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ABSTRACT
We present a family of measures of proximity of an arbi-
trary vertex in a directed graph to a pre-specified subset
of vertices, called the anchor. Our measures are based on
three different propagation schemes and two different uses
of the connectivity structure of the graph. We consider a
web-specific application of the above measures with two dis-
joint anchors — good and bad web pages — and study the
accuracy of these measures in this context.

Introduction
Methods for producing a static (query-independent) rank-
ing of web pages, hosts, or domains using graph analysis
have been used employed successfully to combine informa-
tion from multiple perhaps-distant neighbors. These meth-
ods represent one of our most successful tools for cross-page
analysis of the web, in particular because they are efficiently
computable while allowing any node potentially to influence
any other, depending on the nature of the graph. Perhaps
due to the constraint on processing time, such schemes are
typically straightforward in nature, and make little use of
domain knowledge regarding the structure of the graph. The
dominant paradigm is the following: a random walk is ini-
tiated from a set of seed pages, and with some probability
at each step either continues forward, or restarts. The score
of a node is taken to be the steady state probability of the
node in this process.

In this note we present a family of measures of proximity
of an arbitrary vertex in a directed graph to a pre-specified
subset of vertices, called the anchor. Our measures are
based on three different propagation schemes and two dif-
ferent uses of the connectivity structure of the graph. The
interpretation and presentation of the propagation measures
in the context of proximity to an anchor is novel.

We then consider a web-specific application of the above
measures with two disjoint anchors: good and bad. The key
assumption is that good web pages are highly unlikely to
link to bad web pages. The goal is to assign a goodness
quality score to all web pages. While the key assumption
(like all assumptions) is violated on the web in many ways,
it remains largely true, and it gives us a starting point from
which to evaluate the quality of unknown web pages. Our
measures are especially applicable to combating web spam.
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Preliminaries
Let G = (V, E) be a directed graph with |V | = n. Let M be
the matrix associated with the graph, i.e., mu,v = 1 if there
is an edge from u to v, and 0 otherwise. Let odu be the
out-degree of vertex u, i.e., odu =

Pn
v=1 mu,v. Likewise, let

idu be the in-degree of u, i.e., idu =
Pn

v=1 mv,u. Let out(u)
denote the out-neighbors of u.

Let R = [ru,v] be the row-normalized version of M : rv,v =
mu,v/odu. Similarly, let C = [cu,v] be the column-normalized
version of M : cu,v = mu,v/idv. R defines a Markov process
on the graph whose one-step update rule for any probability
distribution π over the n vertices is π ← RT · π. The ma-
trix C may be seen as the transpose of the row-normalized
form of MT . There is another natural Markov process on
G defined by walking backwards on the edges rather than
forwards. The update rule for this process is π ← C · π.

Proximity to an anchor
Let S ⊆ V be a subset of vertices in the graph, called the
anchor. We propose various notions of proximity of a given
vertex to this anchor. All of these notions compute a real-
valued score π(S; u) ∈ [0, 1] for every vertex u ∈ V \ S;
π(S; u) = 1 for u ∈ S.

The most natural way to define the proximity of u to S
would be to look at the connectivity of u to S. In this, we
have two options: either use the forward connectivity of u
to S or use the backward connectivity of S to u. We de-
note the former by π(S, f ; u) and the latter by π(S, b; u).
For simplicity, we present only the forward connectivity ap-
proaches. The backward connectivity approaches can be
easily realized either by reversing all edges in G or working
with the transpose of M .

A first cut approach would be to take the shortest path
from u to any vertex in S. Unfortunately, this is not a robust
notion since it does not take into account multiple ways
of connections from u to V . An alternate approach would
be to compute the maximum flow from u to the anchor S,
realized by hooking all vertices in S to a vertex v and then
computing an u-v flow. This measure has the advantage that
parallel paths from v to S are taken into account; however,
the length of these paths are ignored. Compromising these
extremes, we consider various natural propagation methods
that take into account both the length of the path and the
number of paths from u to S.

Personalized PageRank. We assume that the reader is
familiar with the topic-sensitive PageRank notion [1]. We
take S to specify the personalization vector. Consider the
Markov chain of the following random walk on the vertices



of G. At each step, with probability 1− α = 0.85, the walk
proceeds to a neighbor of u (if any), chosen uniformly at ran-
dom and if there are no neighbors, then the walk jumps to
a uniformly chosen vertex in V . With probability α = 0.15,
the walk jumps to uniformly chosen vertex in S. The prox-
imity of u to S is then given by the stationary probability
value of the Markov chain; thus we have the column vector

π(S, f, pr) = (1− α) ·RT · π(S, f, pr) + (α/|S|) · χS ,

where χS is the characteristic vector of S.

Harmonic rank. Consider the simple random walk given
by the matrix R. We will modify the walk to begin at a
specific start vertex u. We will then create two absorbing
states s, corresponding to the anchor S, and r, correspond-
ing to the notion of “re-start” of the random process. We
will modify all pages to link with probability α to r; for
pages with no outlinks, we will modify them to link to r
with probability 1. We will then modify the result so that
all nodes in S link with probability 1 instead to the state
s. This new walk must be absorbed into either the state s
or the restart state r. If the start node u has many short
paths to S, then it is much more likely to be absorbed into
s. Let π(S, f, hr; u) be the probability that the walk is ab-
sorbed into s, so with probability 1−π(S, f, hr; u), the walk
is absorbed into r instead.

We now show that this quantity can be computed very ef-
ficiently. Let F = [fu,v] be the matrix for the walk described
above. F is a row stochastic matrix with fu,v representing
forward walk from node u. F incorporates a certain prob-
ability α to jump to restart state s. The remaining prob-
ability is evenly distributed over all outgoing links starting
from u. Thus,

fu,v =


α v = r
(1− α)/odu otherwise

The proximity score of a vertex is related to the prox-
imity score of its out-neighbors by the following harmonic
equation:

π(S, f, hr; u) =

8><>:
0 u = r
1 u ∈ S ∪ {s}P
v∈out(u)

fu,v · π(S, f, hr; v) otherwise

Consider a distribution π over the vertices in which π(r) =
0 and π(s) = 1. Then the harmonic equation given above
may be rewritten as π ← F · π. Observe that this steady-
state equation is quite different from the steady-state equa-
tion for a single step in the random walk: π ← F T · π. The
solutions to this latter equation are non-zero in only the
states r and s, and the values depend on the start location
of the walk. The former equation, which is of interest to
us, does not represent a walk and is expressed as a column-
stochastic rather than a row-stochastic matrix.

Non-conserving rank. Consider a propagation rule in
which each node u begins with some initial score pu, and
the score is updated by the rule π ← π + γMT π, where
γ is an attenuation parameter that controls how much a
particular score decays as it propagates. Generally, we may
perform this propagation infinitely many steps, resulting in
a final equation for π based on some initial vector p:

π(S, f, nr) =

∞X
j=0

γi(MT )iv = (I − γMT )−1p.

If M is stochastic, observe that this equation is similar to the
equation for personalized pagerank with reset distribution
given by p, and reset probability given by (1 − γ). If M is
not row-stochastic, we must check that the sum converges;
but as long as this is the case, the new measure is a natural
generalization of personalized pagerank.

Non-conserving rank has a desirable property in the con-
text of spam resilience: if a spammer’s destination page is
marked as spam, then all pages created by the spammer
to direct traffic towards this destination page will also be
marked as spam. Even if the spammer is able to manipulate
the graph by adding other links, the score of the inlinking
pages will never be demoted by this manipulation.

Experiments and results
We illustrate a primary application of this technique in the
detection of spam (bad) pages. We are given two anchors,
namely, good pages and bad pages. The crucial assumption
we deploy is: a good page will not typically choose to link
to a bad page. Therefore, pages with links from good pages
are more likely to be good, and pages that link to bad pages
are more likely to be bad.

We consider a graph of 48 million web domains (nodes)
and obtained two non-overlapping anchors of three million
bad nodes and two million good nodes. For evaluation, we
used leave-one -out validation with 1000 random nodes from
each anchor removed before propagation. The success of a
technique is measured as the fraction of the 2000 nodes clas-
sified correctly. We consider the proximity measures that
are consistent with the above assumption and computed the
accuracies. The results are tabulated below.

Measure Acc. Measure Acc.
π(G, f, pr) 82.06 π(B, b, pr) 82.06
π(G, b, hr) 83.89 π(B, f, hr) 85.71
π(G, f, nr) 84.49 π(B, b, nr) 83.89

Clearly, harmonic rank works best for the bad anchor and
non-conserving rank works best for the good anchor. We
then used logistic regression and multilayer perceptron to
combine multiple proximity measures. The following table
presents the performance of the combinations. Harmonic
rank achieves the best performance.

Measure Acc.
π(·, ·, pr) 82.97
π(·, ·, hr) 86.93
π(·, ·, nr) 85.71
π(·, ·, ·) 86.93

Other applications
Above, we illustrated an application of the proximity mea-
sures to web spam. However, the techniques are quite gen-
eral, and will apply for other definitions of the good and
bad anchors. For example, we may employ a set of known
pornographic pages as the bad anchor. Or we may select
a set of high-caliber blogs as the good anchor, and a set of
lower-caliber blogs as the bad anchor, in order to determine
the likely caliber of a set of unknown blogs.
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