
SCRank: Spammer and Celebrity Ranking in Directed Social
Networks

Alex Fabrikant

Google Research

Mountain View, CA, USA

fabrikant@google.com

Mohammad Mahdian

Google Research

New York, NY, USA

mahdian@google.com

Andrew Tomkins

Google Research

Mountain View, CA, USA

tomkins@google.com

ABSTRACT
Many online social networks allow directed edges: Alice can uni-

laterally add an “edge” to Bob, typically indicating some kind of

interest in Bob, or in Bob’s content, without Bob necessarily recip-

rocating with an “add-back” edge that would have indicated Bob’s

interest in Alice. �is signi�cantly a�ects the dynamics of inter-

actions in the social network. Most importantly, we observe the

rise of two distinctive classes of users, celebrities and follow spam-
mers, who accrue unreciprocated directed links in two di�erent

directions: celebrities a�ract many unreciprocated incoming links,

and follow spammers create many unreciprocated outgoing links.

Identifying users in both of these two categories is an important

problem since a user’s status as a celebrity or as a follow spammer

is an important factor in abuse detection, user and content ranking,

privacy choices, and other social network features.

In this paper we develop SCRank, an iterative algorithm that

exploits a deep connection between these two categories, and clas-

si�es both celebrities and follow spammers using purely the so-

cial graph structure. We analyze SCRank both theoretically and

experimentally. Our theoretical analysis shows that SCRank al-

ways decreases a potential function, and therefore converges to

an approximate equilibrium point. We then use experimental eval-

uation on a real global-scale social network and on synthetically

generated graphs to observe that the algorithm converges very

quickly, and consistently to the same solution. Using synthetic

data with built-in ground truth, we also experimentally show that

the algorithm provides a good approximation to the built-in set of

celebrities and spammers. Finally, we generalize our convergence

proof to a general class of “scoring” algorithms, and prove that

under mild conditions, algorithms in this class minimize a (non-

trivial) potential function and therefore converge. We give several

examples to demonstrate the versatility of this general framework

and usefulness of our techniques in proving theoretical results on

the convergence of iterative algorithms.

1 INTRODUCTION
Online social networks can be divided into two categories: undi-

rected networks such as LinkedIn or (pre-2011) Facebook that re-

quire the consent of both endpoints in order to establish an edge,

and directed ones such as Twi�er, Google+, and Flickr, that allow

one user to unilaterally create a directed edge to another, such as by

“following” the la�er’s public updates, without the la�er creating a

reciprocal (anti-parallel) edge to the former. As has been observed

in practice [12], this simple distinction signi�cantly a�ects the dy-

namics of relationships in the system: undirected social networks

like Facebook tend to cultivate socializing with friends, while di-

rected networks like Twi�er, interacting with content produced by

strangers constitutes a signi�cant portion of social interactions. In

the la�er case, there are o�en a few individuals who collect many

incoming links, either because they are already famous outside the

social network, or because they contribute exceptionally engaging,

viral content to the social network’s ecosystem. �ese individuals

are in a sense the “celebrities” of the network. On the other hand,

we have nodes who accumulate many outgoing links to random

strangers. We call these nodes “(follow) spammers”. As we explain

below, identifying celebrities and spammers of a network are inter-

twined problems. �is paper focuses on developing algorithms to

identify users in these two classes.

�e simplest approach to identify a spammer is to count the

number of unreciprocated outgoing edges of each node and classify

the node as a spammer if this number exceeds a threshold. �e

problem with this approach is that o�en a non-negligible number

of regular users follow many celebrities, and this approach can

identify such users as spammers. Similarly, classifying celebrities

by counting the number of unreciprocated incoming links su�ers

from the problem that it can classify regular users who are targeted

by many spammers (for example, by the virtue of having their name

mentioned in a public, crawlable space) as celebrities. Instead, we

focus on this recursive de�nition of celebrities and spammers:

• A celebrity is a node who is followed by many non-spammers.

• A spammer is a node who follows many non-celebrities.

�is recursive de�nition hints at a natural iterative approach for

�nding celebrities and spammers. In the next section, we mathe-

matically formulate the problem and the iterative algorithm, which

we call SCRank. We then analyze the convergence properties of

SCRank, both theoretically and experimentally, and argue that its

output provides useful information. We will use a real-world data

set from LiveJournal, as well as randomly generated data, to exper-

imentally evalute the convergence properties of our algorithm. To

evaluate the output of our algorithm, we use randomly generated

data with built in ground-truth, and show that the algorithm can

recover a signi�cant portion of the ground truth e�ciently and

accurately.

Finally, in Section 5, we give a generalization of our potential

function argument to a more general framework of scoring prob-

lems, and prove that for any scoring problem satisfying a mild

symmetry and monotonicity assumption, a (non-trivial) potential

function can be associated with the natural iterative algorithm for

the problem, and therefore the iterative algorithm provably con-

verges. We give three concrete examples of this general framework

to demonstrate the versatility of our framework.

ar
X

iv
:1

80
2.

08
20

4v
1

 [
cs

.S
I]

 2
2

Fe
b

20
18

1.1 Related work
Various measures of an individual’s standing in a social network

has been the subject of much research in sociology and social com-

puting, starting well before the dawn of online social networks.

Among the two axes we study, celebrities and follow spammers,

the lion’s share of the prior work on social graph structure has

focused on celebrities, typically with a goal of understanding and

algorithmically locating highly in�uential people for the purposes

of ranking, marketing, predicting cascades, etc. [7], [2], and many

other early sociometric studies focused on de�ning and evaluating

social centrality metrics. In the digital age, algorithms for selecting

high-in�uence sets of social network users from the social graph

structure were pioneered by [9], followed by a large literature of its

own. Much of the search engine literature focuses on �nding in�u-

ential nodes on the web graph, with the results on PageRank [13]

and HITS [10] forming perhaps the most in�uential nodes in the

citation network. �ese and related techniques have been borrowed

for social network applications as well, such as by [18]. While much

of this work has focused on the relatively more sophisticated notion

of in�uence, as measured by impact on viral cascades, less a�ention

has been paid to questioning the idea that a high in-degree deter-

mines a user’s “celebrity” status. For the corresponding problem

on the Web graph, [16] notably gave experimental evidence that

corporate websites’ in-degree is a be�er predictor of a company’s

prominence and worth than PageRank.

�e follow spam problem has been recognized for several years

now [3, 8], but most of the existing work that does consider the

structure of the social graph still focuses on holistic machine-

learning approaches that combine graph properties with a many

signals derived from user content [1, 15, 17] — a very pragmatic

approach for detecting existing spamming activity, but of limited

utility in the common case where creating sibyl accounts is cheap

[19], and most abuser accounts are thus young.

�e existing approaches also assign some form of “trust” seman-

tics to each directed edge, typically making it di�cult to cope with

“social capitalists” [8]: the many legitimately popular celebrities

such as Barack Obama or Lady Gaga who have been observed to

reciprocate follow edges indiscriminately. Even when such indis-

criminate behavior is fairly common, SCRank is una�ected, since

it entirely ignores reciprocated edges, and requires only a fraction

of users to be discerning about follow-backs to get enough input

signals.

�e potential function that makes our analysis work combines

the potential functions of potential games [11] and Max-Cut games

[4]. �e form of the SCRank algorithm itself is inspired various

iterative numerical algorithms used in machine learning such as

EM and belief propagation [14], and more directly by the HITS [10]

algorithm for web ranking. �e di�erences between SCRank and

HITS are subtle, but vital to understanding the operation and anal-

ysis behind SCRank, so we now address this speci�c relationship.

1.2 SCRank vs HITS
At �rst blush, our reciprocal de�nition of spammers and celebrities

in terms of one another appears parallel to the de�nitions of hubs

and authorities in HITS. But mathematically, the structures are

quite di�erent. HITS is expressible as a linear transformation of

either the original hub or authority vector, which converges by the

Perron-Frobenius theorem to the (positive real) principal eigenvec-

tor of a matrix based on the original graph. �ere are two properties

that set the spammer-celebrity iteration apart from HITS. First, the

core update step of the spammer-celebrity iteration involves an

a�ne transformation rather than a linear transformation; such

transformations do not in general a�ain �xed points. �us, we use

the current spammer vector ®s to compute an intermedate celebrity

value ®c ′ = A(1 − ®s) via an a�ne transformation. Second, for rea-

sons we describe below, the particular update we seek requires an

elementwise modi�cation to the results of the a�ne transforma-

tion by an arbitrary increasing function Fs . �e new version of ®s
is given by ®s = Fs (®c ′). �e actual transformation is therefore no

longer a�ne, but will in general be non-linear. Likewise, a similar

transformation applies to produce a new spammer vector from the

current celebrity vector. Combining both the a�ne transformation

and the non-linear modi�cation, we have ®c = Fc
(
At (1 − ®s)

)
.

We now o�er two words of intuition on the form of our up-

date. First, the a�ne structure comes about because, unlike HITS,

outliers on the celebrity scale provide no information about spam-

mers. On the contrary, only nodes that receive low scores on one

scale may provide signi�cant contributions to the score of nodes

on the other scale. A li�le algebraic manipulation will convince

the reader that this property is fundamental to the nature of the

relationship between these classes, and cannot be overcome by

simple linear transformations of the variables, such as introducing

“non-spammer” scores or the like.

Second, the non-linear transfer function comes about for a re-

lated reason. �e 1 − ®s term can be interpreted as a “non-spammer”

score if spammer scores lie in [0, 1], but in general if spammer scores

may grow large, the a�ne transformation will produce large nega-

tive non-spammer scores, which break the intuition that links from

spammers should not contribute one way or the other to celebrity

scores. �us, scores must be scaled to remain in [0, 1] in order to

perform the iteration with the semantics we desire.

In general, the machinery we develop here is appropriate in

any situation that shows anti-reinforcing behavior: shady groups

fund dishonest politicians, while honest politicians are funded by

non-shady groups; and so forth.

2 THE ALGORITHM
To formalize an algorithm based on the recursive de�nition of

the celebrities and spammers in the previous section, we de�ne

a celebrity score cv and a spammer score sv for each node v . All

these scores are in [0, 1]. �e algorithm is parameterized by two

increasing functions Fc and Fs that map non-negative reals to [0, 1].
We denote the directed social network by G , and the vertex set, the

edge set, and the number of vertices of G by V , E, and n. Also, the

set of unreciprocated directed edges of G is denoted by A. In other

words, A = {(u,v) : (u,v) ∈ E and (v,u) < E}.
�e algorithm in presented in detail as Algorithm 1. We refer

to this algorithm as the SCRank algorithm, for Spammer-Celebrity

Rank. �e algorithm is based on iterating the following two as-

signments until either an approximate �xed point is found, or a

maximum number of iterations is reached:

2

cv = Fc
©«

∑
(u,v)∈A

(1 − su)
ª®¬ sv = Fs

©«
∑
(v,u)∈A

(1 − cu)
ª®¬ (1)

Algorithm 1 (SCRank)
Input: Directed social network G; functions Fc and Fs ;

parameters ε and T
Output: Celebrity score cv and spammer score sv for each v ∈ V

1: for all v in V do
2: cv ← 0, sv ← 0

3: end for
4: k ← 0

5: repeat
6: for all v in V do
7: cnewv ← Fc (

∑
(u,v)∈A(1 − su))

8: end for
9: for all v in V do

10: snewv ← Fs (
∑
(v,u)∈A(1 − cnewu))

11: end for
12: δ ← max{| |c − cnew | |∞, | |s − snew | |∞}
13: c ← cnew

14: s ← snew

15: k ← k + 1

16: until δ < ε or k > T

For our experiments, we will use the CDF of a normal distribution

with mean µc and standard deviation σc as the function Fc . �is

is essentially a so� step function where µc controls the location of

the step (the threshold for the number of non-spammer followers

to count a user as a celebrity) and σc controls the smoothness of

this step function (a large σc means a smooth threshold at µc , while

a small σc we get a sharp threshold). Similarly, we use the CDF of

normal distribution with mean µs and standard deviation σs as Fs .

We note that our results go through even if the functions Fs and

Fc depend on the vertex v . �is might be practically useful, for

example, by allowing the threshold µs to depend on the number

of reciprocated neighbors of the vertex (i.e., if a node has a large

number of reciprocated edges, allow it to have more unrecipro-

cated edges without counting it as a spammer). �is and further

generalizations will be discussed in Section 5.

Our algorithm is similar in spirit to the Hubs and Authorities

algorithm of Kleinberg [10]. �e major di�erence is that in our

se�ing, the celebrity score of a node is related to the non-spammer

score of its followers. �is negation makes a signi�cant di�erence:

we need the spammer scores to be scaled in [0, 1] with 0 meaning a

non-spammer and 1 meaning a spammer (and similarly for celebri-

ties), whereas in the hubs and authorities algorithm it was enough

to compute scores that induce reasonable rankings. �is, forces

us to use non-linear operators Fs and Fc . �is is in contrast with

hubs and authorities, which uses linear operators and therefore can

characterize the scores as eigenvectors of a matrix.

Note on the implementation. In order to be able to use the SCRank

algorithm on graphs with hundreds of millions of nodes (as we do

in Section 4), we need to take advantage of parallel computation.

Fortunately, for the SCRank algorithm this is not hard to do, since

the celebrity scores in each iteration only depend on the spammer

scores last computed and vice versa. Using this, we implemented

each iteration of SCRank as two Map-Reduce stages, without any

blow-up in the size of the data in each iteration. �is yielded a

very e�cient implementation which easily accommodated even

our largest experiments in Section 4, on a social graph of over

400,000,000 nodes.

3 CONVERGENCE OF THE ALGORITHM
Ideally, we would like to show that: (1) when there is no bound T
on the number of iterations, SCRank converges to an (approximate)

�xed point; (2) the �xed point is unique; and (3) the algorithm

converges quickly to the �xed point. In this section, we theoretically

show that (1) holds for all directed social networks. We will give

an example that shows that the �xed point of the function is not
necessarily unique, much like in HITS and other similar algorithms

[6]. However, as we will discuss in the next section, we have not

observed such examples in real or randomly generated data sets.

Finally, we will experimentally show that the SCRank algorithm

o�en converges very quickly.

We start by proving that the algorithm never falls into a loop.

�is is done by showing that there is a potential function whose

value decreases in every iteration. �e intuition behind this (complicated-

looking) potential function is that it combines the potential function

for max cut games [4] with those of potential games [11].

In the following theorem, we show the existence of this potential

function. We will then use this result to prove that the algorithm

converges to an approximate �xed point of the Equations (1).

Theorem 3.1. For every directed social network G and every pair
of increasing di�erentiable functions Fs and Fc , there is a function of
the the vector (c, s) computed by the SCRank algorithm that strictly
decreases in every iteration. �erefore, the algorithm will never fall
in an in�nite loop.

Proof. Let Rc = Fc ([0,n]), i.e., Rc is the range of Fc when its

domain is [0,n]. Since Fc is increasing and di�erentiable, its inverse

on Rc is a well de�ned strictly increasing function Fc
−1

. Next, we

de�ne the following function:

Gc (x) =
∫ x

0

F−1

c (t)dt .

Similarly, using Fs , we can de�ne Rs and Gs . We are now ready

to de�ne our potential function. For any vector of celebrity and

spammer scores (c, s) ∈ R2n
, the function P is de�ned as follows:

P(c, s) :=
∑
(u,v)∈A

(1 − su)(1 − cv) +
∑
v ∈V

Gc (cv) +
∑
v ∈V

Gs (sv) (2)

Next, we show that the value of this potential function decreases

in every iteration of the algorithm. To do this, take the derivative

of P with respect to cv , for a vertex v :

∂P(c, s)
∂cv

= −
∑

u :(u,v)∈A
(1 − su) + F−1

c (cv)

3

�is derivative is zero when cv is equal to

c∗v := Fc (
∑

u :(u,v)∈A
(1 − su)),

negative when cv < c∗v , and positive when cv > c∗v . �erefore, by

changing cv from its old value coldv to c∗v , the value of the potential

function can not increase. �is means that the updates in line 7 of

Algorithm 1 never increase the value of P . In fact, since F−1

c is a

strictly increasing function, if at least one of the cv ’s change, then

the potential function must strictly decrease. A similar argument

shows that the updates in line 10 of Algorithm 1 also do not increase

the value of P . �is is enough to show that the algorithm never

falls into an in�nite loop. �

Next, we prove that the SCRank algorithm eventually converges

to an approximate �xed point (also referred to as an approximate

equilibrium). Before stating the theorem, we need to de�ne the

notion of approximate �xed point.

De�nition 3.2. An ε-approximate �xed point of Equations (1) is

a set of celebrity and spammer scores (cv , sv) for each node such

that for each vertex v , we have

|cv − Fc (
∑
(u,v)∈A

(1 − su))| ≤ ε

|sv − Fs (
∑
(v,u)∈A

(1 − cu))| ≤ ε

(3)

Theorem 3.3. For every ε > 0, there is a �nite number of iterations
a�er which the vector (c, s) computed by the SCRank algorithm is an
ε-approximate �xed point of Equations (1).

Proof. We use the notation from the proof of �eorem 3.1.

Since Fc is increasing and di�erentiable on a closed interval [0,n],
there is an absolute constant α , such that for every non-negative

x ∈ [0,n], the derivative of Fc at x is at most αc . �is implies

that the derivative of the function F−1

c on every point in Rc is at

least 1/αc . Similarly, we can de�ne αs for Fs and show that the

derivative of F−1

s on Rs is at least 1/αs . Let α = max(αc ,αs).
Next, we prove that if an update operation changes the values

by too much, it must also signi�cantly decrease the value of the

potential function. Assume in an iteration the value of cv is changed

from coldv to c∗v , where |coldv −c∗v | ≥ ε . Assume c∗v < coldv (the c∗v >
coldv case can be handled similarly). �en for every x ∈ [c∗v , coldv],
we have

F−1

c (x) > F−1

c (c∗v) + (x − c∗v)/αc
=

∑
u :(u,v)∈A

(1 − su) + (x − c∗v)/αc .

�erefore, the derivative of the function P(c,v) with respect to

cv at cv = x is at least (x −c∗v)/αc . �us, the value of P(c,v) at cv =

coldv is at least its value at cv = c
∗
v plus

∫ coldv
c∗v
(x − c∗v)/αcdx ≥ ε2

2αc .

In other words, in each iteration where the value of at least one cv
changes by at least ε , the value of the potential function decreases

by at least ε2/(2αc) ≥ ε2/(2α). Similarly, if the value of at least

one sv changes by at least ε , the potential function decreases by at

least ε2/(2αc) ≥ ε2/(2α). Since the value of the potential function

Figure 1: Example with more than one �xed point

decreases in every iteration and can never become negative, a�er a

�nite number of iterations it must decrease by an amount less than

ε2/(2α). �is means that at this iteration, each score changes by at

most ε , showing that we are at an ε-approximate �xed point. �

Uniqueness of the �xed point. It would be nice if we could prove

that the �xed point of Equations (1) is unique. �is would mean

that the values that the SCRank algorithm seeks to compute are

uniquely well-de�ned. Unfortunately, this result is not true in the

worst-case, as the following example shows.

Proposition 1. �ere is a directed social network D and functions
Fc and Fs such that more than one (c, s) satis�es the Equations (1).

Proof. Consider a regular bipartite graph with all the edges

directed from part 1 to part 2. Intuitively, this situation can be

explained by either declaring nodes in part 1 as spammers, or nodes

in part 2 as celebrities. For a numeric example, say the degrees are

500, µs = µc = 100, and σs = σc = 25. Let F = Fc = Fs . �en

nodes in part 1 will have celebrity score F (0) ≈ 0 and spammer

score s , and nodes in part 2 will have celebrity score c and spammer

score F (0) ≈ 0, for values of (c, s) satisfying c = F (500(1 − s)) and

s = F (500(1−c)). �ese equations are plo�ed in Figure 1. As can be

seen in the picture, there are 3 �xed points with (c, s) approximately

equal to (1, 0), (0, 1), and (0.8, 0.8). �e �rst �xed point corresponds

to declaring nodes in part 1 as spammers, the second corresponds to

declaring nodes in part 2 as celebrities, and the third is an unstable

�xed point between the other two. �

Despite the above example, as we will see in the next section, in

none of the real world or randomly generated instances we have

tried we have been able to discover more than one solution.

4 EXPERIMENTS
In this section, we present the results of experiments showing that

on real and generated data, the algorithm presented in the last

section converges quickly and to the same point, independent of

the starting con�guration. We also show that the computed scores

are reasonable quanti�cations of celebritiness and spamminess in

the social networks. �is is done with randomly generated data sets

4

with a random generation process that embeds the ground truth

against which the output of the algorithm can be evaluated. For

experimentally evaluating convergence and uniqueness properties,

we use randomly generated data as well as two real-world data sets,

as described in the following.

4.1 Data Sets
We use two sources of data in our experiments. �e �rst is based

on real-world data from LiveJournal. �e second is randomly gen-

erated data according to a model described below. Randomly gen-

erated data allows us to compare the results of the algorithm with

the “ground truth” that the model is based on. �is is in contrast

with the real-world data set, which is used to evaluate the conver-

gence and uniqueness properties of the SCRank algorithm. As we

show, manually skimming the results on this data suggests that

the outputs are reasonable, but we do not have quanti�able ground

truth.

In the rest of this section, we describe the random generation

process and basic information about our real-world data set.

�e random generation process. We use the following method to

generate a random directed graph G that will be used as a test case

for our algorithm: �ere are N nodes in the graph, out of which

two disjoint sets C and S are designated as the set of celebrities

and spammers. We then use a graph generation method such as

Erdős-Rényi or preferential a�achment to generate an undirected

graph H with the vertex setV (G). �e edges of this graph represent

real friendship relationships among individuals. For each such edge

uv in H , with probability 1 − p we add both directed edges uv and

vu to G. With probability p, we add one of these two edges picked

at random. �is represent the fact that even among the edges

corresponding to mutual friendship, some are not reciprocated.

In addition to these edges, we add random directed edges from

S to V (G) and from V (G) to C . We underscore that this models

spammers indiscriminately linking to some subset of all nodes,

including possibly celebrities and other spammers, and the converse

for inbound links to celebrities. For generating these edges, we use

a simple model of independent coin �ips: for each pair (u,v) where

u ∈ S and v ∈ V (G), we add (u,v) independently with probability

ps . Similarly, for each (u,v) where u ∈ V (G) andv ∈ C , we add this

edge independently with probability pc . �ere is no other edge in

the graph G.

�e parameters of the model are as follows: N , |C |, |S |, p, pc , ps ,

and the parameters of the generation model for the graph H . �e

algorithm is successful if it gives high cv scores to nodes in C (and

low cv to nodes in V (G) \C) and high sv scores to nodes in S (and

low sv to nodes in V (G) \ S).

For the experimental results we present in this paper, we have

picked the following set parameters: N = 2000000, |C | = 1000,

|S | = 5000, p = 0.2, pc = ps = 0.00025, and the graph H is a

random graph with expected degree distribution that is a power

law with exponent 0.5. �e average degree in H is 100. �ese

choices are mostly based on our intuition for typical numbers on a

social network. We have also tried the experiments on several other

sets of parameters, and did not observe any signi�cant change in

our conclusions.

LiveJournal Data Set. Each node in this data set is a LiveJournal

pro�le, and edges correspond to friendship relationships declared

on the pro�les. �is data set is crawled, and contains more than

4.8 million vertices and 660 million edges. LiveJournal users may

choose to disallow crawling of their metadata via the robots.txt

mechanism. Any user who did so was not included in the crawl,

with all edges to and from this user removed from the data set.

4.2 Convergence speed
Let c and s denote the vector of cv ’s and sv ’s, respectively. We

can compute the `1 distance between the vector c computed at the

end of iteration t , and the one computed at the end of iteration

t + 1 (and similarly for s). When both of these values reach zero, it

means that the algorithm has converged to a solution. �erefore,

we can use these values as a measure of the convergence of the

algorithm. We plot these values as a function of t for di�erent

data sets and for di�erent initializations of the scores, to see if and

how the initialization a�ects convergence speed. �e results (in log

scale) for the three data sets are presented in Figure 2.

�e initializations labelled init 0, init 1, and init 0.5 cor-

respond to initializing all scores to zero, all scores to one, and all

scores to 0.5. We also tried initializing each score to a random

number picked uniformly from [0, 1]; this initialization produced

results that were essentially indistinguishable from init 0.5 in all

data sets.
1

As can be seen in the plots, di�erent initializations do

not di�er signi�cantly in terms of their convergence rate, although

init 0.5 o�en performs marginally be�er. In all cases, the con-

vergence seems to be exponentially fast (i.e., the log-scale plot has

an almost constant negative slope)

4.3 Uniqueness of the solution
To test whether the scores converge to a single point independent

of the starting point, we plot the l1 distance between the vector

computed by our algorithm starting from di�erent initializations. In

particular, we measure the di�erence between init 0 and init 1,

and between init 0 and init 0.5. �e graphs, plo�ed as functions

of t in the log scale, are shown in Figure 3 for the LiveJournal and

randomly generated data sets.

As these graphs show, on the real-world data set a�er less than

10 rounds, the solutions computed with di�erent initializations are

virtually identical. In randomly generated instances, even though

the distance between the solutions decrease by about two orders

of magnitude in the �rst �ve iterations, they do not converge to

zero. �is indicates that randomly generated instances probably

contains small pockets of nodes with non-unique solutions.

4.4 Solution quality
In this section, we argue that SCRank can recover a signi�cant por-

tion of celebrities and spammers. To show this experimentally, we

use randomly generated graphs with the setsC and S in the random

generation process as the hidden ground truth. �e algorithm is

successful if it assigns high celebrity scores to nodes in C and high

spammer score to nodes in S . Figure 4 shows the distribution of

1
Intuitively, this is due to the law of large numbers: for most nodes, they have enough

neighbors so that the sum of the non-celebrity/non-spammer scores of their neighbors

is essentially the same in init 0.5 and init rand.

5

(a) LJ celebrity score (b) Synthetic graph celebrity score

(c) LJ spammer score (d) Synthetic graph spammer score

Figure 2: Log-scale l1 change in scores for LiveJournal and synthetic data, as a function of time

celebrity and spammer scores, comparing, respectively, all vertices

versus vertices in C ; and all vertices versus vertices in S . �e score

distributions on these synthetic inputs are almost completely bi-

modal, with both celebrity and spammer scores of generic vertices

being strongly concentrated around zero. To be�er observe the

di�erence between the two distributions, we also show plots of the

distribution densities with logarithmic y-axes.

We can also study the precision-recall tradeo� of the output of

the algorithm. We plot the precision of the algorithm (which we

de�ne as the percentage of users with celebrity/spammer score

more than 0.5 who are in C/S , respectively) against recall (de�ned

as the percentage of nodes inC/S for which we compute a celebrity

or spammer score, respectively, of more than 0.5). By adjusting the

parameters of the model, we get a tradeo� between precision and

recall that is plo�ed in Figure 5.

5 GENERALIZATION
�e potential function argument used in Section 3 to guarantee

SCRank’s convergence can be generalized to a much broader class

of iterative algorithms, which we expect will be of independent

interest. In particular, we will show that the same argument applies

to any iteration that simulates best-response dynamics in a game

where players have bounded real-valued strategies, and whose util-

ities are strictly monotic, continuously di�erentiable per-variable

functions which depend only on a linear combination of the others’

strategies, with symmetric linear combination weights.

6

(a) LJ: celebrity scores (b) Synthetic graph: celebrity scores

(c) LJ: spammer scores (d) Synthetic graph: spammer scores

Figure 3: Log of l1 di�erence between scores computed with di�erent initializations, as a function of time

Before we de�ne this formally, let us observe how this describes

the SCRank algorithm. SCRank uses 2n variables — two “players”

per SCRank agent. �e convergence argument can be rephrased to

ignore the fact the variables are arranged in pairs in the original

setup. �e updates in lines 6–11 of the algorithm are equivalent

to the ci players making best-response moves one at a time, then

the si players taking their turns. �e utility/update functions for

the cv s and su s both depend only on a linear combination of other

variables: Fcv (L =
∑
u |(u,v)∈A −su) = Fc (indegv+L), and similarly

for Fsu . For every (u,v) ∈ A, cv ’s update function input will include

su with weight −1, and su ’s update function input will include cv
with weight −1. �is meets the “symmetricity” condition — that the

matrixW of variable weights in the update function inputs must be

symmetric. In SCRank,Wcv su =Wsucv = −1, and is 0 elsewhere.

Formally, we de�ne a general Monotonic Üpdate on Symmetric
Linear combinations Iteration (MÜSLI) system as:

• Real-valued variables x1, . . . ,xn with xi ∈ [ai ,bi]
• A symmetric weight matrixW with 0s on the diagonal.

• For each variable, a strictly increasing, continously di�er-

entiable update function Fi : R→ R which takes as input

only (Wx)i , the linear combination of the xi s weighted

by W ’s ith row. Fi must preserve the bounds on xi , i.e.

ai ≤ Fi ((W ®x)i) ≤ bi whenever x j ∈ [aj ,bj])
• An activation sequenceA : Z≥0 → {1, . . . ,n} determining,

for each iteration t ≥ 0, the unique variable xA(t) that gets

updated to FA(t)((Wx)A(t)).

�e proof of �eorem 3.3 generalizes to show:

7

(a) Linear-scale spammer scores

(b) Log-scale spammer scores

(c) Linear-scale celebrity scores

(d) Log-scale celebrity scores

Figure 4: Score distributions (p.d.f.)

Figure 5: Precision-recall graph for the detection of spam-
mers in a randomly generated data set.

Theorem 5.1. �e state of a MÜSLI system, ®x , converges to a �xed
point under its iteration.

Proof. �e argument is very similar, relying just on a general-

ization of the potential function. As above, the strictly increasing,

continuously di�erentiable Fi s have well-de�ned strictly increasing

inverses F−1

i , which lets us de�ne Gi (z) and the potential function

P(®x) as:

Gi (z) =
∫ z

0

F−1

i (t)dt ; P(®x) =
∑
i
Gi (xi) −

1

2

®xTW ®x

�is yields the partials:

∂P

∂xi
= −(W ®x)i + F−1

i (xi)
.

For x∗i = Fi ((W ®x)i), this is zero, and, sinceWii = 0, the �rst term

is constant relative to xi , and the monotonicity of F−1

i guarantees

that updating xi to x∗i can’t increase P(®x).
As before, 0 <

dFi (t)
dt ≤ αi for some αi , and

dF −1

i (t)
dt ≥ 1/αi .

An iteration that starts at state xold
and updates xi from xold

i to,

WLOG, a lower value x∗i < xold

i , changing it by xold

i − x
∗
i ≥ ε , will

have, for all t ∈ [x∗i ,x
old

i]:

F−1

i (t) > F−1

i (x
∗
i) + (t − x

∗
i)/αi

= (Wxold)i + (t − x∗i)/αi
∂P

∂xi
(xold

−i , t) ≥ (t − x
∗
i)/αi

P(xold) − P(xold

−i ,x
∗
i) ≥

∫ x ∗i

x old

i

t − x∗i
αi

dt ≥ ε2

2αi

Since ®x remains within the compact set de�ned by xi ∈ [ai ,bi],
P(®x) is bounded, and, since it decreases at each step of the iteration,

there is, by the same argument as above, for any δ > 0, a step k∗

such that the update won’t change xi by more than

√
2αiδ . �

8

Note that the proof doesn’t even require that each variable be

“activated” in�nitely o�en, but we expect most practical uses of

this result will require that each xi be updated in�nitely o�en for

convergence to a relevant value, or more o�en than some threshold

for stronger convergence bounds.

To demonstrate the breadth of these systems, we now give a

couple of examples.

5.1 Example: Graph connectivity
As a trivial example of another algorithmic task solvable via a

MÜSLI best-response iteration, consider the question of (undi-

rected) graph reachability. If the graph’s adjacency matrix is used as

weights, with nodes as players, using starting state 0 for all players

except the origin, iterating updates of sigmoid Fi (
∑
N (i) xi) that

approximates a step function at x = 1 will clearly converge rapidly

to a state where all nodes reachable from the origin are 1.

5.2 Example: In�uence games
In SCRank and the above example, MÜSLI systems are used as al-

gorithms to compute a �xed point of interest. We note that the one-

at-a-time update dynamics and theWii = 0 constraint mean that

MÜSLI iterations can also be interpreted as classical best-response

dynamics in games, immediately yielding:

Corollary 5.2. A game whose best-response dynamics form a
MÜSLI system (i.e. an n-player game with bounded real-valued strate-
gies and strictly increasing, continuously di�erentiable best-response
functions that depend only on a linear combination of the other play-
ers, with symmetric weights) is a potential game [11], with the above
potential function, and is guaranteed to converge.

�is class of games is fairly broad, including, for instance:

�e party a�liation game. In the well-studied party a�liation

game [5], agents pick “political parties” −1 and 1 based on the

weighted sum of their friends’ and enemies’ a�liations: a player

tries to be in the same party as her friends and in a di�erent

party than her enemies. Allowing fractional strategies and so�-

ening the best-response function from the original step function

Fi (®x) = sgn

∑
j xix jwi j to a sigmoid that approximates it produces

a game whose best-response dynamics are a MÜSLI system. �e

above argument guarantees a potential function and convergence.

We note that this is quite natural, since our potential function ar-

gument is an extension of the max cut game potential argument

that underlies the analysis of the party a�liation game.

�e symmetrical technology di�usion game. Consider a social

network where agents are deciding, e.g., between 2 technologies

with a network e�ect such as cellular providers where a user bene-

�ts from having more friends use the same technology. In the US

cellular market, this corresponds to free phone calls to people on

the same network, and heavy charges for calls to people on another

network beyond a �xed monthly limit. Let weightWi j indicate how

many minutes i and j expect to talk on the phone per month, 0

and 1 represent the provider choices, and ®x ∈ [0, 1]n be the current

fractional provider choices, optionally considered as probabilities.

A natural best-response function for i is to use (W ®x)i , the expected

number of minutes she will spend talking to people using provider

1 (assuming minutes and provider choices are independent), as an

input to a sigmoid that is a so� step function at or near the maxi-

mum number of free calling minutes for users of provider 0 when

calling users of provider 1. Assuming all phone calls are 2-way, the

best-response dynamics constitute a MÜSLI system, immediately

demonstrating that the game is a potential game and guaranteeing

convergence.

6 CONCLUSION
In this paper, we presented a framework for iterative algorithms

for giving scores to nodes de�ned recursively in terms of the scores

of their neighbors, with a focus with one application in which such

a recursive de�nition comes quite naturally: computing celebrity

and spammer scores on a directed social network. We theoretically

proved that under a mild symmetry and monotonicity assump-

tion, there is a potential function that decreases in every iteration

of the iterative algorithm, and therefore, the iterative algorithm

always converges to an approximate equilibrium. In the case of

celebrity/spammer scoring, we experimentally showed that this

convergence is extremely fast, the convergence point is unique, and

when applied on randomly generated data with a built-in ground

truth, it provides a good approximation to the ground truth.

In addition to the obvious application of �nding celebrities and

link-spammers in online directed social networks, we believe that

our potential function framework has the potential to be quite useful

in theoretical analysis of iterative algorithms on social networks.

Iterative algorithms such as belief propagation are notoriously hard

to analyze theoretically, despite widespread practical use.

�e obvious open directions are to �nd other applications or

generalizations of our framework, or prove a theoretical bound on

the convergence speed of the algorithm that is close to the practical

observation.

REFERENCES
[1] F. Benevenuto, T. Rodrigues, V. Almeida, J. Almeida, and M. Gonçalves. Detecting

spammers and content promoters in online video social networks. In Proc. of
SIGIR, pages 620–627. ACM, 2009.

[2] P. Bonacich. Power and centrality: a family of measures. Amer. J. Sociology,

92:1170–1182, 1987.

[3] P. Boutin. What’s “follow spam” on Twi�er? http://gawker.com/5036236/
whats-follow-spam-on-twitter, August 12, 2008.

[4] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos. Convergence and ap-

proximation in potential games. In STACS 2006, volume 3884 of Lecture Notes in
Computer Science, pages 349–360. 2006.

[5] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. �e complexity of pure Nash

equilibria. In Proc. of STOC, pages 604–612, 2004.

[6] A. Farahat, T. LoFaro, J. C. Miller, G. Rae, and L. A. Ward. Authority rankings

from hits, pagerank, and salsa: Existence, uniqueness, and e�ect of initialization.

SIAM Journal on Scienti�c Computing, 27(4):1181–1201, 2006.

[7] L. Freemann. A set of measures of centrality based on betweenness. Sociometry,

40:35–41, 1977.

[8] S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto,

N. Ganguly, and K. P. Gummadi. Understanding and combating link farming in

the twi�er social network. In Proc. WWW, pages 61–70, 2012.

[9] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of in�uence

through a social network. In Proc. of KDD, pages 137–146, 2003.

[10] J. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46,

1999.

[11] D. Monderer and L. Shapley. Potential games. Games and Economic Behavior,
14:124–143, 1996.

[12] T. O’Reilly. Goodreads vs twi�er: �e bene�ts of asym-

metric follow. http://radar.oreilly.com/2009/05/
goodreads-vs-twitter-asymmetric-follow.html, May 10, 2009.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. �e PageRank citation ranking:

bringing order to the web. 1999.

9

[14] S. Russell, P. Norvig, and E. Davis. Arti�cial intelligence: a modern approach.

Prentice Hall, 2010.

[15] J. Song, S. Lee, and J. Kim. Spam �ltering in twi�er using sender-receiver

relationship. In R. Sommer, D. Balzaro�i, and G. Maier, editors, Recent Advances
in Intrusion Detection, volume 6961 of LNCS, pages 301–317. 2011.

[16] T. Upstill, N. Craswell, and D. Hawking. Predicting fame and fortune: Pagerank

or indegree? In ADCS, 2003.

[17] A. Wang. Don’t follow me: Spam detection in twi�er. In Proc. SECRYPT, pages

1–10, 2010.

[18] S. White and P. Smyth. Algorithms for estimating relative importance in net-

works. In Proc. of KDD, pages 266–275, 2003.

[19] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering social

network sybils in the wild. In Proc. IMC, pages 259–268, 2011.

10

	Abstract
	1 Introduction
	1.1 Related work
	1.2 SCRank vs HITS

	2 The Algorithm
	3 Convergence of the algorithm
	4 Experiments
	4.1 Data Sets
	4.2 Convergence speed
	4.3 Uniqueness of the solution
	4.4 Solution quality

	5 Generalization
	5.1 Example: Graph connectivity
	5.2 Example: Influence games

	6 Conclusion
	References

