrière, P. Fraigniaud, E. Kranakis, D. Krizanc. Efficient routing in networks
with long range contacts. In Proc. Intl. Conf. on Distr. Comp., 2001.

5. E. Demaine, J. Iacono, S. Langerman. Proximate point searching. Computational

Geometry: Theory and Applications, 28(1):29–40, 2004.
6. P. Dodds, R. Muhamad, D. Watts. An experimental study of search in global social

networks. Science, 301:827–829, 2003.
7. P. Duchon, N. Hanusse, E. Lebhar, N. Schabanel. Could any graph be turned into

a small world? Theoretical Computer Science, 355(1):96–103, 2006.
8. P. Fraigniaud. Greedy routing in tree-decomposed graphs. In Proc. Eur. Symp.

Alg., 2005.
9. P. Fraigniaud, C. Gavoille, C. Paul. Eclecticism shrinks even small worlds. In

Proc. Symp. on Princ. of Distr. Comp., 2004.
10. J. Iacono, S. Langerman. Proximate planar point location. In Proc. Symp. on

Comp. Geom., 2003.
11. B. Karp. Geographic Routing for Wireless Networks. PhD thesis, Harvard, 2000.
12. B. Karp, H. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.

In Proc. Intl. Conf. on Mobile Computing and Networking, 2000.
13. B. Kim, C. Yoon, S. Han, H. Jeong. Path finding strategies in scale-free networks.

Physical Review Letters E, 65(027103), 2002.
14. Y. Kim, R. Govindan, B. Karp, S. Shenker. Geographic routing made practical.

In Proc. Symp. on Networked Systems Design and Impl., 2005.
15. J. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.
16. J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In

Proc. Symp. Theory of Comp., 2000.
17. J. Kleinberg. Small-world phenomena and the dynamics of information. In Ad-

vances in Neural Information Processing, 2001.
18. J. Kleinberg. Complex networks and decentralized search algorithms. In Proc. In-

ternational Congress of Mathematicians, 2006.
19. R. Kumar, D. Liben-Nowell, J. Novak, P. Raghavan, A. Tomkins. Theoretical

analysis of geographic routing in social networks. TR MIT-CSAIL-TR-2005-040.
20. E. Lebhar, N. Schabanel. Close to optimal decentralized routing in long-range

contact networks. In Proc. Intl. Colloq. on Automata, Lang., and Prog., 2004.
21. D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, A. Tomkins. Geographic

routing in social networks. Proc. Natl. Acad. Sciences, 102(33):11623–11628, 2005.
22. G. Manku, M. Naor, U. Wieder. Know thy neighbor’s neighbor: the power of

lookahead in randomized P2P networks. In Proc. Symp. Theory of Comp., 2004.
23. C. Martel, V. Nguyen. Analyzing Kleinberg’s (and other) small-world models. In

Proc. Symp. on Princ. of Distr. Comp., 2004.
24. S. Milgram. The small world problem. Psychology Today, 1:61–67, 1967.
25. R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge Univ. Press, 1995.
26. V. Nguyen, C. Martel. Analyzing and characterizing small-world graphs. In Proc.

Symp. on Disc. Alg., 2005.
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