
Efficient Implementation of Large-Scale Multi-Structural
Databases

R. Fagin Ph. Kolaitis R. Kumar J. Novak D. Sivakumar A. Tomkins

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

Abstract

In earlier work, we defined “multi-structural data-
bases,” a data model to support efficient analy-
sis of large, complex data sets over multiple nu-
merical and hierarchical dimensions. We defined
three types of queries over this data model, each of
which required solving an optimization problem.
An example is to find the ten most significant non-
overlapping regions of geography crossed with
time in which coverage of the Olympics was much
stronger in newspapers than online sources.

In this paper, we present a general query frame-
work capturing the original three queries as part
of a much broader family. We then give efficient
algorithms for particular subclasses of this family.
Finally, we describe an implementation of these
algorithms that operates on a collection of sev-
eral billion web documents. Using our algorithms
in conjunction with random sampling techniques,
our system can solve these queries in real time.

1 Introduction
Massive repositories of structured, semi-structured, and un-
structured data are growing in prevalence and importance.
However, the query languages we use to address these cor-
pora focus largely on relevance ranking, in the case of un-
structured data, and various types of aggregates in the case
of structured data. An important task for database research
is the development of frameworks that support rich analyt-
ical queries through a coherent and principled architecture,
rather than an assortment of ad hoc solutions.

Towards this goal, Fagin et al. [1] have recently intro-
duced a theoretical framework called themulti-structural

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

database(or MSDB). As our work lies within this frame-
work, we begin with a brief description of its salient char-
acteristics using a running example of a database of news-
paper articles.

(1) Theschemaof an MSDB is a collection of dimen-
sions, each of which is a bounded lattice. Subsets of these
dimensions may be mechanically combined to form a new
multi-dimensional lattice, whose elements represent multi-
dimensional restrictions of the data objects.

In the example of newspaper articles, consider a schema
containing two dimensions: locations the article is relevant
to, and the article’s date of publication. The first of these
dimensions,geography , admits a natural hierarchy (con-
tinents, countries, cities, etc.), where natural restrictions
correspond to nodes of the hierarchy; we may thus speak
of documents relevant to Europe, or to France in particu-
lar. The second dimension,date , is a numerical attribute,
and natural restrictions are obtained by considering time
intervals. By combining these two dimensions, we gener-
ate restrictions such as “articles relevant to Europe from the
first half of 2003.”

(2) A pairwise-disjoint collection(abbreviated PDC) is
a set of restrictions (lattice elements) that are conceptually
non-overlapping in the sense that every pair in a PDC is
non-overlapping in at least one dimension.

The restrictions “articles about Europe from the first
half of 2003,” “articles about California from June 2004,”
and “articles about France dated 6/17/2004–9/23/2004” are
pairwise disjoint. The first two are disjoint in both the
geography anddate dimensions; the latter two are dis-
joint in thegeography dimension even though they over-
lap in thedate dimension; and, the first and the third re-
strictions are disjoint in thedate dimension even though
France is a descendant of Europe in thegeography hier-
archy.

We say the collection isconceptuallynon-overlapping
because this is a property of the schema, not the data. There
may be certain documents that are relevant to both France
and Spain, and hence two conceptually non-overlapping re-
gions may in fact contain a common article.

(3) Thedata in a multi-structural database consist of a
collection of data objects, together with a membership re-

lation that describes the lattice elements to which each data
object belongs.

The membership relation for the newspaper articles
simply specifies, for each article, the most specific loca-
tions that it is relevant to (namely leaves corresponding to
cities, internal nodes corresponding to countries, etc., in the
geography hierarchy), and the calendar date when it was
published.

(4) A queryis an optimization problem that takes as in-
put a collection of data objects, and returns a PDC of a
given size (that is, a family of conceptually-disjoint restric-
tions of the objects). The particular PDC returned must
optimize some objective function; this objective function
encodes the particular query. Since the intent of analytical
queries is to seek an understanding of trends or patterns in
the data, rather than obtain exact answers, good approxima-
tions are often acceptable if they are efficiently computable.

As an example, consider asking for the ten time intervals
that exhibit the maximum contrast in the number of articles
about Europe versus the number of articles about Canada.

Our contributions. The present paper advances the multi-
structural database framework in three fronts. First, we
provide a conceptual setting for formulating and analyzing
queries in a principled manner. Second, we give highly ef-
ficient algorithms (a linear time algorithm for a very impor-
tant schema family and an indexing/sampling methodol-
ogy). And third, we demonstrate the richness of the frame-
work and the quality of the algorithms by applying them
to a massive, petabyte-scale collection of documents and
measuring the results.

Our first contribution is conceptual in nature. Our ear-
lier work in [1] renders three specific analytical operations
(DIVIDE , DIFFERENTIATE, DISCOVER) in the form of op-
timization problems. In this paper, we present a rich fam-
ily of “decomposable” objective functions that operate by
examining and scoring the data objects belonging to each
restriction of the PDC in turn, and then mechanically com-
bining these scores. We show that, for combinations of hi-
erarchical and numerical dimensions, all such optimization
problems can be solved (perhaps approximately) in poly-
nomial time. The three operations described above are of
this form.

Our second contribution is algorithmic in nature. We de-
scribe two important subclasses of the class of decompos-
able objective. First, the class ofmin-monotonefunctions
maximizes the minimum over all elements of the PDC of
a monotone function applied to that element. Second, the
class ofsum-additivefunctions maximizes the sum over all
elements of the PDC of an additive function (in a sense to
be defined later) applied to the element. We give more effi-
cient algorithms for both of these classes.

Sum-additive functions arises very naturally in several
contexts, especially for numerical dimensions (time, salary,
sales volume), where one seeks to findk intervals of high-
est total value of a function that is additive over disjoint
sub-intervals (number of articles, wages paid, cans of beer
sold). In fact, DIFFERENTIATE and DISCOVER, two of the

three analytical operations proposed in [1], are of this kind;
an example of a DIFFERENTIATE operation is to find the
k disjoint time intervals that have the highest total con-
trast in the number of articles about Europe and articles
about Canada. Our technically most intricate contribution
is an exact optimization algorithm for sum-additive objec-
tive functions that runs in time linear in the number of data
objects: this is a significant improvement over the previ-
ous quadratic algorithm for numerical dimensions [1], par-
ticularly since the number of objects is often quite large.
Underlying this result is an efficient algorithm for the fol-
lowing basic combinatorial problem: given a sequence of
integers, findk non-overlapping contiguous subsequences
whose sum is maximal.

Abstracting the objective function in terms of a combi-
nation of scores over each element of a PDC has an addi-
tional bonus from the viewpoint of efficiency. Namely, it is
often possible to obtain unbiased estimators for the objec-
tive function using random sampling. This feature is cru-
cial in our implementation, since when dealing with mas-
sive data sets, it may be too expensive to even scan all the
data objects necessary to compute the “quality” of various
restrictions; for this reason, we need to rely on randomly
sampling data objects corresponding to each of the restric-
tions.

Finally, our third main contribution is a demonstration
of the MSDB framework on large-scale real-world data.
A prototype implementation of an MSDB system with
three analytical operators (DIVIDE , DIFFERENTIATE, DIS-
COVER) is described in [1], with experiments dealing with a
few thousand data objects. Here, we present an implemen-
tation of an MSDB of nearly four billion web documents
(1014 bytes;1015 bytes including metadata) from the Web-
Fountain project at IBM [3]. The architecture of our imple-
mentation consists of a back-end that offers the ability to
materialize any required restriction of a collection of data
objects, and a front-end query engine that produces restric-
tions as needed in the optimization of a desired objective
function.

In our experiments, we measure the time required for
the WebFountain backend to produce the necessary data,
and then separately measure the time required for the multi-
structural query engine to find the optimal PDC, once this
data has been made available. Our primary goal is not to
compare different approaches to this problem, although we
do so where possible, but to argue that multi-structural opti-
mization queries may be computed via random sampling in
real time over corpora consisting of billions of data objects.

We consider six families of analytical operations, three
from [1] and three new ones. We then create a benchmark
set of 33 queries, each of which is a concrete instantiation
of one of the six families. We present measurements show-
ing that our unoptimized system is capable of returning an-
swers for most queries in between one and ten seconds de-
pending on the required accuracy, while a few more com-
plex queries take no more than a few minutes to compute.

The remainder of the paper proceeds as follows. In
Section 3, we outline the theoretical underpinnings of the
framework. In Section 4, we give a detailed presentation of
the new algorithm for contiguous subsequences, together
with some actual runtimes comparing the new algorithm to
previous approaches, and some examples of the algorithm
in use. Section 5 describes the architecture of the MSDB
system we have implemented. Section 6 describes some
experimental results.

2 Related work
There is a vast literature that we will not attempt to sum-
marize here on multidimensional data models and on-line
analytical processing (OLAP) queries. Comprehensive
overviews of several different topics on multidimensional
databases can be found in the book [7]. In particular, Tor-
lone’s chapter [8] in that book gives an account of vari-
ous models for multidimensional data. Our lattice-theoretic
modeling of multidimensionality is not new. Indeed, lat-
tices have been considered in earlier work on multidimen-
sional data, as they naturally generalize tree-structured hi-
erarchies and have the advantage of being closed under the
direct product operation. Our formulation is reminiscent of
that of Harinarayan, Rajaraman, and Ullman [4], who use
lattices (and direct products of lattices) as first-class citi-
zens to model multiple, hierarchical dimensions. Lattices
also underlie various other formulations of dimensions and
hierarchies, including those in [5, 6, 9].

See [1] for a detailed discussion of differences between
our work and standard OLAP. The key distinguishing fea-
ture of our work compared to earlier work on OLAP is
the class of queries that can be expressed and answered
in our framework. While typical OLAP queries ask for
aggregate or summary results along specified points in a
multi-dimensional lattice, our framework supports pow-
erful queries expressing optimization problems. Further-
more, an answer to such a query is a pairwise disjoint
collection (PDC) of dimensions that maximizes a certain
“measure”. This makes it possible to formulate a variety
of clustering, trend-discovery, and hierarchy-aware sum-
marization problems in a unifying framework.

3 Framework
A multi-structural database(or simplyMSDB) (X, D, R)
consists of a universeX = {x1, . . . , xn} of objects, a set
D = {D1, . . . , Dm} of dimensions, and amembership re-
lation R ⊆ X × V , whereV = ∪iDi.

We will treat eachxi as simply an identifier, with the
understanding that this identifier may reference arbitrary
additional data or metadata, such as the content of the cor-
responding document. Each dimensionDi is a bounded
lattice1. This formulation represents a generalization of nu-

1A lattice is a set of elements closed under the associative, commu-
tative binary operations meet (∧) and join (∨) such thata ∧ (a ∨ b) =
a ∨ (a ∧ b) = a for all a andb; it is bounded if there are two elements
> and⊥ such thata ∧ ⊥ = ⊥ anda ∨ > = > for all a. A lattice also
induces a partial order:a ≤ b iff a ∧ b = a.

merical and hierarchical dimensions, but for the purposes
of this paper, the reader may think of the dimensions as be-
ing either hierarchical or numerical. We assume that the
lattice nodes used in all lattices are distinct; the vocabulary
V = ∪iDi consists of all such lattice nodes. The mem-
bership relationR ⊆ X × V specifies the lattice elements
a data object “belongs to.” We require thatR be upward
closed, that is, if〈x, `〉 ∈ R and` ≤ `′, then〈x, `′〉 ∈ R.

For ` ∈ V , we defineX|`, readX restricted to`, as
X|` = {x ∈ X | 〈x, `〉 ∈ R}.

When there are several dimensions, we can endow them
with a naturally defined lattice structure. For nonempty
D′ ⊆ D, themulti-dimensionMD(D′) is defined as fol-
lows. If D′ is a singleton, the multi-dimension is sim-
ply the sole dimension inD′. Otherwise, assumeD′ =
{D1, . . . , Dd}. ThenMD(D′) is again a lattice whose el-
ements are{〈`1, . . . , `d〉 | `i ∈ Di}, where〈`11, . . . , `1d〉 ∨
〈`21, . . . , `2d〉 = 〈`11 ∨ `21, . . . , `

1
d ∨ `2d〉, and likewise for∧.

The membership relationR is then extended to contain
〈x, 〈`1, . . . , `d〉〉 if and only if it contains〈x, `i〉 for all i.

3.1 Pairwise Disjoint Collections

Recall that a PDC is a set of restrictions of a multi-
dimension that are conceptually disjoint. Formally, for any
multi-dimensionMD(D′) and any setS = {`1, . . . , `d} of
elements of the multi-dimension, we say thatS is a PDC if
`i ∧ `j = ⊥ for all i, j with i 6= j.

Two special classes of PDCs aresequentialandfactored
PDCs, which we now discuss.

Intuitively, a sequential PDC divides data according to
a single dimension, then recursively subdivides each part
using a second dimension, and so on. A factored PDC
is essentially a cross-product of PDCs in each dimension.
Clearly, every factored PDC is a sequential PDC (with any
ordering of the dimensions). For formal definitions, see [1].

A simple example that illustrates the difference between
these classes of PDCs is the following, based on the MSDB
of newspaper articles. The PDC{(Asia, 2003), (USA,
2003), (Asia, 2004), (USA, 2004)} is factored since it is
the cross-product of the PDCs{Asia, USA} and {2003,
2004}. The PDC{(Asia, 2001–2002), (Asia, 2003), (USA,
2001), (USA, 2002–2003)} is a sequential PDC, divided
first along thegeography dimension and then along the
date dimension. The PDC{(Asia, 2003), (USA, 2004)}
is neither factored nor sequential.

There are two main reasons why sequential and factored
PDCs arise naturally. First is the fact that these classes of
PDCs may be constructed via algorithms that are consid-
erably more efficient than general PDCs [1]. The second
main reason to focus on sequential and factored PDCs is
that they admit much more succinct representations, which
could be conveyed to the user more compactly. All our
implementations reported in this paper produce factored or
sequential PDCs.

3.2 Queries

One may construct a broad range of queries in the MSDB
framework; as outlined in the Introduction, we will develop
a principled approach for doing so. Namely, we will iden-
tify a broad class of optimization questions and point out
the existence of fairly efficient polynomial-time algorithms
for these. Later, in Section 4, we will present a significantly
more efficient algorithm for the important special class of
sum-additive functions.

The basic query structure we consider in this paper is
the following:

Given: DimensionsD′ ⊆ D, data objectsX ′ ⊆ X,
score functionf : 2X × D → R, an associative binary
combination operator◦ : R×R → R, and integerk. (Here
R denotes the reals.)

Find: PDC {`1, . . . , `k} ⊆ MD(D′) such that
g(X ′; `1, . . . , `k) = f(X ′; `1) ◦ · · · ◦ f(X ′; `k) is maxi-
mized over all such PDCs.

We refer to a particular fixed pair(f, ◦) as aquery
type. A simple example of(f, ◦) is f(A; `) = #(A|`)
and◦ = +. The basic algorithms in [1], developed there
for specific optimization problems, immediately yield effi-
cient algorithms for single numerical and hierarchical di-
mensions for all query types(f, ◦) that can be evaluated
efficiently. Specifically, assuming unit cost for the evalua-
tions off and◦, the algorithms in [1] can be easily mod-
ified to obtain anO(n2k) time algorithm for a single nu-
merical dimension and anO(nk2) time algorithm for sin-
gle hierarchical dimension. While the case of hierarchical
dimensions can be considered well-solved, the solution for
numerical dimensions is too expensive, for example, when
considering hourly sales data over large periods of time.

Note that, in general, an objective function
g(A; `1, . . . , `k) need not admit a decomposition into
f and ◦; an example isg(A; `1, . . . , `k) = #(∪iA|`i

).
Fortunately, a large class of optimization problems do
admit such a decomposition, and this motivates the search
for efficient algorithms for various query types(f, ◦)
depending on easily identifiable properties of the function
f and the◦ operation.

We say that a score functionf is monotoneif f(A; `) ≤
f(B; `) for all setsA ⊆ B ⊆ X and everỳ ∈ D. Simi-
larly, we say that a score functionf is additiveif two con-
ditions are met:

1. There is a functionh : 2X → R such thatf(A; `) =
h(A|`) for every` ∈ D.

2. f(A ∪B) = f(A) + f(B) wheneverA ∩B = ∅ and
A,B ⊆ X.

An example of an additive score function isf(A; `) =
#(A|`). We say that(f, ◦) is min-monotoneif ◦ is min
andf is monotone. Likewise,(f, ◦) is sum-additiveif ◦ is
+ andf is additive.

Finding additional interesting classes of query types,
as well as designing efficient algorithms for optimization

problems not decomposable in this way, are exciting re-
search questions with significant potential benefits.

4 Algorithms for sum-additive (f, ◦) pairs
over numerical dimensions

In this section we present a new algorithm for sum-additive
query types over a single numerical dimension. Using this
algorithm, we can compute sequential PDCs over any set of
numerical dimensions in time linear in the number of input
documents.

4.1 The maximum subinterval problem

Our algorithm is based on what we call thek-maximum
subinterval problem. Informally, the problem is to findk
non-overlapping intervals in a sequence of real numbers
whose sum is maximized. More formally, given a sequence
x[1], . . . , x[n] of real numbers and a positive integerk, find
a set of at mostk non-overlapping sub-intervalsIi such that∑

i S(Ii) is maximized, where,S(I) =
∑

`∈I x[`].
First, we claim that the problem of finding optimal

PDCs for sum-additive query types over numerical dimen-
sions can be cast as the maximum subinterval problem.
Given a subsetX ′ of documents, a numerical dimension,
and an integerk, consider the instance of thek-maximum
subinterval problem withx[i] = f([ri, ri]), wheref(∅) =
0. Sincef is additive, it is easy to see that solving thek-
maximum subinterval problem is equivalent to finding the
optimal PDC.

We now turn to an algorithm to solve the maximum
subinterval problem. Without loss of generality, we can as-
sume that the given input sequencex[1], . . . , x[n] is alter-
nating, i.e., sign(x[i]) 6= sign(x[i+1]) for i = 1, . . . n−1.
This can be realized by simply replacing each consecutive
sequence of positive (resp. negative) values by their sum. It
is easy to see that the optimal solution is unchanged under
this simplification. Similarly, we can assume thatx[i] 6= 0
for all i = 1, . . . , n.

For k = 1, there is a simple linear-time dynamic pro-
gramming algorithm (folklore) for this problem. The al-
gorithm is the following. Perform a single scan through
the sequencex[1], . . . , x[n] from left to right, at each step
maintaining the best interval seen so far. The scan is split
into phases, as follows. Leti be the left end of the current
phase. We begin scanning elementsx[j] wherej ≥ i, keep-
ing track ofS([i, j]). If S([i, j]) is negative, end the current
phase and begin a new phase withj+1 as the left end. Oth-
erwise, ifS([i, j]) is greater than the current best interval,
update the current best interval. At the end, output the in-
terval with the maximum sum that was encountered. It is
easy to see that this algorithm runs in linear time. To see
its correctness, consider pointsj1, the start of some phase;
j2, within that phase; andj3, the last point of the phase,
and assume that pointj3 + 1 exists. ThenS([j1, j2 − 1])
is nonnegative, andS([j1, j3]) is negative, by construction;
thus,S([j2, j3]) must be negative. If the optimal solution

begins atj2 and ends in another phase, then it may be re-
placed by another solution beginning atj3 + 1, removing
S([j2, j3]) and hence improving its overall value, a contra-
diction. Thus, the optimal interval will not cross a phase
boundary. By a similar argument, for any phase (including
the last one), if the optimal solution begins atj2 and ends
within the same phase, its left endpoint may be extended to
j1, improving its value byS([j1, j2−1]), which is nonneg-
ative. So there must exist an optimal interval that begins at
a phase boundary, and does not cross a phase boundary; the
algorithm considers all such intervals.

By negating all values in the sequence, the same algo-
rithm may also be applied to find the subinterval with the
minimum sum.

For generalk, there is a simple quadratic-time dynamic
programming algorithm to find the optimal solution. Let
P (i, k) be the optimal value produced by selectingk non-
overlapping intervals of the sequencex[1], . . . , x[i]. Let
B([j′, i]) be the value of the subinterval of[j′, i] with max-
imum sum. Note thatB([1, i]) may be computed for alli
by a single pass of the optimalk = 1 algorithm above, so
all B values may be computed in timeO(n2). The optimal
value fork intervals may then be computed by the follow-
ing recurrence:

P (i, k) = max
j′<i

{P (j′ − 1, k − 1) + B([j′, i])},

It is easy to see that this algorithm takesO(n2k) time.

4.2 A new linear-time algorithm

In this section we present anO(nk2) algorithm for thek-
maximum subinterval problem. From our discussion ear-
lier, this implies a linear-time algorithm for sum-additive
(f, ◦) pairs over a single numerical dimension.

Let C be the subinterval of[1, n] with the maximum
sum, as determined by thek = 1 algorithm above. Let
L,R be the largest subintervals in[1, n] to the left and right
of C respectively. LetC2 be the subinterval ofC with the
minimum sum, again as determined by thek = 1 algo-
rithm. Let C1 andC3 be the largest subintervals inC to
the left and right ofC2 respectively. This results in a de-
composition of the original interval into five subintervals,
as shown below:

We show the following lemma, which will allow a re-
cursive decomposition of the line. The proof is presented
in Section 4.5.

Lemma 1. There is an optimal solution such that

1. every interval of the optimal solution is eitherC, or
lies entirely within some interval of the 5-way decom-
position and

2. the optimal solution either containsC or contains an
interval in bothC1 andC3.

Theorem 2. Thek-maximum subinterval problem can be
solved in timeO(min{nk2,max{nk, k5k}}).
Proof. Given x[1], . . . , x[n], consider a 5-ary treeT with
the following properties: first, each node ofT corresponds
to an interval; second, the root ofT corresponds to the
interval [1, n]; and third, the five children of a node cor-
respond to the five intervals resulting from applying the
5-way decomposition defined above to the interval of the
parent. Define theheavy intervalof a node as the max-sum
single interval that lies within the interval corresponding to
the node, and define theweightw(a) of the nodea to be
the value of the heavy interval. We show:

Lemma 3. There is an optimal solution in which every in-
terval is the heavy interval of some node of the treeT .

Proof. Lemma 1 shows that there is an optimal solution
that contains at least one interval inC; thus,L andR must
have no more thank−1 intervals. The lemma further shows
that in this constructed optimal solution, if there are two or
more intervals withinC, there must be at least one inter-
val in each ofC1 andC3. Therefore, there is a solution in
which none of the five intervals of the decomposition con-
tains more thank − 1 intervals in this optimal solution.

Inductively, afterj levels of decomposition, there is an
optimal solution in which no interval in the 5-way decom-
position contains more thank − j intervals in the optimal
solution. Therefore, afterk levels of decomposition, there
is an optimal solution in which each interval of the decom-
position contains no more than one optimal interval.

Consider such an optimal solution and any single inter-
val I of the solution. There must be some node ofT that
containsI and the interval corresponding to the node in the
tree intersects no other interval of the optimal solution. Re-
placeI in the optimal solution by the heavy interval of that
node; this can only improve the solution.

Thus, if we find the highest-score set ofk non-
overlapping heavy intervals from the tree, we will have
found an optimal solution. This corresponds to findingk
incomparable nodes of the tree (that is,k nodes such that
no pair lie on a path from the root to any leaf) of maximum
total weight. We can do this by dynamic programming, as
follows. First, we modify the tree to make it binary. Each
node has five children, so replace it with a depth-3 binary
subtree. Assign one child each to five of the eight leaves of
the subtree and weight−∞ to all other nodes,2 both leaf
and internal, of the subtree. Any optimal solution ofk in-
comparable nodes in the tree will never contain one of these
new nodes, so a solution in this new tree can be mapped to
a solution of equivalent cost in the original tree.

LetB(a, k) be the best way to choosek nodes of the tree
rooted ata, with childrena1, a2, such that no two nodes
lie on a root-leaf path. ThenB may be computed by the
following recurrence:

B(a, k) = max
{

w(a),
k

max
k′=0

(B(a1, k
′) + B(a2, k − k′))

}
.

2A sufficiently large real weight suffices.

Figure 1: An illustration ofk-maximum subintervals.

At each node in the tree, the time taken to compute
B(a, k) is O(k). Since the number of nodes in the tree
is at mostmin{nk, 5k}, the dynamic program runs in time
O(k min{nk, 5k}).

It remains to consider the time to compute the tree. At
each level of the tree, the intervals assigned to nodes at that
level represent a partition of the originaln points. Each
interval of the partition must be processed in linear time, to
compute the next-level decomposition, resulting inO(n)
time overall to process each level. Thus, the total time to
compute the tree isO(nk). So, the algorithm runs in time
O(min{nk2,max{nk, k5k}}).

4.3 Evaluation of algorithms

We implemented both the linear-time and quadratic-time
algorithms. Both implementations are in Perl and no effort
was made to optimize the code. The timings in Section 6
are performed on a machine with 256M of memory and a
950MHz P3 processor. Notice that the quadratic-time al-
gorithm may be implemented in a straightforward manner
using quadratic space to hold the best subinterval of each
interval [i, j]; we adopted this implementation for simplic-
ity. It is easy to reduce the space to linear if required. When
the quadratic-time algorithm is run on five hundred docu-
ments, timings begin at ten seconds and grow to around
one hundred seconds; timings on larger documents sets are
prohibitive. On the other hand, for values ofk up to five,
the linear-time algorithm completes in under five seconds
even for 100,000 data points, and in under one second for
10,000 data points.

4.4 An example application: Stock prices

We illustrate an application of the sum-additive query types
for single numerical dimension. Figure 1 shows the five (in
the darkened-in) regions of greatest growth in IBM’s stock
price, and the four regions of greatest growth in Cisco’s
stock price, over the period from 1980 to 2005. The results
are based on the difference between the stock price at the
beginning of a day and the price at the beginning of the next
day. The same formulation also applies to the log of the
ratio of the prices, and then shows the regions of greatest
aggregate growth.

4.5 Proof of Lemma 1

Consider some optimal solutionΦ. We will show how to
convertΦ into a new optimal solution that meets the condi-
tions of the lemma. The proof will be by a series of mod-
ifications toΦ; we assume that the modifications are per-
formed sequentially, so that the solution to which we apply
modificationi will already have been “processed” by mod-
ifications 1 throughi− 1. No modification will change the
value of the solution.

MODIFICATION (A): Φ may be modified so that no interval
crosses an endpoint ofC.

Assume thatΦ contains an interval that crosses an end-
point ofC, as shown by interval 1 in the following diagram:

We modifyΦ, replacing interval 1 with interval2; this
will not decrease the value of the solution. Otherwise in-
terval 1 \ 2 would be positive in value, andC could be
extended and would become more positive, a contradiction
to the maximality ofC. Thus, our modifiedΦ contains no
interval crossing an endpoint ofC.

MODIFICATION (B): Φ may be modified to contain either
intervalC or two or more intervals withinC.

Assume thatΦ contains no interval inC. Then we re-
place any interval ofΦ by C itself; asC has the highest
score of any interval, this must not decrease the value of
the solution. Thus,Φ contains no interval crossing an end-
point ofC, and contains at least one interval inC. If only a
single interval lies withinC, then replace this interval with
C itself; this will not decrease the value of the solution, and
the conditions of the modification are met.

If C contains only a single interval then the conditions
of the lemma are met, because this interval must beC itself,
trivially meeting both conditions of the lemma. It remains
to address the case in whichC contains multiple intervals.
Henceforth, we assume that the optimal solution under con-
sideration contains multiple intervals withinC.

MODIFICATION (C): If Φ contains an interval that covers
C2, it may be modified so that no interval coversC2, and
at least one interval appears in each ofC1 andC3.

Consider the following figure.

Assume that an interval ofΦ coversC2, as in scheme
1 of the diagram. Since there are at least two intervals in
C, there must be another interval to the left or right of the
covering interval, as shown. Replace these two intervals
with the two intervals shown in scheme 2 of the diagram.

We show that this can only improve the solution. Notice
that schemes 1 and 2 have the same left and right endpoints,
and differ only in the “missing” interval in the middle. But
scheme 2 is missing intervalC2, which is the interval ofC
with minimum sum, and so must have total sum at least as
great as scheme 1.

MODIFICATION (D): Φ may be modified so that no optimal
interval covers an endpoint ofC2.

If such an interval exists, modifyΦ by removing the en-
tries inC2. The sum of these entries must be non-positive,
or they could be removed fromC2, resulting in a new in-
terval with smaller sum thanC2, a contradiction. Thus, the
score ofΦ will not decrease as a result of this modification.

We have now modifiedΦ so that no interval crosses an
endpoint ofC2.

MODIFICATION (E): Φ may be modified so thatC1 does
not contain all the intervals inC.

Consider interval 1 of the figure above, the rightmost
optimal interval inC1. This interval may be extended to
the right until it includes the right endpoint ofC1, becom-
ing interval 2; sinceC2 is the most negative interval, the
newly-covered region must be nonnegative, orC2 could be
improved.

Interval 2 may then be extended to interval 3, by adding
C2 andC3. If this were to decrease the score ofΦ then
we would haveS(C2) + S(C3) < 0. But in this case,C1

must have a strictly greater score thanC, a contradiction.
We may now apply Modification (C) to replace interval 3,
which coversC2, with at least as strong a pair of intervals,
one in each ofC1 andC3.

The modified optimal solutionΦ now meets all the con-
ditions of the lemma.

5 System

Figure 2 shows a block diagram of a system for an MSDB
over a large corpus of textual documents. There are three
components in the system. The first, labeled “Document
store/index backend,” is a general backend capable of stor-
ing and indexing large collections of textual data. This sys-
tem should be viewed as a black box that does the “heavy
lifting” of large data handling and is able to provide in an
efficient manner the random samples that the algorithms re-
quire to run. We describe the particular backend we employ
in more detail below.

The box labeled “Multi-structural query engine” con-
tains the implementation of all the algorithms described in
this paper and in [1]. It generates a random sample from

Figure 2: Block diagram of architecture for an MSDB over
a large corpus of documents.

the document store/index backend, and then processes this
random sample in order to generate a PDC.

Finally, the box labeled “Dimension extractor”
processes documents as they arrive into the system,
tagging them with information about where they belong
in each dimension. In some cases, this box simply uses
metadata that arrives with the document: some corpora
arrive with a publication date or even a set of topic tags that
may be converted directly into elements ofR, the relation
on documents and dimensions. Other types of metadata
may be extracted by text processing, such as the entities
mentioned in a document, or the topic of the document
as determined by an automated classifier. A platform for
document annotation such as UIMA [2] may be employed
in this context.

The system works as follows. Documents are tagged as
they arrive into the system. When a multi-structural query
arrives, specifying a particularX ′ ⊆ X, D′ ⊆ D, and
(f, ◦) pair, the query engine must process the query. It
generates a random sample ofX ′ of a specified size (dis-
cussed below), and also provides for each documentx in
the random sample the entriesR(x, ·) specifying where the
document belongs in each dimension.

Sample sizes. As stated earlier, the backend produces a
random sample ofX ′ for processing by the multi-structural
query engine. Clearly, with more random samples, the sys-
tem will be able to return nodes ofMD(D′) that represent
smaller fractions ofX ′; however, more random samples
means more computation time. For example, a random
sample of size 1,000 means that elements of the multi-
dimension will probably not be represented at all in the
sample unless they contain roughly at least 1/1,000th of the
documents ofX ′. In our experiments, we consider various
sample sizes between 100 and 10,000.

Backend capabilities. The backend must provide the ca-
pability to produce the required random sample ofX ′. We
describe our backend in detail later.

5.1 System description

5.1.1 Backend and dimensional extractor

We employ IBM’s WebFountain system [3] to provide the
backend and dimensional extractor modules. The flow
through the system proceeds as follows. When a docu-
ment first arrives in the system, it is processed by a series
of mining agents that extract its entries and include them
into the multi-structural relationR. For instance, the pub-
lication date of the document is extracted for thedate di-

mension, the person entities appearing on the page are ex-
tracted for thepeople dimensions, and so on. The doc-
ument is then annotated with tokens corresponding to the
membership of the document in each dimension. For hi-
erarchical dimensions, tokens are created for the upward
closure of each node in the hierarchy, so if the document
mentions entity Mel Gibson then this token will be created
in addition tomovie stars andpeople . The overhead
of such a scheme is a blowup in the number of tokens cor-
responding to the average depth of the tree. If the index
also keeps keyword tokens to allow constructions of rele-
vant subsetsX ′ ⊆ X, then the overall overhead of keep-
ing tokens for nodes with hierarchical dimensions is van-
ishingly small compared to the overhead of maintaining a
standard keyword index.

Numerical dimensions are indexed as is, but the indexer
provides built-in support for range queries, so the document
will be returned in response to queries for any containing
interval.

The system then provides unbiased samples as follows.
Each document is assigned a unique identifier computed
as the hash of a primary key; for web content, this key is
simply the URL of the document. The postings list for any
token is then ordered by this hash value. Complex boolean
queries are then computed by merging together postings, all
of which are ordered according to the shared hash values.
The prefix of an arbitrarily complex query is then a random
subset of the entire result set.

5.1.2 Multi-structural query engine

The query engine is implemented as about 8,000 lines of
Perl, including test code. It implements the basic(f, ◦) dy-
namic programming algorithm for hierarchical and numer-
ical dimensions, and provides a framework for computing
sequential and factored PDCs for arbitrary collections of
dimensions. It also implements more efficient algorithms
for min-monotone PDCs, as described in [1], and for sum-
additive PDCs, as described in Section 4. A simple opti-
mizer selects the appropriate algorithm at each step. Fi-
nally, the system includes implementations of the six query
types described in Section 5.3 below.

The query engine should be viewed as a reference im-
plementation to compute multi-structural queries. It has
not been optimized for performance. Our goal is to show
that such a system can produce responses to complex multi-
structural queries in times measured in seconds or tens of
seconds, rather than hours; there are many future modifi-
cations that could provide further improvements and so the
timing numbers should be viewed as upper bounds.

5.2 Data and Dimensions

The experiments were performed during February of 2005,
based on a crawl that was current at that time, consisting of
roughly four billion pages. The dimensions we considered
are the following:

Dimension Type Size
people Hierarchical 165M
politicians Hierarchical 7.4M
geography Hierarchical 177M
media Hierarchical 96M
star rating Numerical 62M
europe Numerical 11M
date Numerical 1.5B
crawl date Numerical 3.8B

The people dimension includes subcategories such as
corporate leaders andpopular figures ; the leaves
of this dimension are names of specific people. A subtree
of thepeople dimension ispoliticians , which we have
used as a separate dimension. It includes groups such as
u.s. executives andheads of state . The leaves
of thegeography tree are geographical locations through-
out the globe. Similarly,media is a taxonomy of source
types and includes a large set of newspapers and magazines
organized by categories such ascollege andu.s. top
100 . To calculate thestar rating value, we counted the
mentions of movie stars on each document. Similarly, the
europe dimension is a count of mentions of European lo-
cations. Ourdate dimension is the date the page was cre-
ated (for those documents where one could be confidently
detected) and thecrawl date is the date when the page
was crawled.

5.3 Query types and queries

In this section, we present a family of six(f, ◦) pairs.
We describe each query type and give examples; we then
perform measurements on a benchmark set of 28 queries
drawn from these six query types. The first three query
types described below appeared in [1] but have been recast
into the (f, ◦) framework here; the remainder are new to
this paper. To specify a query, we must giveX ′, D′, and
(f, ◦). In all of our benchmark queries, the subsetX ′ ⊆ X
must be specified according to a simple scheme: any re-
striction that uses the dimensions of the MSDB is allowable
(for instance, all documents mentioning a location in Eu-
rope that were crawled in 2003), and these queries may be
further restricted by requiring that a certain keyword also
appear on the page, for instance, the keyword “tsunami.”
In all the queries we describe below, we will specifyX ′

by giving a simple string such as “geography :Europe
people :Mel Gibsonkey :Iraq,” which should be read as
all the documents that mention a European location, also
mention Mel Gibson, and contain the keyword Iraq.

We now describe the individual(f, ◦) pairs. In all cases,
◦ is either addition or min. The definition off is typically
more complex. We must describe howf evaluates a partic-
ular element ofMD(D′) with respect to a particularX ′.

Divide. The goal of this query type is to find a PDC that
dividesX ′ into roughly equal sized pieces, to generate a
high-level understanding of where the mass of the data lies
with respect to the selected multi-dimension. We describe

this query type in some detail, and then provide a more
cursory walkthrough of the remaining types. In DIVIDE ,
we ask for a PDCH = {h1, . . . , hk} that is complete (i.e.,
contains all the documents ofX ′; see [1] for details) and
that maximizesf(h1) ◦ · · · ◦ f(hk), wheref(X ′; `) is the
number of documents ofX ′ that appear at element` of the
multi-dimension, that is,

f(X ′; `) = #(X ′|`),

and the combine function◦ is min. Thus, a PDCH =
{h1, . . . , hk} is given a scoref(h1) ◦ · · · ◦ f(hk) =
min {f(h1), . . . , f(hk)}. The score of a PDC is therefore
the size of the largest node, and the formulation finds the
PDC that maximizes the smallest node, giving a balanced
representation of the content of the documents. This is a
min-monotone query type. A sample query of this query
type is: partition the documents (X ′) that mention any
movie star intok intervals of time (D′) such that every doc-
ument belongs to an interval, and the number of documents
in each interval is roughly the same (i.e., every interval con-
tains at leasts documents for the largest possibles).

Differentiate. This query type returns nodes for which a
larger relative fraction of the documents ofX ′ appear than
would be expected, given the statistics of somebackground
setB ⊆ X. Thus, we define

fB(X ′, `) =
#(X ′|`)
#(X ′)

− #(B|`)
#(B)

.

The combine function is addition. This query type is sum-
additive. A sample query of this query type is: compare
documents (X ′) that mention George Bush to documents
(B) about politicians that do not mention George Bush, and
return date ranges (D′) in which the documents that men-
tion Bush also mention other politicians.

Discover. This query type returns nodes of the multi-
dimensions that aredistinct with respect to a separate set
M ⊆ D of measurement dimensions. “Distinct” means
that documents ofX ′ located at̀ are cohesive according
to the metric implied byM , and that these documents are
well-separated from the other documents ofX ′, again ac-
cording to the metric implied byM . These intuitions are
formalized in [1]; for reasons of space we refer the reader
to that paper, which defines:

f(X ′; `) =

∑
x∈X′|`, y∈X′\(X′|`) dM (x, y)

#(X ′|`) #(X ′ \ (X ′|`))
−

γ

∑
x,y∈X′|` dM (x, y)

#(X ′|`)2

The combine function is sum. Hereγ is a parameter of the
query type that trades off the cohesion of the documents at
` against their separation from other documents. A sam-
ple query using this query type is: among all documents
(X ′), find categories (D′) of people who tend to occur in
documents (M) that mention Paris.

Growth. This query type finds regions of most rapid
growth; Section 4.4 gives an example of finding regions
of rapid growth of a stock. The query type is defined when
D′ is a single numerical dimension. The base elements of
the lattice are assumed to be a partition of the numerical di-
mension into fixed-width intervals such as days or weeks,
and all other intervals are assumed to be aligned with these
base intervals. The growthg(i) of base intervali, is defined

as 1+#(X′|i)
1+#(X′|i−1)

. Then

f(X ′; `) =
∑
i∈`

log(g(i))

and the combine function◦ is addition. This query type is
sum-additive. A query of this type is: among documents
(X ′) that mention Mel Gibson, find date ranges (D′) that
show significant growth.

Recency. The goal of this query type is to find, for ex-
ample, media types that have published more content on a
particular topic during the last few weeks than their history
would warrant. It scores nodes of` according to the ratio
of the density of documents appearing at the node during
some recent intervalRI compared to some earlier interval
EI of some numerical dimension, say,date . Thus,

f(X ′; `) =
#(X ′|`,RI)
#(X ′|`,EI)

and the combine function is addition. This query type is
sum-additive. A sample query of this type is: among all
documents (X ′), find restrictions (D′) of geography and
organizations in which coverage grew significantly over the
last month.

Value. This query type applies a quality score to each
individual page in a collection. Positive values mean that
the page has positive quality and will overall add to the
measure; negative values mean the opposite. The quality
of a collection is the sum of the quality of the pages in
the collection. We consider two quality scores. The first
is star rating, which is the number of movie star entities
mentioned on the page, minus some threshold value. The
second isEurope affinity, which is the number of references
to any European location on the page. If the score of a page
x is given bys(x) then:

fs(X ′, `) =
∑

x∈X′|`

s(x)

and◦ is addition. This query type is sum-additive. A sam-
ple query of this type is: among media documents (X ′),
find date ranges (D′) that contain significant number of ref-
erences to European locations (Europe affinity).

6 Experimental results
This section presents our experimental evaluation of the
system and queries described above. To our knowledge,

MSDB queries represent optimization problems that have
not been studied at the petabyte scale in previous work. Our
goal in this section is not to compare different techniques
for the computation of such queries, but rather to demon-
strate that execution times measured in seconds or tens of
seconds are attainable for a set of queries that are reason-
ably broad and representative over a data set that is large.
An earlier paper [1] covered a series of multi-structural
queries from a qualitative perspective, evaluating particu-
lar results to show utility. In this paper, our focus is rather
on performance: all results in this section pertain to the fea-
sibility of implementing such queries in a real system, and
do not include user studies or other qualitative evaluation
of thenatureof the results.

6.1 Experimental environment

Our measurements are structured as follows. We break
timing information into backend and frontend components.
The backend represents the operation of generating a suf-
ficiently large and accurate sample of the setX ′ ⊆ X,
annotated with all relevant entries from the relationR for
documents in the sample. Notice that relevant entries typ-
ically include all entries in the dimensionsD′ ⊆ D given
as part of the query, plus possibly some auxiliary informa-
tion such as the date of the document for the recency query
type. The frontend then processes the sample, computingf
for elements of the multi-dimension as necessary, and ap-
plying the appropriate optimization algorithm to generate
the resulting PDC.

Backend queries are processed by the WebFountain dis-
tributed index, described in [3]. Frontend queries are per-
formed on a 1.2MHz IBM x335 server with 2GB of mem-
ory. The backend processing is performed by issuing net-
work requests from this machines to the WebFountain in-
dex. Once results have been returned to the frontend,
processing begins to compute the optimal PDC.

Backend processing is measured in two ways. First, we
instrument the frontend to report the overall latency of gen-
erating the sample with all necessary metadata. Second, we
instrument the index to measure the amount of time spent
from receiving the query to generating the response. Thus,
the first latency measurement includes marshaling and un-
marshaling data at the client, network latency, and index la-
tency; the second measurement covers only index latency.
All backend requests are saved in a cache on the frontend
server, and frontend-only timings are generated as end-to-
end times given that the appropriate sample data is loaded
from a local cache.

6.2 Backend timings

We consider “warm cache” and “cold cache” backend tim-
ings. The warm cache case might more accurately be re-
ferred to as “hot cache”, since the query has been per-
formed recently, and the results are assumed to be cached
in memory on the index server, or in file system cache if the
result requires processing of a significant amount of data.

Num n Index (ms) Total (ms)
100 330 32.79 229.72
500 330 117.60 1035.62
1,000 330 189.71 1936.71
2,500 330 388.64 4475.30
5,000 330 792.09 8631.06
10,000 330 1413.48 15768.39

Table 1: Warm cache timings, averaged over 33 queries,
for various sizes of document sets. The Num column in-
dicates the number of documents with associated metadata
retrieved per query. Then column gives the number of
measurements of fetches of this size (10 per query). The
Index column shows the number of milliseconds spent in
the index to retrieve the relevant information. The Total
column shows the total time spent gathering backend data,
including marshaling and unmarshaling of content at the
client, processing time in the index, and network latency.

Table 1 shows the aggregate statistics for warm cache back-
end timings over 28 benchmark queries. Of the 28 queries
in our benchmark set, five are DIFFERENTIATE queries,
each requiring a foreground and background sample. Thus,
computing our entire benchmark requires 33 total distinct
network requests. Queries performed with sample size 100
typically return very quickly, and represent a “high-level”
result which may be sufficient to guide the user to more de-
tailed queries. Samples of 10,000 documents require more
overall time: 1.4 seconds in the index on average, with al-
most 16 seconds total latency. The significant difference
in these timings is for two reasons. First, the amount of
data and metadata being transferred is significant (we give
details below). Second, the particular transport mechanism
we employ is not optimized for very large frame sizes. Sig-
nificant optimizations of these times is possible in a tuned
system.

Table 1 shows average times only, so we now provide a
more detailed view. Figure 3 shows a histogram of the time
to complete a query for the same range of sample sizes of
1,000 documents and 10,000 documents. Backend speed
almost never exceeds a second until we reach 10,000 doc-
ument samples, and overall backend latency for 1,000 doc-
ument samples, which is a reasonable tradeoff between de-
tail and performance, is typically 1–4 seconds.

Cold cache timings are performed by streaming a large
amount of data through the index between queries, in or-
der to flush both the in-memory cache and the file system
buffer cache. Our experiments showed that running a 100-
second query was sufficient to perform this flush. Because
each query requires 100 seconds of heavy processing, and
the system is supporting customers, we were restricted to
running tests at night and we performed a smaller number
of trials. The aggregate results are shown in Table 2. Each
query was run either once or twice for each sample of three
sample sizes: 100, 1,000, and 5,000 documents. The in-
dex timings are higher than in the warm cache case, but the
overall end-to-end latencies are not significantly larger.

Figure 3: The top figure shows the histogram of the number
of seconds spent in the backend generating all necessary
data. The left frame shows 1,000 document samples and
the right frame shows 10,000 document samples. The bot-
tom figure shows the same results for end-to-end process-
ing time.

Num n Index (ms) Total (ms)
100 46 119.30 311.35
1,000 46 1292.07 3028.46
5,000 51 2099.35 9544.45

Table 2: Cold cache timings, averaged over 33 queries, for
various sizes of document sets. The columns are to be in-
terpreted as in Table 6.2.

We now explore the bytes of data and metadata being
returned by these queries. Figure 4 shows a histogram of
the cached size for sample sizes of 1,000 documents and
10,000 documents. Several queries at the 10,000 docu-
ment size return in excess of 100M of data, which must
be marshaled, transferred over the network, unmarshaled,
and written to disk in the client cache.

6.3 Multi-structural query engine timings

We now turn to timings in the query engine. Table 3 shows
the average time to compute a multi-structural query, bro-
ken by sample size and sizek of the resulting PDC. The
size of the resulting PDC is a much less significant contrib-
utor to the overall time than the sample size. Certain query
types, of course, are quadratic in the sample size and hence
show significant growth with sample size.

We now break out timing numbers by the six query types
of Section 5.3, aggregated over 28 benchmark queries of a
particular type. Figure 5 shows the results for PDCs of size
k = 5 andk = 10, over various different sample sizes. For

Figure 4: Sizes in megabytes for data returned per query.
The left frame shows the results for 1,000 document sam-
ples and the right frame shows the results for 10,000 docu-
ment samples.

Docs k = 5 k = 10 k = 15 k = 20
100 1.0 1.1 1.2 1.3
1,000 9.2 9.6 9.6 10.0
5,000 43.0 44.2 45.7 48.2

Table 3: Average time in seconds to solve multi-structural
query, after all data and metadata has been loaded from
the backend, over 28 benchmark queries for various sample
sizes and PDC sizesk.

both values ofk, it is clear that certain query types have
significantly higher processing times than others. These
queries have more compute-intensivef functions, which
dominate the runtime of the queries that take more than
one minutes.

Figure 6 shows aggregate end-to-end timings of the en-
tire system, from the network requests to generate the data
and metadata, to the time to compute the optimal PDC in
the query engine. For 100 documents, all queries complete
in under five seconds, and most complete in under a sec-
ond. For 1,000 documents, most queries complete in under
10 seconds, but some require as much as 40 seconds over-
all. For 5,000 documents, most queries complete in under a
minute, and some require as much as three minutes. Higher
query times are dominated by the query engine processing,
suggesting that further algorithmic work and query engine
tuning is an appropriate direction to improve performance.

References

[1] R. Fagin, R. Guha, R. Kumar, J. Novak, D. Sivakumar,
and A. Tomkins. Multi-structural databases. InProc.
24th ACM Symposium on Principles of Database Sys-
tems, 2005.

[2] D. Ferrucci and A. Lally. Building an example ap-
plication with the Unstructured Information Manage-
ment Architecture.IBM Systems Journal, Special Issue
on Unstructured Information Management, 43(3):455–
475, 2004.

[3] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pat-
tanayak, A. Tomkins, and J. Zien. How to build a

Figure 5: Average query engine timing over all queries
within a query family for sample sizes of 100, 1,000, and
5,000 documents, after all backend activity has completed.
Results fork = 5 are on the left, and fork = 10 on the
right.

Figure 6: Overall system timings for 28 benchmark
queries, ordered by running time, for sample sizes of 100,
1,000, and 5,000 documents, withk = 5. To make the
scale of all three lines visible, we show times for 100 and
1,000 documents on the left axis, and for 5,000 documents
on the right axis.

WebFountain: An architecture for very large-scale text
analytics.IBM Systems Journal, 43(1):64–77, 2004.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. InProc. ACM
SIGMOD International Conference on Management of
Data, pages 205–216, 1996.

[5] C. Hurtado.Structurally heterogeneous OLAP dimen-
sions. PhD thesis, Computer Science Department, Uni-
versity of Toronto, 2002.

[6] H. V. Jagadish, L. S. Lakshmanan, and D. Srivas-
tava. What can hierarchies do for data warehouses?
In Proc. 25th International Conference on Very Large
Data Bases, pages 530–541, 1999.

[7] M. Rafanelli, editor. Multidimensional Databases:
Problems and Solutions. Idea Group, 2003.

[8] R. Torlone. Conceptual multidimensional models.
In M. Rafanelli, editor,Multidimensional Databases:
Problems and Solutions, pages 69–90. Idea Group,
2003.

[9] P. Vassiliadis. Modeling multidimensional databases,
cubes and cube operations. InProc. 10th Interna-
tional Conference on Scientific and Statistical Data-
base Management, pages 53–62, 1998.

