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WebFountain is a platform for very large-scale
text analytics applications. The platform
allows uniform access to a wide variety of
sources, scalable system-managed
deployment of a variety of document-level
“augmenters” and corpus-level “miners,” and
finally creation of an extensible set of hosted
Web services containing information that
drives end-user applications. Analytical
components can be authored remotely by
partners using a collection of Web service
APIs (application programming interfaces).
The system is operational and supports live
customers. This paper surveys the high-level
decisions made in creating such a system.

This paper describes WebFountain as a platform for
very large-scale text analytics applications. Web-
Fountain processes and analyzes billions of docu-
ments and hundreds of terabytes of information by
using an efficient and scalable software and hardware
architecture. It has been created as an infrastructure
in the text analytics marketplace.

Analysts expect this market to grow to five billion dol-
lars by 2005. The leaders in the text analytics market
provide easily installed packages that focus on docu-
ment discovery within the enterprise (i.e., search and
alerts) and often bring some level of analytical func-
tion. The remainder of the market is populated with
smaller entrants offering niche solutions that either ad-
dress a targeted business need or bring to bear some
piece of the growing body of corporate and academic
research on more advanced text analytic techniques.

Lower-function commercial solutions typically op-
erate in the domain of a million documents or so,

whereas higher-function offerings exist at a signif-
icantly lower scale. Such offerings focus primarily on
the enterprise and secondarily on the World Wide
Web through the mechanism of small-scale focused
“crawls.”

When large-scale exploitation of the World Wide
Web is required, individuals and corporations alike
turn to undifferentiated lower-function solutions
such as hosted keyword search engines.1 , 2 Typically,
such solutions receive a small number of keywords
(often one) and are unaware that the query comes
from a competitive intelligence analyst, or an eco-
nomics professor, or a professional baseball player.

Users with a business need to exploit the Web or
large-scale enterprise collections are justifiably un-
satisfied with the current state of affairs. Web-scale
offerings leave professional users with the sense that
there is fantastic content “out there” if only they
could find it. Provocative new offerings showcase so-
phisticated new functions, but no vendor combines
all these exciting new approaches—truly effective so-
lutions require components drawn from diverse
fields, including linguistic and statistical variants of
natural language processing, machine learning, pat-
tern recognition, graph theory, linear algebra, infor-
mation extraction, and so on. The result is that cor-
porate information technology departments must
struggle to cobble together combinations of differ-
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ent tools, each of which is a monolithic chain of data
ingestion, processing, and user interface.

This situation spurred the creation of WebFountain
as an environment where the right function and data
can be brought together in a scalable, modular, ex-
tensible manner to create applications with value for
both business and research. The platform has been
designed to encompass different approaches and par-
adigms and make the results of each available to the
others.

A complete presentation and performance analysis
of the WebFountain platform is unfortunately be-
yond the scope of this paper; instead, we adopt the
approach taken by the book How to Build a Beowulf,3

which laid out in high-level terms a set of architec-
tural decisions that had been used successfully to pro-
duce “Beowulf” clusters of commodity machines. We
now describe the high-level design of the WebFoun-
tain system.

Requirements

The requirements for a very large-scale text analyt-
ics system that can process Web material are as fol-
lows:

1. It must support billions of documents of many dif-
ferent types.

2. It must support documents in any language.
3. Reprocessing all documents in the system must

take less than 24 hours.
4. New documents will be added to the system at a

rate of hundreds of millions per week.
5. Some required operations will be computation-

ally intensive.
6. New approaches and techniques for text analyt-

ics will need to be tried on the system at any time.
7. Since this is a service offering, many different users

must be supported on the system at the same time.
8. For economic reasons, the system must be con-

structed primarily with general-purpose hardware.

Related literature
The explosive growth of the Web and the difficulty
of performing complex data analysis tasks on un-
structured data has led to several different lines of
research and development. Of these, the most prom-
inent are the Web search engines (see, for instance,
Google1 and AltaVista2), which have been primar-
ily designed to address the problem of “information

overload.” A number of interesting techniques have
been suggested in this area; however, because this
is not the direct focus of this paper, we omit these
here. The interested reader is referred to the survey
by Broder and Henzinger.4

Several authors5–9 describe relational approaches to
Web analysis. In this model, data on the Web are
seen as a collection of relations (for instance, the
“points to” relation), each of which are realized by
a function and accessed through a relational engine.
This process allows a user to describe his or her query
in declarative form (Structured Query Language, or
SQL, typically) and leverages the machinery of SQL
to execute the query. In all of these approaches, the
data are fetched dynamically from the network on
a lazy basis, and therefore, run-time performance is
heavily penalized.

The Internet Archive,10 the Stanford WebBase proj-
ect,11 and the Compaq Computer Corporation (now
Hewlett-Packard Company) SRC Web-in-a-box proj-
ect12 have a different objective. The data are crawled
and hosted, as is the case in Web search engines. In
addition, a streaming data interface is provided that
allows applications to access the data for analysis.
However, the focus is not on support for general and
extensible analysis.

The Grid initiative13 provides highly distributed com-
putation in a world of multiple “virtual organiza-
tions”; the focus is, therefore, on the many issues
that arise from resource sharing in such an environ-
ment. This initiative is highly relevant to the Web-
Fountain business model, in which multiple partners
interact cooperatively with the system. However, ar-
chitecturally WebFountain is a distributed architec-
ture based on local area networks, rather than wide-
area networks, and thus the particular models differ.

The Semantic Web14 initiative proposes approaches
to make documents more accessible to automated
reasoning. WebFountain annotations on documents
may be seen as an internal representation of stan-
dardized markup as provided by frameworks such
as the Resource Description Framework (RDF),15

upon which ontologies of markups can be built us-
ing mechanisms such as OWL16 or DAML.17

Other research from different areas with significant
overlap includes IBM�s autonomic computing initia-
tive,18 , 19 which addresses issues of “self-healing” for
complex environments, such as WebFountain.
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System design
The main WebFountain is designed as a loosely cou-
pled, share-nothing parallel cluster of Intel-based
Linux** servers. It processes and augments articles
using a variant of the blackboard system approach
to machine understanding.20 , 21 These augmented ar-
ticles can then be queried. Additionally, aggregate
statistics or other cross-document meta-data can be
computed across articles, and the results can be made
available to applications.

The loosely coupled nature of the cluster makes it
a natural for a Web-service style communication ap-
proach, for which we use a lightweight, high-speed
Simple Object Access Protocol (SOAP) derivative
called Vinci.22

We scale up to billions of documents by making sure
that full parallelism can be achieved, and by adding
a fair amount of hardware to solve the problem (cur-
rently, 256 nodes in the main cluster alone). This level
of scaling is made possible because the same hard-
ware and, in many cases, the same results of analysis
are used to support multiple customers.

To support the multilingual requirement, all docu-
ments are converted to Universal Character Set
transformation format 8 (UTF-8)23 upon ingestion,
allowing the system to support transport, storage, in-
dexing, and augmentation in any language. We cur-
rently have developed text analytics for Western Eu-

ropean languages, Chinese, and Arabic, with others
being developed and imported.

Ingestion is supported by a 48-node “crawler” clus-
ter that obtains documents from the Web as well as
other sources and sends them into the main process-
ing cluster (see Figure 1).

Additional racks of SMP (symmetric multiprocessor)
machines and blade servers supply the additional
processing needed for more complex tasks. A well-
defined application programming interface (API) al-
lows new augmenters and miners (both described
later) to be added as needed, and an overall cluster
management system (also described later), backed
by a number of human operators, schedules tasks to
allow maximum utilization of the system.

Ingestion
The process of loading data into WebFountain is re-
ferred to as ingestion. Because ingestion of Web
sources is so important to a system for large-scale
unstructured data analysis, the ingestion subsystem
is broken into two components. The first focuses on
large-scale acquisition of Web content, for which the
primary issues are the raw scale of the data and the
heterogeneity of the content itself. The second fo-
cuses on acquisition of other sources, for which the
primary concerns are extraction of the data itself and
management of the delivery channel. We discuss
these two components separately.

Figure 1 Information flow within the WebFountain environment
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Acquisition of Web data. The approach taken and
the hardware and software used to acquire data are
indicated in this discussion.

Approach. Crawling large portions of the Web re-
quires a system that has performance points high
enough to saturate the inbound bandwidth, but that
also can perform a fair amount of analysis on the
pages fetched to determine where to go next. Crawl-
ing is a cycle of queuing up pages to acquire, fetch-
ing, and then examining the results and deciding
where to go next. These decisions can be quite com-
plex to make because there is a desire to maximize
the value of the pages fetched. (See Figure 2.) Such
feedback is required to avoid traditional problems
of crawling: automatically generated or trivially
changed pages, sites with session identifiers (IDs) in
the uniform resource locator (URL), content type of
no interest to the user population, and so forth.

We achieve the performance through share-nothing
parallelism in the fetcher (as well as share-nothing
processing in the cluster). The “single point” is the
queue, which fortunately is quite simple: URLs to
crawl are communicated to it from the various eval-
uators along with a priority. These pages are then
pulled from it by the various fetcher instances that
are allocated work on a simple hash of the host name.
Each fetcher node then maintains its own queue and
selects the next URLs to crawl, based on freshness,
priority, and politeness (avoiding heavily loading a
Web server with multiple successive accesses to the
same server).

Hardware. The processing portion of the crawler is
part of the main mining and storage cluster and is
thus discussed later. The queue resides on a single
queue management machine (an IBM xSeries*
Model x335 server, which uses a 2.4 gigahertz (GHz)
Intel Xeon** processor with 4 gigabytes (GB) of
read only memory, or RAM). Requested Web pages
are dispatched via hash on the site name to 48 fetcher
nodes, which are responsible for throttling load on
the sites being examined, obeying politeness rules,
and so forth. These machines connect to the Inter-
net at large (at the moment) through 75 Mbps of an
OC3 (optical Carrier level 3) line.

Software. The fetch cluster is coordinated through
a Web service interface, with a DB2* system to hold
information to support politeness policies. The
fetcher itself is written in C��, as is the queue. We
run multiple DNS (Domain Name System) servers
and caches to reduce load on our upstream DNS pro-
viders. The queue supports priorities and has a trans-
action type semantic on work (preventing a failed
fetch machine from resulting in data loss).

Acquisition of other data sources. WebFountain
employs a number of other data sources as well: tra-
ditional news feeds, preprocessed bulletin boards,
discussion groups, analyst reports, and a variety of
both structured and unstructured customer data.

Approach. All of these sources come with their own
unique delivery method, formatting, and so on. The
ingestion task for all these methods consists of ra-

Figure 2 An example of crawling
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tionalizing the content into Extensible Markup Lan-
guage (XML), which can then be loaded into stor-
age, or the store, through an “XML fetcher.” For most
sources, this operation includes an attempt to either
provide or begin a chain of mining that will result
in the running text being available to further mining
chains (so called DetaggedContent). In this way,
many of the high-level linguistic analyses can be run
on all data, regardless of source.

Hardware. As might be imagined, “other” data
sources require a variety of data access approaches.
Some of the data comes on CDs (compact disks),
some on magnetic tape, some on removable hard
drives, some via Web site, much via FTP (File Trans-
fer Protocol) (both pull and push), some via Lotus
Notes* database replication, some via e-mail, and
so forth.

Each of these delivery mechanisms may imply a sin-
gle machine per source, or a machine shared across

a small number of sources, to accommodate the par-
ticular needs of that source. For instance, particular
operating system versions are a typical requirement.
However, the data volume on these sources tends
to be relatively small, so in most cases a single IBM
xSeries Model x335 server is sufficient.

Software. Typical data sources require a specialized
“adapter.” Each of these adapters is responsible for
reducing the input data to XML files, usually one per
“document,” as described in the preceding subsec-
tion “Approach.”

Data storage
The task of the WebFountain Store component is
to manage entities (where an entity is a reference-
able unit of information) represented as frames24 in
XML files. This management entails storage, mod-
ification, and retrieval. In WebFountain, entities are
typically documents (Web pages, newsgroup post-
ings), but might also be concepts such as persons,
places, or companies. Entities have two properties:
a type and a set of keys, each of which is associated
with a multiset of values. Interpretation of the se-
mantics of a particular key depends on the entity
type. Common to all entity types is a key called the
Universal Entity Identifier (UEID), which holds the
globally unique 16-byte identifier for that entity. See
Figures 3 and 4.

Challenge. The WebFountain store must receive en-
tities, modify them, and return parts of them as
needed. The challenge is one of scale in the face of
several very different access patterns that need to be
supported. These access patterns can be classified
as creating new entities, modifying existing ones, or
reading parts of existing ones. Access for a partic-
ular client can be either a sequential pass through
most or all of the data, or a sequence of random ac-
cesses.

The key problem is avoiding the overhead of a disk
seek for each access of each client. Latency for a
small seek followed by a read or write is dominated
by the seek time, and thus limited to the low hun-
dreds per second. The use of RAID5 (redundant ar-
ray of independent disks, level 5) to help with main-
tenance and uptime just exacerbates the problem as
each write to the array becomes three to four writes
to the devices.25

The traditional approach for dealing with these types
of patterns has been to cache heavily. This does not

Figure 3 An example of entity data stored in a frame

UEID: 00005509873A.....
TYPE: Person
NAME: John Doe
HOMEPAGE: http://john.doe.com
AGE: 15
.
.
.
.
.
.

Figure 4 An example of XML representation for entity data

<ENTITY>
     <UEID>00005509873A . . . . </UEID>
     <TYPE>Person</TYPE>
     <NAME>John Doe</NAME>
     <HOMEPAGE>http:// john.doe.com</HOMEPAGE>
     <AGE>15</AGE>
     .
     .
     .
</ENTITY>
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help as much as we might like as the data scale is
too large and the typical access pattern too random
for cache hits to result in substantial savings.

Approach. Regardless of other tricks used to address
this problem, it is always desirable to have access to
numerous disk heads working in parallel. If the prob-
lem can be spread over many disk heads (or arrays),
and the order in which data are returned is unim-
portant, this spreading can result in linear increases
in speed. We hash a unique part of the entity (in most
cases the UEID) to determine storage locations, pro-
viding uniform distribution across all the devices, and
take full advantage of share-nothing parallelism on
the later mining and indexing steps.

On the disk itself, we take a compromise position
of storing data together in bundles of a few hundred
entities. The number of entities in the bundle is a
tuning parameter that can be adjusted to match the
overall workload. This approach allows sequential
access when the whole data set needs to be exam-
ined, at the expense of a small penalty for each ran-
dom access. Random access is achieved by hosting
a UEID to bundle lookup using a fully dynamic
B�Tree data structure on disk where all the non-
leaf nodes are in memory. For storage devices that
handle fewer than five million UEIDs, the entire
lookup tree is kept in memory for faster access.

The physical storage is fronted by a Web service in-
terface that performs some access optimization and
pooling of data access. It provides separate sequen-
tial and random access APIs and uses a different fam-
ily of optimization techniques in each case.

Hardware. We are using 2560 72-gigabyte drives, ar-
ranged into 512 five-disk RAID5 arrays. These drives
are hosted by IBM TotalStorage* IP Storage 200i iSCSI
(Internet Small Computer System Interface) devices,
and the actual storage interface is via 256 network-
attached IBM xSeries Model x335 Linux servers,
grouped into eight-server nodes, connected via a
jumbo frame gigabit network. This works out to ap-
proximately 0.5 terabyte per “node” of formatted
space, which is a suitable mix of processor and stor-
age for the augmentation to be done later (see the
next section). The storage is formatted with a
ReiserFS V2 file system. We are running various
Linux kernels in approximately the Version 2.4.15
to Version 2.4.20 range.

Software. The serialization format used to transfer
data over the network is the same format used to

store frames on disk. This helps to reduce process-
ing overhead because little or no parsing of the data
is needed. This low CPU utilization approach is im-
portant because the iSCSI storage approach does re-
quire a certain amount of computation itself, and
we need to do augmentation and indexing on the
nodes as well.

The storage server is multithreaded both in the cli-
ent requests and disk access (via asynchronous I/O),
so as to achieve deep disk queues and the corre-
sponding increases in speed.26

For sequential access, storage reads an entire bun-
dle (typically 8 MB or larger) to increase read size,
and also performs prefetching of the next bundle
when appropriate. The use of bundles, however, re-
quires periodic reorganization to remove deleted rec-
ords. Thus, an on-line reorganization thread needs
to run in the background (see, for example, Sockut
and Iyer27).

The last feature is a very simple skip selection func-
tion used with sequential access. Certain commonly
accessed collections have a tag embedded in their
directory information that allows storage to provide
(for example) all the nonduplicate, nonpornographic
English language pages (a common starting point for
marketing research).

Performance. Table 1 shows current performance
numbers in documents per second, where a docu-
ment is a Web page. As the table shows, read access
is nearly the same in both access patterns, but ran-
dom writes are considerably more expensive.

Future directions. Future explorations will include
the trade-offs of direct-attached versus network-at-
tached storage (NAS), testing of new NAS approaches
such as RDMA (Remote Direct Memory Access), the
use of hardware iSCSI controllers, the possibility of
either changing the file system to ReiserFS V4 or
XFS from Silicon Graphics, Inc. (SGI) or dispensing
with it entirely and managing the raw device. Lastly,
kernel-based asynchronous I/O is developing and may

Table 1 Performance of storage per node
(documents/second)

Access Read Create Modify

Sequential 440 200 350
Random 420 200 150
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provide another considerable decrease in processor
I/O overhead.

Augmentation
Augmenters are special-purpose programs that ex-
tract information from entities in storage and add
new key or value pairs to these entities. Each aug-
menter can be thought of as a domain-specific ex-
pert. The blackboard approach is traditionally im-
plemented as a set of experts considering a problem
while sitting in front of a virtual blackboard, each
adding a comment to the blackboard when that ex-
pert understands part of the problem.20 , 21 However,
a straightforward implementation of this approach
leads to inefficiencies caused by contention and ex-
cessive disk I/O, as each expert examines and aug-
ments each entity independently. WebFountain takes
a slightly different approach of moving the black-
board past each expert and giving each a chance to
add comments as the data stream by.28 This approach
turns what was a contention problem into a pipe-
line, at the price of somewhat decreased interaction
among the experts.

We refer to these experts by the somewhat less pre-
tentious term “augmenters.” For example, an aug-
menter might look at an article and extract the names
of the people mentioned therein. The next aug-
menter might match the extracted names against a
list of chief executive officers (CEOs), and a third aug-
menter might further annotate certain CEOs with the
year in which they acquired the position.

A similar chain of augmenters might recognize syn-
tactic structures, such as important domain-specific

noun phrases or geographical entities, or might aug-
ment a page with a version of the content translated
from Korean to English.

Where appropriate, these augmentations are then
merged and indexed. The index query language will
accept simultaneous requests for augmentations pro-
duced by different augmenters, allowing queries that
might, for example, determine all pages with a ref-
erence to a European location, a new CEO, and a
synonym for “layoff.”

Challenge. Each augmenter is an independent pro-
cess that must run against some subset of the en-
tities in the system. The challenge is to perform these
augmentations as quickly and efficiently as possible,
taking advantage of ordering, batching, and so forth,
given that the augmenters themselves are at times
not “hardened” (production-level) code and thus
must run isolated (“sandboxed”). Augmenters may
have different access control restrictions, may require
different subsets of the data, may exhibit dependen-
cies on one another, and may run on different phys-
ical machines, perhaps because of operating system
requirements. In this complex space, the system must
determine the optimal manner in which to run (“gang
together”) augmenters.

Approach. The chief tool available to the optimi-
zation engine is a Foreman process that spawns and
monitors a sequence of augmenters and passes data
through the sequence, incurring only a single
read/write operation for the entire chain (Figure 5).

We put a number of augmenters together in this
pipeline until their memory and CPU requirements
match the disk I/O and call the resulting set a “phase”
of augmentation. The data are processed through
multiple phases, depending on the kind of data. The
Foreman process allows conditional branching, so
for example, Arabic tokenization is only run on the
entity if it is in Arabic.

The Foreman process provides “sandboxing” and
monitoring by keeping limits on process memory us-
age and processing times and restarting processes
that appear to be hung or misbehaving. Errors are
logged, together with recent input data, to facilitate
reproducing the error in a debugging environment.
This process gives the system a high degree of ro-
bustness in the presence of possibly unreliable aug-
menters.

Figure 5 The Foreman process
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Grouping augmenters into phases, given the require-
ments above, is an ongoing research problem; our
current groupings are determined manually.

Hardware. As noted above, augmentation occurs
whenever possible on the same hardware as the stor-
age. Sometimes “off-node” hardware will be used for
particularly computationally intensive augmentation,
or for augmentation that cannot be run locally for
other reasons (permissions, code ownership, legacy
operating system requirements, and so forth).

Software. There is no single approach to writing an
augmenter, nor any single language in which the aug-
menter must be written. A number of libraries seek
to simplify the task by allowing the augmenter au-
thor to write a function that takes an entity and re-
turns an entity with the augmentations added. Aug-
menters written in primary supported languages
(currently C��, Java**, and Perl) need only pro-
vide a processOnePage() method, and can then be
automatically run across the distributed cluster, mon-
itored, and restarted. Pointers to entities that cause
crashes can be passed to the author.

The Foreman process itself represents a part of the
augmenter software stack. It allows augmenters to
connect to a stream of new entities coming into the
system, run over the whole storage, or run over the
result of a query to storage without needing any
changes to the augmenters themselves.

Performance. Augmenters running over the whole
storage can see around 300 entities per second per
node. Augmenters that are processing the results of
a query can see around 100 entities per second per
node. As noted earlier, there are 256 nodes on the
system for a total rate of 76 800 entities per second
or 25600 for query processing.

Future directions. Most of the future work on aug-
mentation will be to enhance the ease of authoring
augmenters and miners, as well as to enhance the
sandboxing and debugging tools to identify problems
and help with their resolution.

Index
The WebFountain indexer is used to index not only
text tokens from processed entities (including, but
not limited to Web pages), but also conceptual to-
kens generated by augmenters. The WebFountain
indexer supports a number of indices, each support-
ing one or more different query types. Boolean,

range, regular expression, and spherical are typical.
More complex queries include graph distance (e.g.,
as in the game of how many people between a per-
son and the actor Kevin Bacon), spatial (e.g., pages
within San Jose, California), and relationships (e.g.,
people who work directly for John Smith, CEO of XYZ
Company).

Challenge. Indexing in this environment presents five
challenges. Indices must:

● Build quickly
● Build incrementally
● Respond to queries promptly
● Use space efficiently
● Deal with result sets that may be many times larger

than machine memory

All of these requirements must be addressed in an
environment with trillions of total indexed tokens
and billions of new or changed tokens every week.

Approach. We will address only the main indexer
for the rest of this section. Because the main index
is a fully positional index, the location of every to-
ken offset within every entity (document) is recorded,
along with possible additional attributes that can be
attached by augmenters to each token occurrence.
The indexing approach is scalable and not limited
by main memory because we adopt a sort-merge ap-
proach in which sorted runs are written to disk in
one phase and final files are generated in a merge
phase. To allow larger-than-memory result sets, most
analytical queries return results in UEID order.29 This
allows most joins in the system to be performed as
merges, without buffering of one of the result sets—a
great convenience when result sets may represent
hundreds of billions of entities and take days to con-
sume.

The indexer supports the WebFountain Query Lan-
guage (WFQL), the language that allows processes
within the system to specify declarative combinations
of result sets from different parts of the system (see
Figure 6). Fragments of WFQL can be pushed down
into the indices themselves; for example, Boolean
subtrees can be handed in their entirety to the Bool-
ean index, limiting the amount that needs to be sent
over the network. However, when results must be
aggregated over multiple indices, the WebFountain
Joiner is responsible for handling the resulting joins.
See the section “Querying” later for more details.

Hardware. Again, because hardware is the main clus-
ter of nodes, indices are built where the data are
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stored and augmented for both performance and
convenience reasons. This siting is relaxed for some
specialized indices, which can run on stand-alone IBM
xSeries model x350 machines (using 700 MHz four-
way Intel Xeon processors with 4 GB of RAM) when
appropriate. Currently, we migrate indexing away
from the data for indices in development or when
we index a relatively small set of the entities.

Software. The main indexer is implemented as a dis-
tributed, multithreaded C�� token stream index-
er30 run on each of the cluster nodes. It employs an
integer-compressed-posting-list format to minimize
not only storage requirements, but also I/O latency
on complex joins that are passed down to it.

Future directions. The more WFQL that can be
pushed down to the index the better. Doing this in-
telligently will require better costing estimates and
models for setup and transport times on various que-
ries. This improvement in turn leads to identifica-
tion of frequent queries (for caching), as well as more
involved query optimization.

Miners
We begin with a description of the distinction be-
tween entity-level operations (augmentation) and
corpus-level (cross-entity) operations (mining). Aug-
menters have a specific data model: they process each
entity in isolation without requiring information from
neighboring entities. As described previously, they
are easily parallelizable and can provide significant
programming support. Tokenization, geographic
context discovery, name extraction, and full machine
translation are all examples of tasks that execute one

page at a time. Miners, in contrast, perform tasks
such as aggregate statistics, trending, relationship ex-
traction, and clustering. They must maintain state
across multiple entities in order to do their job. Typ-
ically, such miners would begin by running an aug-
menter over the data, possibly just to dump certain
extracted information. However, the miner would
then begin aggregate processing of all the dumped
information. Finally, the miner can either upload
data back to storage (to the processed entity, or to
another entity such as a Web site, or a corporation),
or the miner can present the results of its mining as
a Web service without writing back to storage.

Challenge. The primary challenge in mining is scal-
ability. Additionally, even sorting takes a significant
amount of time (measured in hours or days), and
quadratic time algorithms are essentially infeasible
until the data have been dramatically distilled. Fur-
thermore, in a multibillion entity corpus, even the
problem of separating the relevant information from
the noise may become a large data question.

Approach. With many cross-entity techniques, a mul-
titier approach must be used to reduce data-scale to
more manageable levels. A simple example is to
query all entities that match some trivial selection
(such as, “Must mention at least one Middle-East-
ern country”) and then look at this subset (which may
be less than one percent of the whole Web) for fur-
ther processing.

If several “sieving” approaches can be used, a data
set several orders of magnitude smaller can be con-
sidered, and many more complicated techniques are
then available.

Hardware. These cross-entity approaches generally
run on a separate rack of IBM xSeries Model x350
machines that allow more computation than the stor-
age nodes themselves. Some miners use data ware-
housing to move data of interest to a DB2 database
for further (often OLAP, or on-line analytical pro-
cessing) style investigation. Additionally, some
whole-Web-graph problems are run on an Itanium**
system, which has a very large amount of memory
installed. In short, these mining problems can be run
on whatever platform is appropriate to the task at
hand.

Software. Likewise, these approaches often require
specialized hardware or software. Because of the di-
verse nature of mining operations, little generic sup-

Figure 6 Sample WFQL query

AND

OR

BOOLEAN

PERSON: JOHN DOE

RANGE

DOLLAR AMOUNT > 1 MILLION

LOCATION

WITHIN 10 MILES 
OF ARMONK, NY
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port can be provided by the system. In general, the
author of the miner must be aware of issues of per-
sistence and distributed processing that can be hid-
den in abstract superclasses for augmenters. Addi-
tionally, the task of scheduling miners requires a
more involved workflow specification because the
miner usually is triggered after a particular suite of
augmenters complete and dump useful information.
Once the miner operation is completed, there may
be a final upload of the resulting data back to stor-
age.

For example, consider a link-based classifier such as
Hyperclass.31 Such a classifier would dump feature
information for each entity (using an augmenter),
would interact with a distributed Web service pro-
viding connectivity information (see, for instance, the
Connectivity Server32) to generate neighborhood in-
formation, and would then perform an iterative cy-
cle with a data access pattern much like power it-
eration to compute final classes. Once the classes for
each entity have been computed, yet another aug-
menter would run to upload the classes for each en-
tity back to storage.

Performance. The cross-page mining rate is some-
where between 25 thousand and 70 thousand enti-
ties per second.

Future directions. The most challenging future prob-
lems for WebFountain lie in the mining space. The
techniques of data mining, graph theory, pattern rec-
ognition, natural language processing, and so forth
are all amenable for reapplication to the new do-
main of very large-scale text analytics. In most cases,
the traditional algorithms require modification to
maintain efficiency; this domain therefore represents
a fruitful opportunity to apply existing techniques
in new ways on a timely and valuable data set.

Querying
As introduced earlier, WebFountain supports a
query language that generates augmented collections
of entities by combining results from various services
within the platform. A query consists of selection cri-
teria and a specification of the particular keys that
should decorate the resulting entities. For notational
purposes we use an SQL derivative to capture most
common queries that the system can process. A typ-
ical query might be as follows:

SELECT URL, UEID, Companies
FROM Web

WHERE
Person�‘John Smith’

AND Location WITHIN
‘10 miles of San Jose, CA’

The results are then returned as an enumeration
of XML fragments containing the requested data.

Challenge. Recall that queries must run against ter-
abytes of data stored on hundreds or even thousands
of nodes. The example above is easy because it can
be sent in parallel to all the nodes. A more complex
query, requiring a more complex data flow, would
be “Give me all the pages from sites where at least
one page on the site is in Arabic.”

A second challenge arises from the possible size of
the result sets. These sets may need to be shared be-
tween multiple clients and may need to deal with cli-
ents crashing and restarting where they left off. This
robustness is easier, thanks to the loose coupling, but
still requires a fair amount of complexity, especially
in deciding when to drop queries or fragments of re-
sult sets as “abandoned.”

Finally, as in structured data queries to relational
databases, efficient computation of result sets relies
heavily on the optimizer. In a loosely coupled sys-
tem, the cost of moving entries that will later be
trimmed from one machine to another can easily
dominate query execution time, resulting in situa-
tions that are not standard territory for database op-
timizers. Further, the system allows the dynamic in-
troduction of engines to perform intermediate stages
of query processing, and these lightweight distrib-
uted engines must be capable of specifying enough
information about their performance to allow the
optimizer to generate an efficient distributed query
plan.

Approach. Although expressive, there are times
when SQL is not expressive enough; therefore, the
common query format is WFQL, an XML query plan.
It allows more complex interactions between services
to be scripted. SQL-type queries are converted to this
format before processing by a front end.

After the WFQL proposal is received, the tree is op-
timized. Optimization includes tree rewriting, rebal-
ancing where appropriate, and determination of sub-
trees that can be “pushed down” in large amounts
to the leaf services (such as indices). This new WFQL
plan is then executed, and the results served up to
the client as an enumeration of XML fragments.

IBM SYSTEMS JOURNAL, VOL 43, NO 1, 2004 GRUHL ET AL. 73



Hardware. The query engine (called a joiner) runs
on its own dedicated IBM xSeries Model x350 ma-
chine. Because these queries are independent, ad-
ditional instances of the joiner can easily be added
to the system until the cluster is saturated.

Software. The query engine performs a three-step
process: taking in the query in a variety of formats
and translating it to WFQL (the front end), optimiz-
ing it (the middle end), and executing the resulting
plan (the back end). Currently the middle end is fairly
trivial, but see below for some discussion of how this
may change.

Performance. The current joiner has a latency of
around 20 milliseconds for relatively simple queries.
Queries that require a resorting of the results can
take much, much longer, as n log n (where n is a bil-
lion) can run to a few days.

Future directions. As noted earlier, accurate query
cost estimation, possibly requiring statistics gathered
during query execution, is a key requirement for op-
timization. Two key future directions in this area are
the following: First, integration of the DB2 Data-
Joiner product for query rewriting, which would al-
low us to support more ad hoc queries without wor-
rying about bringing down the cluster; second,
introduction of multiquery optimization—for exam-
ple, should a number of queries need to be run ev-
ery night, could they be combined in some way to
limit the number of data accesses.

Web service gateway

The scale of hardware required for WebFountain
makes it infeasible to build a separate instance for
each customer. Instead, WebFountain is a service
offering that performs data processing in a single cen-
tralized location (or a few such locations) and then
delivers results to clients from these locations. Given
the existing Web service approach used internally,
it is natural to leverage that decision by providing
result data to clients through a Web service model
as well.

Challenge. There are three primary challenges in the
design of the gateway. First, and most important, ac-
cess must be as simple as possible to encourage de-
velopers to write programs that make use of the plat-
form. Second, the gateway must provide access
controls, monitoring, quality of service guarantees,
and other user management tasks. Third, the gate-

way must provide performance sufficiently high to
meet the needs of users.

Approach. We do this data processing through a
SOAP33 Web service gateway. For each service to be
exposed externally, a WSDL34 (Web Services Descrip-
tion Language) is published. Connection to the gate-
way is by SSL2 MAC (Secure Socket Layer Version 2
mutually authenticated certificate). Clients register
with the gateway and negotiate the commands they
are allowed to execute, the load they are allowed to
place on the system, and the families of parameters
they are authorized to specify. The gateway mon-
itors quality of service and bandwidth for each cli-
ent, based on a logging subsystem that captures que-
ries, response times, and meta-data that arrive with
each completed internal query.

Commands exposed through the WSDL need not map
directly to commands inside the cluster. For exam-
ple, an external query for the current crawling band-
width might result in an internal query to all 48 crawl-
ers.

Hardware. The gateways are set up as a set of IBM
xSeries Model x330 machines (using 1.13 GHz dual
Intel Pentium** III Processors with 2 GB of RAM),
dual network zoned, and behind firewalls. The num-
ber of gateway machines can be trivially scaled up
to meet demand, dynamically if necessary.

Software. The gateways themselves are written in
the C�� and Java languages. They perform the task
of authenticating the queries, logging them, trans-
lating them to the requisite xtalk queries, dispatch-
ing them to the cluster, aggregating the results, re-
phrasing them as SOAP, and returning them.

Performance. The current performance point is tens
of queries per gateway per second. This number ob-
viously varies considerably depending on the size of
the result set being returned.

Future directions. Future work for the gateway in-
cludes supporting higher degrees of granularity on
querying (resulting in a more complex set of sup-
ported queries), better performance by running sim-
ilar queries together, faster deployment of new func-
tionality through dynamic plug-ins to the gateway,
and integrated load balancing, sharing, and group-
ing of requests.

Cluster management
Although having a large number of machines avail-
able allows us to overcome a problem of several or-
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ders of magnitude of scale, it introduces several or-
ders of magnitude of complexity in keeping the
system running. Maintaining an overview of 500 ma-
chines can be taxing, particularly coupled with the
requirement that the system be resilient to some
number of failed nodes.35

Nonetheless, we need to identify problems, fix them
automatically when possible, call in human support
otherwise, and allow institution of workarounds while
the problem is being dealt with. Additionally, the
cluster management subsystem is responsible for the
more mundane automation tasks that surround
workflow management, automatically distributing
processes across nodes of the cluster, monitoring for
progress, restarting as necessary, and so forth.

Challenge. The complications of running such a sys-
tem include the heterogeneous nature of both hard-
ware environment and software deployment (a va-
riety of code versions running all at the same time).
Because of requirements on turnaround time and
the vicissitudes of Web data, software failures in the
augmenters and miners are inevitable. The system
must not rely on an error-free execution. If an aug-
menter fails once, the system will log the error, re-
start the process, and go on. If it fails several times
on the same entity, the author will be notified, and
the entity will be skipped. Miners, in contrast, may
or may not provide mechanisms for restart. With-
out such a mechanism, the system will merely retry
the miner and request operator assistance based on
the priority of the miner task.

In a complex system the root cause of a problem is
often elusive. Cascade failures are quite common,
and looking at crash logs can be a time-consuming
task. Although rigorous testing and debugging is
done before introducing new code, by definition no
test is complete until it has run on the whole Web.
We always find things that do not scale as we wish
in production, or that are tripped up by truly odd
pages. Additionally, resource contention problems
are hard to model in test and often only appear in
production.

Approach. The cluster management subsystem runs
a special service on each machine known as a nanny.
This process forks and runs all the services needed
on a machine and monitors their performance, CPU
and memory usage, ends them on request or when
thresholds are exceeded, and reports on their status
when queried. Any major changes that the nanny un-

dertakes (e.g., install new code or start a new ser-
vice) are authenticated and logged.

A central coordinator checks with all these nannies
every few seconds and creates an aggregate view of
the production cluster. In addition to services, each
nanny also monitors overall system status, including
disk status, CPU load, memory usage, swapping, and
network traffic, as appropriate. This information is
logged centrally to a “cluster flight recorder,” which
can be replayed to find unusual performance bot-
tlenecks.

Simply managing hundreds of machines is a concep-
tual challenge as well. For the operators and tech-
nicians, nodes are grouped into sets of eight, which
represent a “rack” for administrative purposes. Vi-
sual displays use this grouping to allow rapid drill
down to machines and problems.

Hardware. A single IBM xSeries Model x335 machine
serves as the central coordinator; one instance of the
nanny runs on every main cluster node and every in-
gester.

Software. Surprisingly little work has been done on
managing large, loosely coupled clusters (although
grid research13 is beginning to look promising). As
a result, the nanny or coordinator is a custom im-
plementation in a mix of C�� and Java languages.
A number of commercial Web service monitors can
be used to monitor the SOAP gateway, but these mon-
itors still need to be examined by the central coor-
dinator to provide a uniform view.

Performance. The current cluster supports a half
dozen “clients” at a time and requires 7.5 people to
run. It is unclear what the scaling relationship is, but
the goal is to be highly sublinear.

Future directions. Our primary goals for the future
in cluster management are improved problem de-
termination and enhanced speed of resolution, in-
cluding autonomic swapping of hot spares to facil-
itate automatic failover. The goal is to provide better
utilization of the hardware with a smaller operations
staff.

Conclusion
The WebFountain system currently runs and sup-
ports both research and a set of customers who are
involved in “live” use of applications hosted in the
production environment. As such, the architecture
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has completed the first phase of its development: go-
ing live with a limited set of customers.36,37 In this
paper, we have disclosed at a high level the archi-
tectural decisions we have made to complete this first
phase of execution, with an eye to the rapid expected
growth in both data and load (measured as number
of applications, number of partners, and number of
users).

We adopted the Web service model because we
needed the traditional benefits of such an architec-
ture: modularity, extensibility, loose coupling, and
heterogeneity. So far, we have delivered multiple
real-time services backed by 100 terabytes of data
with debugging cycles measured in days and exten-
sibility that exceeded our expectations. Although our
requirements will only become more severe, we do
not anticipate needing to revisit this basic architec-
ture in order to meet them.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds, Intel
Corporation, or Sun Microsystems, Inc.
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