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ABSTRACT
A recently proposed approach to address privacy concerns in stor-
ing web search querylogs is bundling logs of multiple users to-
gether. In this work we investigate privacy leaks that are possi-
ble even when querylogs from multiple users are bundled together,
without any user or session identifiers. We begin by quantifying
users’ propensity to issue own-name vanity queries and geograph-
ically revealing queries. We show that these propensities interact
badly with two forms of vulnerabilities in the bundling scheme.
First, structural vulnerabilities arise due to properties of the heavy
tail of the user search frequency distribution, or the distribution of
locations that appear within a user’s queries. These heavy tails may
cause a user to appear visibly different from other users in the same
bundle. Second, we demonstrate analytical vulnerabilities based
on the ability to separate the queries in a bundle into threads cor-
responding to individual users. These vulnerabilities raise privacy
issues suggesting that bundling must be handled with great care.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous

General Terms
Algorithms, Experimentation, Measurements

Keywords
Querylogs, privacy

1. INTRODUCTION
There is much recent interest in the problem of obscuring search

log data so that the privacy of individual users is protected, but
the data remains useful for as wide a range of purposes as pos-
sible. This problem arises in two contexts that are already the
subject of active debate. First, search engine companies seek to
preserve search log data (for many reasons, including legal restric-
tions, various types of relevance improvements, and fraud detec-
tion), but wish to obfuscate the logs to meet requirements without
compromising user privacy. Second, search engine companies wish
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to share search logs with academics for research purposes, in a way
that does not compromise privacy.

In general, anonymizing a search log represents a tradeoff be-
tween privacy and fidelity. On one extreme, removing all session
information is clearly a big step towards ensuring stronger privacy.
However, any detailed user modeling becomes infeasible in such
an environment.

Recently, we have seen the proposal of a new technique for pro-
viding partial session information: bundling, in which user sessions
are partitioned into bundles, and each query is associated only with
a bundle identifier, rather than a full user identifier.1 We study the
implications of bundling for user privacy, and show that there re-
main a range of concerns around the technique. Our goal is not to
propose any specific anonymization scheme, but rather to examine
the aspects of bundling as a privacy preserving mechanism.

1.1 Our contributions
Our study is based on a large querylog from Yahoo!. The no-

tion of bundling we use is very liberal: for each query, completely
disregard the cookie information and mask the last few bits of the
IP address. In this context, the main contributions of this paper are
listed below.

Vanity queries. First, we study how effectively a user session can
be mapped to either the name of the user generating the session,
or the geographic location of the user generating the session. We
show that over a 70-day period, as much as 30% of users issue a
query for their own name, roughly matching previous surveys of
self-reported vanity search behavior. And fully 50% of users issue
a query that references a location that shares three or more digits
of ZIP code with the user’s home location; we also give details on
more accurate geographic queries. Based on this analysis, we con-
clude that an attacker with access to a bundled search log can re-
alistically identify the bundle containing the session of a particular
user, or conversely, given the queries in a bundle, she can identify
the names or locations of many users in it.

Structural vulnerabilities. Second, we study structural vulnera-
bilities, which arise due to the nature of bundling without any so-
phisticated analysis of the query content. For example, any user
1This technique came into focus in December of 2007 when a
major search engine released to the media a series of responses
to 24 privacy-related questions posed by Representative Joe Bar-
ton (available at http://searchengineland.com/pdfs/
071222-barton.pdf). In these responses, the search engine
proposed that it would employ bundling to anonymize log data.
Specifically, it would “anonymize the cookie ID and the last octet
(typically one to three digits) of the IP address associated with
search queries after 18 months.” No subsequent announcement has
claimed that the proposed policy is in effect.



who searches more frequently than the average user will contribute
a significant fraction of the queries in a bundle, especially if the
bundle is small. For bundles created by masking the low-order 8
bits of IP address, we show that more than half a percent of bun-
dles contain a user who issues in excess of 90% of the queries in
that bundle.

Similarly, we may consider a more nuanced form of structural
vulnerability in which a user queries for “Bend, OR HIV clinic.” If
the fraction of total users who live in Bend, OR is small compared
to the size of a bundle, and the attacker has identified a vanity query
consisting of the name of an individual known to live in Bend, then
significant information has been leaked—it is highly likely that this
user issued the query for the sensitive HIV clinic topic. We charac-
terize the degree of geographic sensitivity of this form.

Analytical vulnerabilities. Finally, we study analytical vulnera-
bilities, in which a careful analysis of the query content allows the
bundle to be teased back apart into individual query streams. We
explore a variety of approaches to this un-bundling, and show that
it is possible to cluster queries into users effectively. In one met-
ric we study, we show that bundles created by truncating the lower
octet of the user’s IP address can be clustered back into users such
that two conditions hold. Fix a query submitted by a given user.
First, the cluster containing the query contains on average 60% of
the total queries by that user. And second, 60% of queries in the
cluster were issued by the given user. We conclude that significant
analytical vulnerabilities exist.

Extracting user names. Of independent interest, our study of van-
ity queries relies on an understanding of the true name of a user. We
study the generation of this true name from user profiles and from
userids, and as a corollary, we characterize how often information
on a person’s name is available from these sources.

1.2 Implications for privacy
From an attacker’s point of view, if she targets a specific heavy

user by knowing his/her name or userid, then she can benefit from
the presence of vanity queries to narrow down to the actual bun-
dle that contains the specific heavy user. Our study establishes that
vanity queries, besides being abundant, can actually be used to in-
fer the presence or absence of a particular user in a given bundle.
Once the attacker focuses on the specific bundle, the structural vul-
nerability suggests that bundling is virtually ineffective against rea-
sonably heavy users or users who issue unique geographic queries;
our analysis also shows that there are sufficiently many structurally
vulnerable bundles. Furthermore, the attacker can use the analytical
vulnerability techniques to tease out individual user sessions with
reasonable accuracy. Thus, the privacy of the user can be compro-
mised, even with our generous notion of bundling.

We therefore conclude that, while bundling represents an inter-
esting potential technique in the privacy toolkit, there remain sig-
nificant difficulties in employing the technique in practice.

1.3 Organization
The remainder of the paper proceeds as follows. Section 2 cov-

ers related work, and Section 3 describes the data we consider. In
Section 4 we consider vanity queries and geographically-revealing
queries, and the risks these entail. In particular, Section 4.1 stud-
ies the extraction of a user’s name from profile information and by
parsing the userid itself. Finally, Section 5 describes the structural
vulnerabilities of bundles, and Section 6 addresses the analytical
vulnerability associated with the decomposition of a bundle to re-
create the individual user sessions. Section 7 contains concluding
remarks.

2. RELATED WORK
The related work falls into four kinds of categories: privacy in

querylogs, vanity queries in user search behavior, identifying simi-
lar queries and detecting session boundaries, and privacy in general.

Privacy in querylogs. Kumar et al show that anonymizing query-
logs by hashing individual tokens does not prevent the decryption
of that hash by an attacker with access to another external source of
web querylogs [9]. Adar discusses specific schemes for anonymiz-
ing querylogs sessions, by removing unique queries, hashing rare
queries, and fragmenting into shorter sessions, as well as fragment-
ing users into topic profiles [1].

Jones et al study the use of simple classifiers to map a sequence
of queries into the personal information of the user, such as gender,
age, and location [7]. They show that, first, it is easy to build clas-
sifiers that perform reasonably well, and second, combining small
pieces of information about search terms can be potentially used to
identify the session of the user.

Vanity queries. Gates and Whalen found in a survey that most
of their users had issued vanity queries in the past [5]. Soghian
discusses how existing tools for providing some privacy, such as
TrackMeNot and Tor do not protect the user who issues vanity
queries [16]. Almost 25% of surveyed users say they search for
themselves online, when we include searches for full name, email
address, instant messenger ID, or MySpace address [3]. In Section
4 we empirically analyze the occurrences of vanity queries in web
search logs over a period of 70 days.

Identifying similar queries, session boundaries. Similar query
identification using web search reformulations have been examined
by Jones et al [8]. Queries that are similar in this way will help join
together same-session queries from the same user, as we will ex-
amine briefly in Section 6.4. Other methods of identifying similar
queries are also applicable here. Rey and Jhala look at models of
query rewrites in order to distinguish web search query reformu-
lations from queries cooccurring because of user interest patterns
[14]. These types of associative matches are things that may help
join together different sessions from the same user, as we will ex-
amine briefly in Section 6.3. Web searchers also tend to repeat their
queries over longer periods of time, especially for navigational or
bookmark type queries [17]. These will also help re-identify dif-
ferent sessions for the same user. We do not explicitly model this
case, but all edit-distance-based similarity measures will capture
this type of similarity. Jansen et al also looked at the use of time
and query reformulation as a method for identifying queries from
the same session [6].

Privacy. Samarati and Sweeney define a formal notion of privacy
they call k-anonymity [15]. In this model, one proves that no user
can be shown to belong to a group of fewer than k candidates. In
our work, we look at whether placing user queries in buckets with
large number of users provides in practice a property similar to k-
anonymity where k is the number of users in the bundle; we show
that without further work, this is not the case.

Novak et al use content similarity to disambiguate and anti-alias
users who use multiple pseudonyms to create several identities of
themselves [12]. Our work contrasts in that we assume each user
has a unique real-world identity, and we are characterizing how
easy it is to rediscover this identity. The use of multiple pseudonyms
during web search may also be detectable using our approach.

Frankowski et al show that even when users’ data is anonymized,
their public statements about rare interests can be joined with anonymized



data to reveal their identity [4]. This situation has a clear parallel
with querylog data, in which users may reveal innocuous interests
(types of cooking, sports, movies) on blogs and other forums, and
the conjunction of queries on these topics may be used to identify
the user.

Backstrom et al look at the problem of identifying users in an
anonymized social network [2]. This problem differs in that there is
structural information available in the form of links between anony-
mous users, but no other content. In addition, if users are able to
identify themselves in the network, they can then learn more about
those linked to them. In the querylog setting, being able to identify
one’s own queries does not in general help identify other users.

3. DATA
In this section we describe querylog data and user profiles used

for our experiments, as well as some data analysis of the distribu-
tion of information in querylogs. In all our analysis, we use a subset
of daily queries from Yahoo!.

3.1 Querylog Q1
Our first data set is created to study vanity queries. We use query-

logs from users issuing at least 100 queries over a 70 day period in
2006. Each query has the cookie information of the browser issu-
ing the query. From many of the cookies, a userid can be reliably
extracted. We use these logs in conjunction with the publicly avail-
able user profiles for analyzing vanity queries. We refer to these
querylogs as Q1.

In order to study vanity queries, Q1 is restricted to queries from
cookies such that (a) significant number of queries (at least 100 in
our case) are associated with this cookie and (b) its corresponding
userid is found in the set of publicly available user profiles. This
is obviously a biased sampling of the querylog and cannot serve
as the appropriate data set to study characteristics of the bundling
scheme. This necessitates the use of a second data set.

3.2 Querylog Q2 and bundles of users
For our second data set, we use a week worth of querylogs cho-

sen from April 9 to April 15th 2007. Each entry has the terms com-
prising the query, the browser cookie, the originating IP address,
and the time stamp. We refer to these querylogs as Q2.

We now describe a study of the basic statistics of creating bun-
dles from user queries. We study a set of just over 100M queries
(108,779,740), a subset of the data from querylog Q2, dated April
11, 2007. There are different ways of creating bundles: by hashing
the cookie associated with the user or by masking the IP address
from which the query originated or both. The first approach gives
a more uniform distribution since the cookie is often a reasonably
random string; the second may be non-uniform since certain IP
addresses might correspond to proxies, ISPs, or other multi-user
locations. To study the most difficult case, we do the following to
create bundles: we

(1) completely disregard the cookie information, and
(2) mask the IP address, and in particular mask the low-order bits

of the IP address.
Note that retaining partial cookie information, such as a hash,

would only make this problem easier.
Table 1 shows the basic statistics of the bundles. Since our main

focus is to target heavy users, we ignore bundles that are very small.
We only consider bundles with at least 100 queries, corresponding
to the second column of the table.

Table 2 shows the same statistics that result from masking dif-
ferent numbers of bits in the IP address. From the table we can
see that when we mask 8 to 16 bits of the IP address, the average

All > 100 queries
Avg. # queries per bundle 86.8 294
Avg. # users per bundle 17.8 57.1
# bundles 1,265,619 303,816

Table 1: Basic statistics for bundles created by masking low-
order 8 bits of IP address: all bundles, and only bundles that
have at least 100 queries.

# bits masked 8 12 16 24
Avg. # queries per bundle 294 1.2K 6.9K 779K
Avg. # users per bundle 57 248 1.3K 153K
# bundles 303K 85K 15K 141

Table 2: Basic statistics for bundles created by masking low-
order bits of IP address, for bundles with at least 100 queries.

number of users per bundle grows around five times for every four
additional bits masked2.

4. VANITY QUERIES
Vanity queries are a well-known web phenomenon in which a

user issues a query for his or her own name, usually for one of two
reasons. First, a user may issue a vanity query in order to assess
the ranking of the user’s own homepage, blog, or other content.
And second, the user may issue a vanity query to discover whether
other parties have mentioned the user. If vanity searches are com-
mon, it may be possible to associate a query or query session with
a user merely by assuming that a query for a person who is not
a celebrity is quite likely to contain the name of the user submit-
ting the query. Implications of the popularity of vanity queries are
two folds. First, only hashing the cookies (thereby obfuscating the
userids) won’t suffice: attackers may be able to identify sessions
(the ones where vanity queries were issued as well as those with
the same obfuscated cookie) for a given user, or conversely identify
the user through vanity search in a given thread of queries. Second,
for the bundling scheme described in Section 3, “hunting” attack-
ers can use vanity queries to narrow the search for the right bundle
from, say, 300K candidates to reasonably few candidates.

Furthermore, as we will discuss in Section 3.2, users also submit
queries that contain geographic information, and for natural rea-
sons, such queries will often reference geographic locations that
are proximate to the user. For example, a user might enter the
query “pizza 95014” because the user lives in postal code 95014
and wishes to find a pizza restaurant. While such queries are not
typically the result of vanity per se, we will nonetheless refer to
them as geographic vanity queries.

The goal of this section is to understand what fraction of users
issue vanity queries (names and geographic location), and how ef-
fectively these queries can be used to uncover information about the
user. To study this, we use querylog Q1. In order to study vanity
queries, we first need to extract the user names from the userids.

4.1 Extracting names
In this section we study the process of extracting the true name

of a user from the userid. We will use such a process in our experi-
ments, for instance to study the number of users who query for their
2Masking the last 8 bits of an IP address maps the IP address to
a “class C subnet," which may be associated with a very specific
location. So there may be correlation between the addresses of
users in each bundle created this way. We do not take advantage of
this in our analysis.



own name. At the same time, however, we will use our extraction
results to argue that attackers can readily access the true name of
some fraction of users in a representative online environment.

There are two natural approaches to converting a userid into
names. The first is to employ some external data source that might
list the name explicitly, such as the profile page associated with the
userid, or the user’s signature, or some analysis of the text. We will
examine specifically the extraction of names from profile pages.
The second natural approach is to extract the names directly from
the userid itself. We now explore the coverage of these two ap-
proaches, both singly and together.

Extraction from profile. In many websites, each such userid <u>
has a corresponding public profile page accessible to everyone. To
give an example, http://profiles.yahoo.com/<u> is a
page in the Yahoo! member directory and is semi-structured with
fields corresponding to real name, nickname, location, age, marital
status, sex, occupation, home page, etc., of the user <u>. Not all
users necessarily volunteer all the information on a profile page,
and some of the information might be deliberately misrepresented.

Despite these caveats, we crawled the profile pages of 744K
userids. For each profile page we crawled, we extracted the real
name, if present, and parsed it to obtain a firstname-lastname pair
(sometimes, including middle names). For our purposes, we do
not distinguish between the first and last names and treat it as a
set. This method can yield from zero to many names from a single
userid.

Extraction from userid. Next, we consider extracting names di-
rectly from a parse of the userid. Our intuition in considering this
scheme is that many users create ids that contain some morphing
of their own name. Thus, we ask the following question: can we
extract in a principled manner the names that are contained in a
userid?

We proceed by performing a simple segmentation of the name,
as follows. The US Census Bureau publishes the 100K most popu-
lar firstname-lastname pairs; we gather this data to obtain a listL of
91,909 names (either first or last). Next, we clean the userid by con-
verting every character to lowercase and removing non-alphabetic
characters, if any. We then construct a graph based on this cleaned
userid. Given a userid of the form x1, . . . , xn where each xi is
an alphanumeric character, we construct a (n + 1)-node graph G
in the following way. The nodes of G correspond to the charac-
ters x1, . . . , xn, plus a final state xn+1. We place a directed edge
(xi, xj+1) in the graph if one of the following conditions hold:

(1) the substring xi . . . xj is a valid name, according to the list
L;

(2) j = i, i.e., we allow single-letter names, to account for po-
tential initials.

An example graph constructed for the userid jackson_andrew
is shown in Figure 4.1. It is clear that the graph has captured
many possible names, including the correct ones: {jackson,
andrew}.

Next, we find the shortest path in this unweighted graph from
x1 to xn+1; this can be accomplished in an efficient manner using
breadth-first search. The intuition is that we want to match valid
names that are as long as possible, but allowing arbitrary substrings
gluing them together. It is clear that every non-consecutive edge in
this path of the form xi, . . . , xj where j > i + 1 corresponds to
a valid name according to L. For the userid, we collect the set of
names corresponding to all such non-consecutive edges. Note that
this can yield from zero to many names from a single userid.

Figure 1: The graph constructed for the userid
jackson_andrew.

Method Condition k = 1 k = 2
Pk |P (u)| ≥ k 23.36 9.49
Sk |S(u)| ≥ k 88.57 41.15

(P ∨ S)k |P (u)| ≥ k ∨ |S(u)| ≥ k 89.40 48.43
(P ∧ S)k |P (u)| ≥ k ∧ |S(u)| ≥ k 19.08 6.32
(P ∩ S)k |P (u) ∩ S(u)| ≥ k 5.64 0.93

Table 3: % userids exhibiting various name extraction condi-
tions. P (u) denotes the set of names found on the profile page
for u, and S(u) denotes the set of names found by parsing u.

4.1.1 Coverage performance
We now measure the coverage of both schemes. For a userid u,

let P (u) denote the set of names obtained using the profile page
and let S(u) denote the set of names obtained using the userid seg-
mentation. Since we treat these as sets, it is meaningful to consider
their union and intersection, and to place thresholds on their cardi-
nality, in order to obtain a variety of methods for extracting a final
set of names from a userid. We define the following methods:

Pk : Returns the set P (u) of names, as long as there are at least k
elements in the set P (u).

Sk : Returns the set S(u) of names, as long as there are at least k
elements in the set S(u)

(P ∨ S)k : Returns the set P (u)∪S(u) of names, as long as either
P (u) or S(u) has at least k elements.

(P ∧ S)k : Returns the set P (u)∪S(u) of names, as long as both
P (u) and S(u) have at least k elements.

(P ∩ S)k : Returns the set P (u) ∩ S(u) of names, as long as the
intersection P (u) ∩ S(u) is of size at least k.

Table 3 shows how many of the 744K userids have names extracted
by each of these methods.

In many user registration systems, users are not required to enter
a full name, so it is not surprising that we find even a single name
on the profile page for under one quarter of the users. The userid,
on the other hand, contains at least one name for almost 90% of
users, and two names for over 40%. This confirms our intuition that
userids based on first name are extremely common, and those based
on two names are in fact quite frequent. If we combine information,
we find that two names can be extracted from the combination of
profile page and userid in almost 50% of cases.

Comparing the last two lines of the table, we observe that if a
name appears in both profile and userid, then 30% of the time, the
same name appears in both. Likewise, if we successfully extract at
least two names from each of profile and userid, then more than 5%
of the time we match exactly on two names. Finally, for around 1%
of the userids overall, we are able to extract the same two names
from two distinct sources, giving us high confidence that we have



Name extr. any-match all-match
method absolute relative absolute relative
P1 2.95 12.6 0.51 2.18
P2 1.69 17.7 0.51 5.34
S1 7.68 8.67 0.98 1.10
S2 4.34 10.55 0.98 2.38

(P ∨ S)1 8.85 9.89 1.15 1.29
(P ∨ S)2 5.72 11.81 1.15 2.37
(P ∧ S)1 2.50 13.10 0.33 1.73
(P ∧ S)2 2.17 13.30 0.33 2.02
(P ∩ S)1 0.96 17.02 0.10 1.77
(P ∩ S)2 0.28 30.10 0.10 10.75

Table 4: % users issuing vanity queries according to a particu-
lar name extraction method and matching condition. Absolute
numbers show fraction of total userids, and relative numbers
show fraction of userids for which name information was suc-
cessfully extracted by the specified method.

successfully identified the name of the user from the publicly avail-
able information.

4.2 Name vanity queries
We begin by studying the fraction of users who issue their own

name as a query. To do this, we first use the name extraction meth-
ods described in Section 4.1 to get potential names for each userid
u. Next, we examine the queries issued by userid u. Using a name
recognizer that is built using the US Census Bureau data, we first
restrict our attention to query terms that are people names. We then
count the number of name queries for which at least one term in the
extracted name is present (the any-match condition), and the num-
ber of name queries for which every term in the extracted name is
present (the all-match condition).

Table 4 shows the fraction of users who issue name vanity queries
for a given name extraction method, under either the any-match or
all-match conditions.

It is clear from the table that a significant fraction of the users is-
sue vanity queries. 5% of users for whom we extracted two names
from the profile page issued a query containing those two names.
And over 10% of users for whom we extracted the same two names,
using both the profile and a parse of the userid, issued a query con-
taining those two names. To the best of our knowledge, the above
represents the first empirical and quantitative analysis of the popu-
lar belief regarding the prevalence of vanity queries on the web.

We now examine the characteristics of name vanity queries in
more detail, with analysis of the implications in bundle-attack sce-
narios.

4.2.1 Recovering user name from sessions
In this section we consider an attacker who takes a particular

session from a querylog and attempts to discover which user gener-
ated the session. We focus only on the users who issue name van-
ity queries and ask the following question: assuming users search
for their own names, what is the rank of their names when placed
among all name queries they issue? To do this, we once again ex-
tract the user names from userids using the name extraction meth-
ods of Section 4.1. We retain only name queries as spotted by our
name recognizer. We compute the number of times a particular
name query was issued by a user, and refer to this as the term fre-
quency (tf) of the query. Since many name queries correspond to
popular or celebrity names, we define an analog of inverse docu-
ment frequency (idf) for a name, computed as the inverse of the
logarithm of the number of times the query was issued by any user.

Figure 2: Recovering user name from sessions: recall curves
for userid with valid names extracted according to 1 (P ∩ S)1
and 2. (P ∩ S)2.

Then, for each user, we rank that user’s name queries according
to the product of tf and idf scores, and check the rank at which
the user’s own name appears. Here, we restrict our attention to
all-match. We compute the fraction of users whose names are iden-
tified among the top name queries they issue.

Figure 2 shows results for two name extraction methods (we ob-
serve similar recall curves for other name extraction methods). As
shown in the figure, 90% of the users query their own name within
the top ten of all name queries they issue (weighted by idf). We be-
lieve this is quantitative evidence not only of the popular belief that
lots of people issue name vanity queries to the search engines, but
also query their name quite often, and it is possible in many cases
to study a user’s query session and determine the name of the user.

4.2.2 Recovering sessions for a given user
In this section we consider an alternate attack methodology. We

assume the attacker would like to discover the session of a particu-
lar known person, perhaps a neighbor, co-worker, or even a spouse.
We therefore ask the reverse question: assuming users search for
their own names, given a name, what is the rank of the true user
among all users who queried for that name? We consider all names
that correspond to at least one userid and accumulate all users who
queried for that name at least once (using all-match). As before,
we compute idf, but this time with respect to the number of name
queries issued by a user; this is to discount users who issue many
name queries. We then rank the users based on the product of tf
and idf score, and as before we compute the recall position. We
plot fraction of users as a function of the rank in Figure 3.

As shown in the figure, recall is extremely high: for both name
extraction methods, the recall is between 72% and 81% at position
1, 90% at position 3, and more than 95% at position 10. In other
words, given a name, it is highly possible to discover the session
corresponding to that user. Thus, given a large collection of query
bundles, for those users who have issued name vanity queries (as
we noted earlier, this could represent a substantial portion of online
users), it is possible to narrow down to a few candidate bundles by
examining the name vanity queries.

4.3 Geographic vanity queries
Here, we analyze the fraction of users who issue queries that ref-

erence the user’s own geographic location. To conduct this study,
we make use of the profile data to obtain the geographic location
for each user; our set of 744K reference users were chosen such
that every profile contains a US postal code.



Figure 3: Recovering sessions for a given user: recall curves
for name queries, with valid names extracted according to a.
(P ∨ S)2 and b. (P ∩ S)2.

Zipcode γ = 0.1 γ = 0.5 γ = 0.5 γ = 0.5
Match k = 1 k = 1 k = 5 k = 10

5 13.7 11.7 3.69 1.44
4 25.8 22.6 8.95 4.17
3 52.8 48.5 24.5 12.9

Table 5: % users issuing γ-geovanity queries.

For each query, we apply a black-box geographic classifier based
on the internet locality product WhereOnEarth (WOE). Given a
query, WOE determines if this query has a locational component
and if so, outputs a list of locations at the best guessed granular-
ity (i.e., city, county, state, country) along with a confidence. It
also outputs an aggregated confidence that captures how location-
specific is the query. We run the WOE classifier for each query and
store the top postal code, along with the confidence, for each query.

We say that a query is a γ-geovanity query if the confidence out-
put by WOE is at least γ, and the location output by WOE matches
the user’s location as given in the profile. We consider three levels
of postal code matching: the first three digits, first four digits, and
all five digits.3 We also define a positive integer parameter k, and
we consider a user to have queried for a location only if the user
has issued at least k queries for that location for the given postal
code matching granularity. Based on these definitions, we compute
the fraction of users who issue geovanity queries. The results are
shown in Table 5.

From the table, it is clear that users’ queries reveal significant
information about their geographic location. Even with the most
restrictive form of matching, γ = 0.5 and k = 10, and a match of
5 digits, at least 1% of users issue queries that reveal their location.

5. STRUCTURAL VULNERABILITIES
In this section we characterize the two most patent vulnerabilities

that can exist in bundling: (1) there is a single dominant user who
issues a very large number of searches relative to an average user
in the bundle, and (2) there are users who query for geographical
locations, especially locations that are unique.

The results in this section assume that bundles have been formed
by masking the low-order eight bits of the IP address, and that we
only consider bundles with at least 100 queries.

3Note that US postal codes (ZIP codes) are allocated such that ZIP
codes with a longer prefix in common tend to be closer together.

Users issuing large number of queries. We now study the case
where a single user dominates the bundle and is hence highly visi-
ble. Note that the bundles are almost ineffective in this case since
the privacy of the dominant user, if his/her identity is known through
other means, can be severely compromised.

For a given f , we compute the numbers of users per bundle who
issue at least f -fraction of all queries within the bundle. We do this
for f = 0.1, . . . , 0.9.

As shown in Table 6, about 3% of the bundles have a user that
issued at least half of the queries in the bundle. Even more sur-
prisingly, 0.6% of the bundles have a user who issued at least 90%
of the queries in the bundle. These numbers suggest that there are
many bundles with dominant users and these bundles are potential
sources of leaking private information about these dominant users:
in such a bundle, queries for sensitive material can be associated
with the dominant user and these associations are correct with very
high likelihood.

In fact, if we assume that the distribution of the number of queries
per user follows a power law, we can show that any random parti-
tion of the users into bundles of reasonable size will always result
into many bundles with heavy users. We omit the details of this
analytical statement in this version of the paper.

Users issuing geographic queries. We now consider a second nat-
ural structural vulnerability, which deals with the geographic lo-
cation of queries. We described our methodology for recognizing
queries that specify a geographic location in Section 4.3. Applying
those techniques, we now characterize the extent to which a partic-
ular user in a bundle might be the unique user in the bundle query-
ing for that specific geographic location. We define a heavy user to
be one who queries for at least the average number of queries in a
bundle; in our case this represents about a third of all users.

The following table shows that there are reasonable amount of
geo-diversity within each bundle.

# zips per bundle 12.26
# zips with only one user 9.05
# heavy users with unique zip 9.90
# heavy users with unique zip

and the zip has one user 0.05

About 75% of the postal code (zip) locations in a bundle are as-
sociated with only one user. A significant portion of the heavy
users (9.9 out of 16.7, average per bundle) are associated with only
one postal code. Even more, a reasonable fraction of heavy users
(0.3%) are associated with only one postal code and this postal code
has exactly one user associated with it. It is easy to see that if a user
has a unique postal code and also queries for sensitive material such
as HIV clinics or adult services in their area, privacy will be easily
compromised.

6. ANALYTICAL VULNERABILITIES
Given a bundle of fibers corresponding to different users, how

to extract the individual fibers from this bundle? This is a very
special case of a clustering problem, where we would like to take
all the queries in a bundle and cluster them to fibers corresponding
to different users.

First we describe various measures we use to evaluate the per-
formance of algorithms that find fibers from bundles; we adapt the
measures used to compare clusterings. We then describe our main
method and analyze the performance of the method on querylog
Q2. Next we describe two augmentations to the basic method for
which we have preliminary results: modeling using topic switch
and modeling using a decision-tree classifier.



% queries 10 20 30 40 50 60 70 80 90
# users per bundle 1.4745 0.3271 0.1157 0.0546 0.0314 0.0199 0.0136 0.0093 0.0060
% bundles 78.60 29.40 11.26 5.42 3.14 1.99 1.36 0.93 0.60

Table 6: Number of users per bundle issuing the given percentage of all queries within the bundle.

6.1 Evaluation measures
Since our problem is akin to clustering, we measure the perfor-

mance of our algorithms using popular measures to compare clus-
terings. Let X = {x1, . . . , xn} be a ground set and let C =
{C1, . . . , Ck} and D = {D1, . . . , D`} be two clusterings of X .
Let C(x) denote the cluster in C to which x belongs and let D(x)
denote the cluster inD to which x belongs. We use three measures:
f-measure, a variant of an information measure used by Meila [11],
and Rand index.

For each x ∈ X , let

prec(x,D|C) =
|{y | D(y) = D(x) ∧ C(y) = C(x)}|

|{y | D(y) = D(x)}|

be the precision of x’s cluster inD with respect to C. Let prec(D|C) =
Ex∈X [prec(x,D|C)] denote the average precision. The f-measure
is then defined to be the harmonic mean of prec(D|C) and prec(C|D).
The closer the f-measure is to 1, the better the agreement between
C and D.

Meila [11] introduced a variation of information measure (called
Meila measure in this paper) as a robust way to compare cluster-
ings. Here, a clustering is interpreted as determining a random vari-
able C(x) when x is picked uniformly at random from X . Meila
measure is defined as H(C) + H(D) − 2I(C,D), where H(·) is
the binary entropy and I(·, ·) is the mutual information. The closer
the Meila measure is to zero, the better the agreement between C
and D.

The above two measures have good interpretation and are of-
ten used in practice [12]. For completeness, we also consider an-
other commonly deployed measure, Rand index, which captures
the number of pairwise disagreements between the clusterings C
and D. The closer this measure is to 0, the better the agreement
between C and D.

Since our main goal is to show that the privacy of reasonable
heavy users in a bundle is compromised, we restrict our attention
to users whose fiber size is strictly more than the average fiber size
in the bundle, and measure the clustering performance with respect
to the queries issued by these heavy users. Furthermore, we exclude
a bundle from evaluation if it contains fewer than 100 queries or if
it does not contain a heavy user.

6.2 Main method
We now state a simple method to identify fibers in bundles. Note

that efficiency is a major concern: ideally we would like it to run in
near-linear time so that it is feasible to process massive querylogs.

The main idea behind our approach is to construct a graph based
on similarity between queries and then cluster this graph to obtain
the fibers. In fact, the fibers will turn out to be the connected com-
ponents in this graph, which can be computed in near-linear time
using the union-find data structure.

As stated in Section 3, each query in querylog Q2 has various
attributes: the terms in the query, the time when the query was
issued, and the geo location (if any) assigned by the WOE classifier.
We first canonicalize the terms in the query by stemming them and
removing stopwords.

BL1 BL2 g-edges g, w-edges
mask-8

f-measure 0.151 0.257 0.181 0.570
Meila measure 0.551 0.449 0.536 0.238

Rand index 0.151 0.849 0.150 0.117
f-measure

mask-12 0.160 0.105 0.187 0.562
mask-16 0.164 0.076 0.186 0.521

Table 7: Performance under different measures (mask-n: bun-
dles formed by masking the low-order n bits of the IP address).

Given the canonicalized queries q1, . . . , qn in a bundle, let G
be an n-node graph where each node corresponds to a query. We
add an edge from query qi to qj in G if one of the following two
conditions hold.

(1) The geo location of qi is the same as that of qj . These edges
are called g-edges or geo edges.

(2) qi and qj share at least one term. These edges are called
w-edges or word-overlap edges.

Note that both these operations can be performed efficiently. For
instance, to do (2), we create an index of all the terms in all the
queries and add edges between qi and qj if they are together in a
posting list in the index.

Performance results. We consider two simple baselines. In the
first baseline (BL1), each query in a bundle is assigned its own
fiber; this baseline should perform well when there are many small
fibers in a bundle and no dominant users. In the second baseline
(BL2), all the queries in a bundle are placed in a single fiber; this
baseline should perform well when there is a dominant user in the
bundle.

Table 7 summarizes the results. We see that there is a signif-
icant improvement over both the baselines BL1 and BL2 across
the board. The addition of g-edges already causes some small im-
provement over BL1, but much more dramatic improvements are
brought about by the g, w-edges. In other words, mere word over-
lap in query terms is a very strong signal indicating two queries
are from the same fiber. Interestingly, using only w-edges yields
similar performance as g, w-edges. This suggests that even though
having g-edges alone provides some amount of information, which
enables it to outperform BL1, this information is probably largely
subsumed by the w-edges. Note that for the mask-8 setting (eval-
uated on 100K bundles in Q2), we observed similar qualitative re-
sults using different measures, and for subsequent experiments we
only report by f-measure.

For mask-12 and mask-16, where bundles contain more fibers (as
reflected in lower f-measure for BL2), thus presumably more chal-
lenging to de-fiber, the results are similar: the method outperforms
the baselines, achieving f-measure over 0.52.

We also experimented with incorporating temporal information
(the query time). More specifically, we sort all the queries in a bun-
dle by timestamp, and for each adjacent pair of queries, we tried to
decide whether they come from different users. A naive way of in-
corporating the temporal information (comparing the time-interval



between two adjacent queries to a threshold) failed to improve over
using only word overlap information (i.e., w-edges) in locating the
correct cutting-points. A more sophisticated use of time is possible
via a classifier; see Section 6.4.

6.3 Modeling topic switch
As we saw earlier, word overlap appears to be the best per-

forming feature to cluster queries into fibers. However, not all the
queries issued by a user share words among them, the interesting
case is to estimate how likely it is for a user to have issued two
queries with no word overlap. In this section we propose mod-
eling the queries via topics and link two queries if they share a
topic. Once we determine the topic of a query in an offline mode,
we can always add these additional topic-edges (t-edges) on top
of w-edges in the graph G and compute connected components as
before.

Our approach is through analyzing word co-occurrence patterns
in a given querylog. Again, we focus on simple, scalable methods
here, and we simplify the problem to estimating how likely it is for
two words w1 and w2 to appear in different queries of one user’s
querylog. Note that words that tend to co-occur within queries are
not particularly useful for linking different queries and are not of
interest to us here.

Suppose we have access to a querylog of reasonable size, in our
case, one day (separate from the week-long data that we test our
algorithms on)’s worth of queries. For each given user, all words
from queries issued by this user form one bag-of-words representa-
tion, that can be treated as a pseudo document reflecting this user’s
“search interest”. We hope to discover interesting related words
by analyzing co-occurrence patterns in these pseudo-documents.
More specifically, after stopword removal, for each pseudo docu-
ment with n (content) words in it, we consider each of the n × n
pairs of words. We increment the cooccurrence count for the word-
pair 〈w1, w2〉 for each user who issued the two words in disjoint
queries and not combined in a query. Let C(w1, w2) be the count
of cooccurrences received by the pair of words (w1, w2) after going
through all the users in the log.4

Raw counts alone tend to rank highly word pairs with frequent
words that are not necessarily closely related to one another, since
they may coincidentally appear in queries issued by the same user.
We need to adjust for the probability that the two words occurred
together by chance. We use the χ2-measure to discover highly
related words5. Given the following table of observed counts for
(w1, w2)

W1 = w1 W1 6= w1

W2 = w2 O11 O12

W2 6= w2 O21 O22

Here O11 = C(w1, w2) and Oij can be estimated from C(·, ·).
The χ2-measure, defined as

∑
i,j(Oij − Eij)

2/Eij , gives esti-
mates for rejecting the null hypothesis that (w1, w2) are unrelated.
Therefore, pairs with high χ2 values are likely to be related terms.
Not surprisingly, many of the “related” terms turn out to be query
re-writes such as spelling corrections; although these are not the

4For efficiency purposes, users with more than 500 queries per day
are not included in the calculation, due to the quadratic number of
pairs. With better heuristics at early pruning of invalid pairs, these
users can be a rich source of co-occurrence patterns.
5We have also experimented with other measures, including point-
wise mutual information (PMI(w1, w2)), as well as a weighted ver-
sionC(w1, w2) ·PMI(w1, w2), following [10]. But we found them
not as effective as the χ2-measure.

Querylog BL1 BL2 w-edges w, t-edges
one day 0.152 0.255 0.575 0.588

one week 0.098 0.235 0.469 0.486

Table 8: Modest improvements to f-measure by using topics.

Method Clique1 Clique2 Clique3 CC1 CC2 CC3
Coverage 21K 18K 9K 47K 27K 4K
w, t-edges 0.587 0.586 0.576 0.497 0.588 0.575

Table 9: Different clustering methods for topic detection

topic switch we are looking for, they are just as useful in linking
queries with no word overlap. Still, quite a number of interest-
ing pairs, related to each other for a range of different reasons,
are discovered. For instance, 〈Partagas (a cigar brand), cigars〉,
〈Cybersansar (related to Nepal), nepalnews〉, 〈Measles, smallpox〉,
and 〈Coloroda, Denver〉.

For efficiency reasons, we discover topics in the following man-
ner: based on the pairs whose χ2 values are above a certain thresh-
old, we build a separate graph (for topic-discovery) on the terms
involved, with an edge between each pair with high χ2 value, and
form equivalent classes (topics) through clustering in this graph.
We experimented with the following two methods. The first is
computationally expensive: identify the cliques in this graph and
the topic of a node is the identity of the largest clique in which it
is present. The second, which is computationally easier, is to iden-
tify the connected components in this graph and the topic of a node
is the identity of the connected component in which it is present.
Once we identify topics for terms being covered by this model, we
can add topic edges to the original graphG when two queries share
common topics. Table 8 shows the effect of adding the topic edges
to mask-8 bundling, evaluated on over 1.4 million bundles sampled
from one day’s worth of querylog and over 700K bundles from one
week’s worth of querylog. The effect of using different clustering
methods with different coverage over the terms (resulted from dif-
ferent thresholds over χ2-measure) are examined in more detail in
Table 9.

First, we observe that adding topic edges yields modest improve-
ment in f-measure for both day and week-long data. This may seem
marginal, note, however, this is partly due to the low coverage:
we observe improvements when topics are identified for only 18K
terms. Note that compared to the bundles with one day’s worth of
querylog, the week-long bundles tend to be bigger as they contain
larger fibers (as reflected in the much lower performance of BL1),
and this caused the performance of the main method usingw-edges
to drop, although we observe similar improvement by adding the t-
edges. Recall that by masking more bits of the IP address, we also
get bigger bundles. In that scenario, it is mostly due to each bun-
dle containing more fibers rather than each fiber being bigger (thus
not much change in BL1 performance, but lower performance for
BL2), and it didn’t have much impact on the main method using
w-edges. This is consistent with the fact that our method operates
by connecting single queries into fibers, rather than slicing up the
bundles as one big fiber.

The best performances of the two methods are comparable. We
experimented with a larger range of χ2-value thresholds with the
connected components. It actually hurts the performance if the
thresholding is low (CC1); this is because connected components
force transitivity of topics. The performance improves as higher
thresholds are applied (CC2) and diminishes once again if the thresh-
old is too high to result in a good coverage (CC3).



fraction-common-initial-words > 0.1
| timelag <= 1709: same (1478.0/27.0)
| timelag > 1709
| | words-in-q1 <= 2: same (478.0/92.0)
| | words-in-q1 > 2: different (220.0/71.0)

Figure 4: Portion of the decision tree learned to distinguish
pairs of queries from the same-user versus different-users.
Numbers in brackets are correctly classified / incorrectly clas-
sified query pairs from a single query bundle.

We also point out that if we break the f-measure into precision
and recall and examine the effect of t-edges on these quantities,
as one might expect, we observe the following: adding t-edges
marginally reduces the precision (since t-edges may contribute to
incorrectly linking queries from different user) but results in a bet-
ter improvement to recall. A more sophisticated topic switch model
might yield larger improvements. We leave it as interesting future
work.

6.4 Classifier-based approach
In the previous sections we described several approaches to join-

ing queries likely to be from the same user. We expect a typical
fiber of queries from a single user to consist of multiple sessions of
queries. A single session consists of reformulations, and topically
related queries, close together in time. Different sessions from the
same user may contain similar terms, when the user re-queries for
the same topic, or “bookmark” terms [17]. They may also contain
similar geographic information, vanity queries, and queries reflect-
ing the user’s age, gender and interests. Weighting the importance
of time-lag, word-overlap and topical and demographic similarity
may be difficult to do manually. For this reason we turn to the use
of machine learning, which allows us to consider all of these fac-
tors, while finding the appropriate weights for each automatically.

For this supervised machine learning task we used J48, the Weka
[18] implementation of C4.5 [13]. For each bundle in the training
data, our training data labels consist of all pairs of queries in that
bundle. The label is “same” if the pair of queries are both from
the same user, and “different” if the two queries are from different
users. The features we used for prediction were from several cate-
gories: (1) time, (2) word and character similarity, and (3) session
rewrite probabilities. We used 40 bundles for training, giving us
109,038 pairs of queries. A portion of the tree learned is shown in
Figure 4.

We evaluated the accuracy of this classifier on 460 bundles of
various sizes (including small bundles containing less than 100
queries), containing 8,235,739 pairs of queries. While accuracy
is very high (97.5%), we do better on precision (71.2%) than recall
(29.9%). This may be because we are able to link within-session
queries together reliably, but are not able to link queries from the
same user across sessions with different topics.

In order to use the classifier for identifying fibers in bundles, we
run the classifier over all pairs of queries in the bundle, and classify
them as “same” or “different.” Then any pair of queries classified as
“same” are joined into the same bundle. Since this takes quadratic
time, we were able to evaluate only on 100 bundles: we obtain an
improvement in f-measure from 0.601 for word-overlap to 0.623
for the classifier.

7. CONCLUSIONS
In this paper we studied the privacy implications of bundling

when used as a tool to enhance the privacy of users in querylogs.
We first established that an attacker with access to a bundled query-

log can realistically identify names or locations of many users in a
bundle. The attacker can also perform the converse task of iden-
tifying the bundle, given a user. We then examined the structural
vulnerabilities of bundling, in terms of both volume and sensitive
queries issued by specific users. We finally considered analytical
vulnerabilities, which allows us to decompose a bundle into indi-
vidual fibers of query sessions, with reasonable accuracy. In sum-
mary, bundling is certainly a viable technique in the realm of user
privacy; however, there are significant challenges to actually using
this in practice.
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