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Abstract

In earlier work, we defined “multi-structural data-
bases,” a data model to support efficient analy-
sis of large, complex data sets over multiple nu-
merical and hierarchical dimensions. We defined
three types of queries over this data model, each of
which required solving an optimization problem.
An example is to find the ten most significant non-
overlapping regions of geography crossed with
time in which coverage of the Olympics was much
stronger in newspapers than online sources.

In this paper, we present a general query frame-
work capturing the original three queries as part
of a much broader family. We then give efficient

algorithms for particular subclasses of this family.

Finally, we describe an implementation of these
algorithms that operates on a collection of sev-
eral billion web documents. Using our algorithms

in conjunction with random sampling techniques,

our system can solve these queries in real time.

Introduction

databaseg(or MSDB). As our work lies within this frame-
work, we begin with a brief description of its salient char-
acteristics using a running example of a database of news-
paper articles.

(1) Theschemaof an MSDB is a collection of dimen-
sions, each of which is a bounded lattice. Subsets of these
dimensions may be mechanically combined to form a new
multi-dimensional lattice, whose elements represent multi-
dimensional restrictions of the data objects.

In the example of newspaper articles, consider a schema
containing two dimensions: locations the article is relevant
to, and the article’s date of publication. The first of these
dimensionsgeography , admits a natural hierarchy (con-
tinents, countries, cities, etc.), where natural restrictions
correspond to nodes of the hierarchy; we may thus speak
of documents relevant to Europe, or to France in particu-
lar. The second dimensiodate , is a numerical attribute,
and natural restrictions are obtained by considering time
intervals. By combining these two dimensions, we gener-
ate restrictions such as “articles relevant to Europe from the
first half of 2003.”

(2) A pairwise-disjoint collectior(abbreviated PDC) is
a set of restrictions (lattice elements) that are conceptually
non-overlapping in the sense that every pair in a PDC is

Massive repositories of structured, semi-structured, and ur]ion-overlapping in at least one dimension

structured data are growing in prevalence and importance. The restrictions “articles about Europe from the first

However, the query languages we use o address these C%rélf of 2003,” “articles about California from June 2004,”

pora focus largely on relevance ranking, in the case of UN5nd “articles about France dated 6/17/2004-9/23/2004" are

structured data, and various types of aggregates in the Ccase. ise disjoint. The first two are disjoint in both the

i El
of structured data. An important task for database researc@eography anddate dimensions: the latter two are dis-

is the development of frameworks that support rich analyt=_; "= . :
ical queries through a coherent and principled architectur ointin thegeography dimension even though they over-
ap in thedate dimension; and, the first and the third re-

rather than an assortment of ad hoc solutions. strictions are disjoint in thelate dimension even though

Towards this goal, Fagin et al. [1] have recently intro- ; . .
duced a theoretical framework called tmeulti-structural Z:?R;e is a descendant of Europe ingeegraphy  hier-
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lation that describes the lattice elements to which each datéhree analytical operations proposed in [1], are of this kind;
object belongs. an example of a IFFERENTIATE operation is to find the
The membership relation for the newspaper articlest disjoint time intervals that have the highest total con-
simply specifies, for each article, the most specific locatrast in the number of articles about Europe and articles
tions that it is relevant to (namely leaves corresponding tabout Canada. Our technically most intricate contribution
cities, internal nodes corresponding to countries, etc., in thés an exact optimization algorithm for sum-additive objec-
geography hierarchy), and the calendar date when it wastive functions that runs in time linear in the number of data
published. objects: this is a significant improvement over the previ-
(4) A queryis an optimization problem that takes as in- ous quadratic algorithm for numerical dimensions [1], par-
put a collection of data objects, and returns a PDC of dicularly since the number of objects is often quite large.
given size (that is, a family of conceptually-disjoint restric- Underlying this result is an efficient algorithm for the fol-
tions of the objects). The particular PDC returned mustiowing basic combinatorial problem: given a sequence of
optimize some objective function; this objective function integers, findk non-overlapping contiguous subsequences
encodes the particular query. Since the intent of analyticalvhose sum is maximal.
queries is to seek an understanding of trends or patterns in Abstracting the objective function in terms of a combi-
the data, rather than obtain exact answers, good approximaation of scores over each element of a PDC has an addi-
tions are often acceptable if they are efficiently computabletional bonus from the viewpoint of efficiency. Namely, it is
As an example, consider asking for the ten time intervalften possible to obtain unbiased estimators for the objec-
that exhibit the maximum contrast in the number of articlestive function using random sampling. This feature is cru-
about Europe versus the number of articles about Canadacial in our implementation, since when dealing with mas-
sive data sets, it may be too expensive to even scan all the
Our contributions. The present paper advances the multi-data objects necessary to compute the “quality” of various
structural database framework in three fronts. First, werestrictions; for this reason, we need to rely on randomly
provide a conceptual setting for formulating and analyzingsampling data objects corresponding to each of the restric-
queries in a principled manner. Second, we give highly eftions.
ficient algorithms (a linear time algorithm for a very impor-  Finally, our third main contribution is a demonstration
tant schema family and an indexing/sampling methodol-of the MSDB framework on large-scale real-world data.
ogy). And third, we demonstrate the richness of the frameA prototype implementation of an MSDB system with
work and the quality of the algorithms by applying them three analytical operators (DDE, DIFFERENTIATE, DiIs-
to a massive, petabyte-scale collection of documents andoveR) is described in [1], with experiments dealing with a
measuring the results. few thousand data objects. Here, we present an implemen-
Our first contribution is conceptual in nature. Our ear-tation of an MSDB of nearly four billion web documents
lier work in [1] renders three specific analytical operations(10'* bytes;10'® bytes including metadata) from the Web-
(DivIDE, DIFFERENTIATE, DISCOVER) in the form of op-  Fountain project at IBM [3]. The architecture of our imple-
timization problems. In this paper, we present a rich fam-mentation consists of a back-end that offers the ability to
ily of “decomposable” objective functions that operate by materialize any required restriction of a collection of data
examining and scoring the data objects belonging to eacbbjects, and a front-end query engine that produces restric-
restriction of the PDC in turn, and then mechanically com-tions as needed in the optimization of a desired objective
bining these scores. We show that, for combinations of hifunction.
erarchical and numerical dimensions, all such optimization In our experiments, we measure the time required for
problems can be solved (perhaps approximately) in polythe WebFountain backend to produce the necessary data,
nomial time. The three operations described above are aind then separately measure the time required for the multi-
this form. structural query engine to find the optimal PDC, once this
Our second contribution is algorithmic in nature. We de-data has been made available. Our primary goal is not to
scribe two important subclasses of the class of decompogompare different approaches to this problem, although we
able objective. First, the class ofin-monotondunctions  do so where possible, but to argue that multi-structural opti-
maximizes the minimum over all elements of the PDC ofmization queries may be computed via random sampling in
a monotone function applied to that element. Second, theeal time over corpora consisting of billions of data objects.
class ofsum-additivéunctions maximizes the sum over all ~ We consider six families of analytical operations, three
elements of the PDC of an additive function (in a sense tdrom [1] and three new ones. We then create a benchmark
be defined later) applied to the element. We give more effiset of 33 queries, each of which is a concrete instantiation
cient algorithms for both of these classes. of one of the six families. We present measurements show-
Sum-additive functions arises very naturally in severaling that our unoptimized system is capable of returning an-
contexts, especially for numerical dimensions (time, salaryswers for most queries in between one and ten seconds de-
sales volume), where one seeks to finmhtervals of high-  pending on the required accuracy, while a few more com-
est total value of a function that is additive over disjoint plex queries take no more than a few minutes to compute.
sub-intervals (number of articles, wages paid, cans of beer
sold). In fact, DFFERENTIATE and DSCOVER, two of the



The remainder of the paper proceeds as follows. Immerical and hierarchical dimensions, but for the purposes
Section 3, we outline the theoretical underpinnings of theof this paper, the reader may think of the dimensions as be-
framework. In Section 4, we give a detailed presentation ofng either hierarchical or numerical. We assume that the
the new algorithm for contiguous subsequences, togethdattice nodes used in all lattices are distinct; the vocabulary
with some actual runtimes comparing the new algorithm to\/ = U; D; consists of all such lattice nodes. The mem-
previous approaches, and some examples of the algorithimership relationR C X x V specifies the lattice elements
in use. Section 5 describes the architecture of the MSDE data object “belongs to.” We require th@tbe upward
system we have implemented. Section 6 describes son@osed that is, if (x,¢) € Rand¢ < ¢/, then(z, ¢') € R.

experimental results. For ¢ € V, we defineX|,, read X restricted to/, as
X|le={x€ X | (x,¢) € R}.

2 Related work When there are several dimensions, we can endow them

There is a vast literature that we will not attempt to sum-with a naturally defined lattice structure. For nonempty

marize here on multidimensional data models and on-lineD’ C D, the multi-dimensionMD(D’) is defined as fol-

analytical processing (OLAP) queries. Comprehensivdows. If D’ is a singleton, the multi-dimension is sim-

overviews of several different topics on multidimensional ply the sole dimension itD’. Otherwise, assum®’ =

databases can be found in the book [7]. In particular, Tor{D1, ..., Ds}. ThenMD(D') is again a lattice whose el-

lone’s chapter [8] in that book gives an account of vari-ements arg (¢1,...,¢4) | £; € D;}, where(({, ... ¢}) v

ous models for multidimensional data. Our lattice-theoretic{3, . .., ¢3) = (¢1 V ¢3,...,¢5 Vv ¢2), and likewise forA.

modeling of multidimensionality is not new. Indeed, lat- The membership relatio® is then extended to contain

tices have been considered in earlier work on multidimen<{z, (¢1, ..., £4)) if and only if it contains(z, ¢;) for all i.

sional data, as they naturally generalize tree-structured hi-

erarchies and have the advantage of being closed under the

direct prodyct operation: Our formulation is reminiscent of3 1 pairwise Disjoint Collections

that of Harinarayan, Rajaraman, and Ullman [4], who use

lattices (and direct products of lattices) as first-class Citi-gacall that a PDC is a set of restrictions of a multi-

zens to model multiple, hierarchical dimensions. LatticeSjimension that are conceptually disjoint. Formally, for any
also underlie various other formulations of dimensions a”%ulti—dimension]\/[D(D’) and any sef = {£1, ..., 0} of

hierarchies, including those in [5, 6, 9]. elements of the multi-dimension, we say tisas a PDC if
See [1] for a detailed discussion of dlffer'encgs petwee@i AL = L forall i, j with i # j.

our work and standard OLAP. The key distinguishing fea- ' . .

ture of our work compared to earlier work on OLAP is Two spt_amal classes .OfPDCS aenuentiahndfactored

the class of queries that can be expressed and answerg(?cs’ which we now discuss.

in our framework. While typica| OLAP queries ask for |I’ltUitiV€|y, a sequential PDC divides data according to

aggregate or summary results along specified points in & Single dimension, then recursively subdivides each part

multi-dimensional lattice, our framework supports pow- Using a second dimension, and so on. A factored PDC

erful queries expressing optimization problems. Furtheris essentially a cross-product of PDCs in each dimension.

more, an answer to such a query is a pairwise disjoinclearly, every factored PDC is a sequential PDC (with any

collection (PDC) of dimensions that maximizes a certainordering of the dimensions). For formal definitions, see [1].

“measure”. This makes it possible to formulate a variety A simple example that illustrates the difference between

of clustering, trend-discovery, and hierarchy-aware sumihese classes of PDCs is the following, based on the MSDB

marization problems in a unifying framework. of newspaper articles. The PD{FAsia, 2003), (USA,
2003), (Asia, 2004), (USA, 2004)is factored since it is
3 Framework the cross-product of the PDG#sia, USA} and {2003,

2004}. The PDC{(Asia, 2001-2002), (Asia, 2003), (USA,
2001), (USA, 2002-2003)is a sequential PDC, divided
first along thegeography dimension and then along the
date dimension. The PDE(Asia, 2003), (USA, 2004)
is neither factored nor sequential.

A multi-structural databaséor simply MSDB) (X, D, R)
consists of a univers& = {z4,...,z,} of objects a set
D ={Dy,...,D,,} of dimensionsand amembership re-
lation R C X x V, whereV = U;D,;.

We will treat eachr; as simply an identifier, with the ] )
understanding that this identifier may reference arbitrary _There are two main reasons why sequential and factored

lattice'. This formulation represents a generalization of nu-€rably more efficient than general PDCs [1]. The second
main reason to focus on sequential and factored PDCs is
_1A lattice is a set of elements closed under the associative, commuthat they admit much more succinct representations, which
tative binary operations meet) and join () such thaia A (a V b) = cqyld pe conveyed to the user more compactly. All our
aV (a Ab) = aforall a andb; it is bounded if there are two elements . . . .
TandLlsuchthau A L — LandaVv T = T foralla. Alattice also  IMmplementations reported in this paper produce factored or

induces a partial orden: < biff a A b = a. sequential PDCs.




3.2 Queries problems not decomposable in this way, are exciting re-

One may construct a broad range of queries in the MSDBsearch guestions with significant potential benefits.
framework; as outlined in the Introduction, we will develop . .. i

a principled approach for doing so. Namely, we will iden-4 Algorithms for sum-additive (f,o) pairs
tify a broad class of optimization questions and point out ~ Over numerical dimensions

the existence of fairly efficient polynomial-time algorithms

for these. Later, in Section 4, we will present a significantlyIn this section we present a new algorithm for sum-additive

more efficient algorithm for the important special class of duery types over a single numenca! dimension. Using this
algorithm, we can compute sequential PDCs over any set of

sum-additive functions. numerical dimensions in time linear in the number of input
The basic query structure we consider in this paper igjocuments.

the following:
Given: DimensionsD’ C D, data objectsX” C X, 41 The maximum subinterval problem
score functionf : 2¥ x D — R, an associative binary
combination operator : R x R — R, and integefk. (Here ~ Our algorithm is based on what we call thkemaximum

R denotes the reals.) subinterval problem Informally, the problem is to find:
Find: PDC {¢,...,6,} C MD(D’') such that non-overlapping intervals in a sequence of real numbers

g(X'501, ... 0) = f(X';0) 0 -0 f(X';4;) is maxi-  Whose sum is maximized. More formally, given a sequence

mized over all such PDCs. z[1], ..., z[n] of real numbers and a positive intedeifind

a set of at most non-overlapping sub-intervals such that
> S(I;) is maximized, where§(I) =, ; x[/].

First, we claim that the problem of finding optimal
PDCs for sum-additive query types over numerical dimen-
sions can be cast as the maximum subinterval problem.
Given a subseX’ of documents, a numerical dimension,
and an integek, consider the instance of themaximum
subinterval problem with:[i] = f([r;, r:]), wheref() =
0. Sincef is additive, it is easy to see that solving the
maximum subinterval problem is equivalent to finding the
|optimal PDC.

We refer to a particular fixed paiff,o) as aquery
type A simple example of f,o) is f(A;¢) = #(Als)
ando = +. The basic algorithms in [1], developed there
for specific optimization problems, immediately yield effi-
cient algorithms for single numerical and hierarchical di-
mensions for all query typeff, o) that can be evaluated
efficiently. Specifically, assuming unit cost for the evalua-
tions of f ando, the algorithms in [1] can be easily mod-
ified to obtain anO(n?k) time algorithm for a single nu-
merical dimension and af(nk?) time algorithm for sin-
gle hierarchical dimension. While the case of hierarchica
dimensions can be considered well-solved, the solution for We now turn to an a|gorithm to solve the maximum
numerical dimensions is too expensive, for example, wheRubinterval problem. Without loss of generality, we can as-
considering hourly sales data over large periods of time. sume that the given input sequendg], ..., z[n] is alter-

Note that, in general, an objective function nating i.e., sigriz[i]) # sign(z[i +1])fori =1,...n— 1.
g(A;fy,...,¢;) need not admit a decomposition into This can be realized by simply replacing each consecutive
f ando; an example isg(A; /1, ..., 0y) = #(UiAls,).  sequence of positive (resp. negative) values by their sum. It
Fortunately, a large class of optimization problems dojs easy to see that the optimal solution is unchanged under
admit such a decomposition, and this motivates the seardihis simplification. Similarly, we can assume that] # 0

for efficient algorithms for various query typey,o) foralli=1,...,n.
depending on easily identifiable properties of the function . ) . ) )
f and theo operation. Fork = 1, there is a simple linear-time dynamic pro-
We say that a score functighis monotonef f(A;¢) < gramming algorithm (folklore) for this problem. The al-
f(B; ) for all setsA C B C X and everyl € D. Simi-  gorithm is the following. Perform a single scan through
larly, we say that a score functighis additiveif two con-  the sequence(1], ..., z[n] from left to right, at each step
ditions are met: maintaining the best interval seen so far. The scan is split
into phases, as follows. Létbe the left end of the current
1. There is a functior : 2X — R such thatf(4;¢) =  Phase. We begin scanning elemerit§ where; > i, keep-
h(Al,) for everyl € D. ing track ofS([i, j]). If S([¢, j]) is negative, end the current

phase and begin a new phase with1 as the left end. Oth-
2. f(AUB) = f(A) + f(B)wheneverAN B =0 and erwise, ifS([i, j]) is greater than the current best interval,

A BCX. update the current best interval. At the end, output the in-
terval with the maximum sum that was encountered. It is
An example of an additive score function j§A4;¢) =  easy to see that this algorithm runs in linear time. To see

#(Al;). We say thatf, o) is min-monotonéf o is min its correctness, consider points the start of some phase;
and f is monotone. Likewise(f, o) is sum-additivef o is  j,, within that phase; angs, the last point of the phase,
+ andf is additive. and assume that poip + 1 exists. ThenS([ji,j2 — 1])
Finding additional interesting classes of query types,s nonnegative, anf([j1, j3]) is negative, by construction;
as well as designing efficient algorithms for optimization thus, S([jz, j3]) must be negative. If the optimal solution



begins atj; and ends in another phase, then it may be reTheorem 2. The k-maximum subinterval problem can be

placed by another solution beginningjat+ 1, removing

S([j2, ja]) and hence improving its overall value, a contra- pryof  Given 2[1]

solved in timeD (min{nk?, max{nk, k5*}}).
,...,x[n], consider a 5-ary tre& with

diction. Thus, the optimal interval will not cross a phaseypq following properties: first, each nodeBfcorresponds

boundary. By a similar argument, for any phase (including;y o interval:

the last one), if the optimal solution beginsjatand ends

second, the root @f corresponds to the
interval [1, n]; and third, the five children of a node cor-

within the same phase, its left endpoint may be extended tPespond to the five intervals resulting from applying the

Jj1, improving its value by5([j1, j2 — 1]), which is nonneg-
ative. So there must exist an optimal interval that begins
a phase boundary, and does not cross a phase boundary;
algorithm considers all such intervals.

By negating all values in the sequence, the same algoyq value of the heavy interval.
rithm may also be applied to find the subinterval with the

minimum sum.

For generak, there is a simple quadratic-time dynamic
programming algorithm to find the optimal solution. Let
P(i, k) be the optimal value produced by selectingon-
overlapping intervals of the sequenefl], ..., x[i]. Let
B([y’,1]) be the value of the subinterval pf, ] with max-
imum sum. Note thaB([1,:]) may be computed for alfl
by a single pass of the optimal= 1 algorithm above, so
all B values may be computed in tinig(n?). The optimal
value fork intervals may then be computed by the follow-
ing recurrence:

P(i,k) = I}}g}zﬁ{P(j' - Lk=1)+B([j" i},

It is easy to see that this algorithm tak@gn?k) time.

4.2 A new linear-time algorithm

In this section we present an(nk?) algorithm for thek-
maximum subinterval problem. From our discussion ear
lier, this implies a linear-time algorithm for sum-additive
(f, o) pairs over a single numerical dimension.

Let C be the subinterval ofl,n] with the maximum
sum, as determined by the = 1 algorithm above. Let
L, R be the largest subintervalsih n] to the left and right
of C respectively. LeCs be the subinterval of’ with the
minimum sum, again as determined by the= 1 algo-
rithm. LetC; andC3 be the largest subintervals @i to
the left and right ofC; respectively. This results in a de-
composition of the original interval into five subintervals,
as shown below:

| | | |
G A

i
We show the following lemma, which will allow a re-

5-way decomposition defined above to the interval of the
arent. Define thbeavy intervabf a node as the max-sum
Agle interval that lies within the interval corresponding to
the node, and define theeightw(a) of the nodeu to be
We show:

Lemma 3. There is an optimal solution in which every in-
terval is the heavy interval of some node of the ffee

Proof. Lemma 1 shows that there is an optimal solution
that contains at least one intervalGh thus,L and R must
have no more thah—1 intervals. The lemma further shows
that in this constructed optimal solution, if there are two or
more intervals withinC', there must be at least one inter-
val in each ofC; andCs. Therefore, there is a solution in
which none of the five intervals of the decomposition con-
tains more thak — 1 intervals in this optimal solution.
Inductively, after;j levels of decomposition, there is an
optimal solution in which no interval in the 5-way decom-
position contains more than— j intervals in the optimal
solution. Therefore, aftek levels of decomposition, there
is an optimal solution in which each interval of the decom-
position contains no more than one optimal interval.
Consider such an optimal solution and any single inter-
val I of the solution. There must be some nodélothat
containsl and the interval corresponding to the node in the

tree intersects no other interval of the optimal solution. Re-
placel in the optimal solution by the heavy interval of that
node; this can only improve the solution. O

Thus, if we find the highest-score set &f non-
overlapping heavy intervals from the tree, we will have
found an optimal solution. This corresponds to finding
incomparable nodes of the tree (thatksnodes such that
no pair lie on a path from the root to any leaf) of maximum
total weight. We can do this by dynamic programming, as
follows. First, we modify the tree to make it binary. Each
node has five children, so replace it with a depth-3 binary
subtree. Assign one child each to five of the eight leaves of
the subtree and weightoo to all other node$,both leaf
and internal, of the subtree. Any optimal solutionkoiih-
comparable nodes in the tree will never contain one of these

cursive decomposition of the line. The proof is presentechew nodes, so a solution in this new tree can be mapped to

in Section 4.5.
Lemma 1. There is an optimal solution such that

1. every interval of the optimal solution is eith€ét, or
lies entirely within some interval of the 5-way decom-
position and

2. the optimal solution either contairgs or contains an
interval in bothC; andCs.

a solution of equivalent cost in the original tree.

Let B(a, k) be the best way to choogeodes of the tree
rooted ata, with childrena, as, such that no two nodes
lie on a root-leaf path. The® may be computed by the
following recurrence:

B(a, k) = max {w(a),lklll%%( (B(a1,k') + Blas, k — k’))} .

2A sufficiently large real weight suffices.



Deconposition of IBH for k = 5 Deconposition of €SC0 for k = 4 4.5 Proof of Lemma 1l

ET [ ! tsco ——

Consider some optimal solutich. We will show how to
convert® into a new optimal solution that meets the condi-
tions of the lemma. The proof will be by a series of mod-
ifications to®; we assume that the modifications are per-
formed sequentially, so that the solution to which we apply
2-3an-36 17-Hay-88  36-Sep-96 28 EE—BNar-BB 13-Har-95  4-Har-86  26-Feb—t modification: will already have been “processed" by mod-

fate pate ifications 1 through — 1. No modification will change the
value of the solution.

MODIFICATION (A): ® may be modified so that no interval
crosses an endpoint 6f.
At each node in the tree, the time taken to compute Assume thatb contains an interval that crosses an end-
B(a, k) is O(k). Since the number of nodes in the tree point of C, as shown by interval 1 in the following diagram:

Stock price
@
@

Stock price
a
=

Figure 1: An illustration ofc-maximum subintervals.

is at mostmin{nk, 5*}, the dynamic program runs in time —Z
O(kmin{nk,5*}). P
It remains to consider the time to compute the tree. At o G G
each level of the tree, the intervals assigned to nodes at that| | L ; | |
level represent a partition of the original points. Each { ' B

interval of the partition must be processed in linear time, to  \yje modify ®, replacing interval 1 with intervat; this
compute the next-level decomposition, resultingi(v) i not decrease the value of the solution. Otherwise in-
time overall to process each level. Thus, the total time tqgp5) | \ 2 would be positive in value, and’ could be

compute the tree i©(nk). So, the algorithm runs in time  gtended and would become more positive, a contradiction

: k

O(min{nk?, max{nk, k5}}). L to the maximality ofC'. Thus, our modifiedb contains no
interval crossing an endpoint 6f.

4.3 Evaluation of algorithms MODIFICATION (B): ® may be modified to contain either

interval C' or two or more intervals withiid'.
We implemented both the linear-time and quadratic-time Assume thatb contains no interval ir". Then we re-
algorithms. Both implementations are in Perl and no effortplace any interval of® by C itself; asC has the highest
was made to optimize the code. The timings in Section core of any interval, this must not decrease the value of
are performed on a machine with 256M of memory and &he solution. Thusp contains no interval crossing an end-
950MHz P3 processor. Notice that the quadratic-time alpoint of C, and contains at least one intervalin If only a
gorithm may be implemented in a straightforward mannessingle interval lies withirC', then replace this interval with
using quadratic space to hold the best subinterval of eact’ itself; this will not decrease the value of the solution, and
interval [, j]; we adopted this implementation for simplic- the conditions of the modification are met.
ity. Itis easy to reduce the space to linear if required. When If C' contains only a single interval then the conditions
the quadratic-time algorithm is run on five hundred docu-of the lemma are met, because this interval must litself,
ments, timings begin at ten seconds and grow to arountfivially meeting both conditions of the lemma. It remains
one hundred seconds; timings on larger documents sets at@ address the case in whi€hcontains multiple intervals.
prohibitive. On the other hand, for valuesolp to five,  Henceforth, we assume that the optimal solution under con-
the linear-time algorithm completes in under five secondssideration contains multiple intervals withir
even for 100,000 data points, and in under one second fq; opricaTioN (C): If  contains an interval that covers
10,000 data points. Cs, it may be modified so that no interval covefs, and

at least one interval appears in eacltfhfandCs.

I . Consider the following figure.
4.4 An example application: Stock prices N : ;

We illustrate an application of the sum-additive query types E—q — ;;j

for single numerical dimension. Figure 1 shows the five (in Lo E E

the darkened-in) regions of greatest growth in IBM's stock | | Cr : G : Cb | |
price, and the four regions of greatest growth in Cisco’s | F ! D I
stock price, over the period from 1980 to 2005. The results I C H

are based on the difference between the stock price at the Assume that an interval @b coversCs, as in scheme

beginning of a day and the price at the beginning of the next of the diagram. Since there are at least two intervals in
day. The same formulation also applies to the log of theC, there must be another interval to the left or right of the
ratio of the prices, and then shows the regions of greatestovering interval, as shown. Replace these two intervals
aggregate growth. with the two intervals shown in scheme 2 of the diagram.



We show that this can only improve the solution. Notig

Schema I:>| Mulii-structural query eng'ne|

that schemes 1 and 2 have the same left and right endpoji ndex Rand
and differ only in the “missing” interval in the middle. Bu ﬂ mm@ @samp:;
scheme 2 is missing interval,, which is the interval of” D';ccg"i'g [ Dimension Extractor | ——, [ Document storeindex backend |

with minimum sum, and so must have total sum at least us
great as scheme 1.

- ) Figure 2: Block diagram of architecture for an MSDB over
MOoDIFICATION (D): ¢ may be modified so thatno optimal 3 |arge corpus of documents.

interval covers an endpoint 6f,.
If such an interval exists, modif® by removing the en- the document store/index backend, and then processes this
tries inC,. The sum of these entries must be non-positive fandom sample in order to generate a PDC.
or they could be removed frof,, resulting in a new in- Finally, the box labeled “Dimension extractor”
terval with smaller sum thafis, a contradiction. Thus, the processes documents as they arrive into the system,
score of® will not decrease as a result of this modification. tagging them with information about where they belong
We have now modifie@® so that no interval crosses an in each dimension. In some cases, this box simply uses
endpoint ofCs,. metadata that arrives with the document: some corpora
arrive with a publication date or even a set of topic tags that

MOoDIFICATION (E): ® may be modified so thal; does may be converted directly into elements®f the relation

not contain all the intervals 6.

| | 3 on documents and dimensions. Other types of metadata
: ' may be extracted by text processing, such as the entities
— 2 mentioned in a document, or the topic of the document
as determined by an automated classifier. A platform for
H---- HL;T document annotation such as UIMA [2] may be employed

in this context.
! ! I The system works as follows. Documents are tagged as
i CEE CB they arrive into the system. When a multi-structural query

! arrives, specifying a particulak’ € X, D’ € D, and

Consider interval 1 of the figure above, the rightmost(ﬁo) pair, the query engine must process the query. It
optimal interval inC;. This interval may be extended to generates a random sampleXf of a specified size (dis-
the right until it includes the right endpoint ¢f;, becom-  cussed below), and also provides for each documeint
ing interval 2; sinceCs is the most negative interval, the the random sample the entri@$z, -) specifying where the
newly-covered region must be nonnegativeCgrcould be  document belongs in each dimension.
improved. ) )

Interval 2 may then be extended to interval 3, by adding>2MPle sizes. As §tated earlier, the backend produces a
C, and Cs. If this were to decrease the score®dithen random sample ok’ for processing by the multi-structural
we would haveS(Cs) + S(Cs) < 0. Butin this case(; ~ duery engine. Clearly, with more randor/n samples, the sys-
must have a strictly greater score th@na contradiction. €M Will be able to return nodes 6f D(D’) that represent
We may now apply Modification (C) to replace interval 3, smaller fractions ofX”; .however, more random samples
which covers(,, with at least as strong a pair of intervals, Means more computation time. For example, a random
one in each of’; andCs. sample_ of size 1,000 means that elements of the_ multi-

The modified optimal solutio® now meets all the con- dimension will probably not be represented ?t all in the
ditions of the lemma. sample unless they contain ro_ughly at least 1/_1,}000th¢

documents ofX’. In our experiments, we consider various
sample sizes between 100 and 10,000.

5 System Backend capabilities. The backend must provide the ca-

Figure 2 shows a block diagram of a system for an MSDBpability to produce the required random sampleXdf We

over a large corpus of textual documents. There are thredescribe our backend in detail later.

components in the system. The first, labeled “Document

store/index backend,” is a general backend capable of stob.1 System description

ing and indexing large collections of textual data. This sys-

tem should be viewed as a black box that does the “heav

lifting” of large data handling and is able to provide in an We employ IBM’s WebFountain system [3] to provide the

efficient manner the random samples that the algorithms resackend and dimensional extractor modules. The flow

quire to run. We describe the particular backend we employhrough the system proceeds as follows. When a docu-

in more detail below. ment first arrives in the system, it is processed by a series
The box labeled “Multi-structural query engine” con- of mining agents that extract its entries and include them

tains the implementation of all the algorithms described ininto the multi-structural relatio®. For instance, the pub-

this paper and in [1]. It generates a random sample frontication date of the document is extracted for tiage di-

.1.1 Backend and dimensional extractor



mension, the person entities appearing on the page are ex- Dimension Type Size
tracted for thepeople dimensions, and so on. The doc- people Hierarchical | 165M
ument is then annotated with tokens corresponding to the politicians Hierarchical | 7.4M
membership of the document in each dimension. For hi- geography Hierarchical| 177M
erarchical dimensions, tokens are created for the upward media Hierarchical| 96M
closure of each node in the hierarchy, so if the document star rating Numerical | 62M
mentions entity Mel Gibson then this token will be created europe Numerical | 11M
in addition tomovie stars andpeople . The overhead date Numerical | 1.5B
of such a scheme is a blowup in the number of tokens cor- crawl date Numerical | 3.8B

responding to the average depth of the tree. If the index
also keeps keyword tokens to allow constructions of rele- Thepeople dimension includes subcategories such as
vant subsets{’ C X, then the overall overhead of keep- corporate leaders andpopular figures  ;theleaves
ing tokens for nodes with hierarchical dimensions is van-of this dimension are names of specific people. A subtree
ishingly small compared to the overhead of maintaining aof thepeople dimension igoliticians ~, which we have
standard keyword index. used as a separate dimension. It includes groups such as

Numerical dimensions are indexed as is, but the indexen.s. executives andheads of state . The leaves
provides built-in support for range queries, so the documentf thegeography tree are geographical locations through-
will be returned in response to queries for any containingout the globe. Similarlymedia is a taxonomy of source
interval. types and includes a large set of newspapers and magazines

The system then provides unbiased samples as followgrganized by categories suchatiege andu.s. top
Each document is assigned a unique identifier computed00. To calculate thetar rating  value, we counted the
as the hash of a primary key; for web content, this key ismentions of movie stars on each document. Similarly, the
simply the URL of the document. The postings list for any europe dimension is a count of mentions of European lo-
token is then ordered by this hash value. Complex booleagations. Oudate dimension is the date the page was cre-
queries are then computed by merging together postings, adited (for those documents where one could be confidently
of which are ordered according to the shared hash valuesletected) and therawl date is the date when the page
The prefix of an arbitrarily complex query is then a randomwas crawled.
subset of the entire result set.

5.3 Query types and queries

5.1.2 Multi-structural query engine In this section, we present a family of si¥,o) pairs.
o . We describe each query type and give examples; we then
The query engine is implemented as about 8,000 lines oherform measurements on a benchmark set of 28 queries
Perl, including test code. Itimplements the bagico) dy-  drawn from these six query types. The first three query
namic programming algorithm for hierarchical and numer-types described below appeared in [1] but have been recast
ical dimensions, and provides a framework for computinginto the (f, o) framework here; the remainder are new to
sequential and factored PDCs for arbitrary collections ofihig paper. To specify a query, we must gi¥é, D', and
dimensions. It also implements more efficient algorithms ¢ o). In all of our benchmark queries, the sub&&tC X
for min-monotone PDCs, as described in [1], and for summyst be specified according to a simple scheme: any re-
additive PDCs, as described in Section 4. A simple opti-striction that uses the dimensions of the MSDB is allowable
mizer selects the appropriate algorithm at each step. Fifor instance, all documents mentioning a location in Eu-
nally, the system includes implementations of the six queryope that were crawled in 2003), and these queries may be
types described in Section 5.3 below. further restricted by requiring that a certain keyword also
The query engine should be viewed as a reference imappear on the page, for instance, the keyword “tsunami.”
plementation to compute multi-structural queries. It hasin all the queries we describe below, we will specify
not been optimized for performance. Our goal is to showby giving a simple string such asyéography :Europe
that such a system can produce responses to complex mulfieople :Mel Gibsonkey :Irag,” which should be read as
structural queries in times measured in seconds or tens efll the documents that mention a European location, also
seconds, rather than hours; there are many future modifiention Mel Gibson, and contain the keyword Iraqg.
cations that could provide further improvements and so the

timing numbers should be viewed as upper bounds. ~We now describe the individugf, o) pairs. In all cases,
o is either addition or min. The definition gfis typically

. _ more complex. We must describe hgvevaluates a partic-
5.2 Data and Dimensions ular element of\f D(D’) with respect to a particulax”.

The experiments were performed during February of 2005Divide. The goal of this query type is to find a PDC that

based on a crawl that was current at that time, consisting ddivides X’ into roughly equal sized pieces, to generate a
roughly four billion pages. The dimensions we considerechigh-level understanding of where the mass of the data lies
are the following: with respect to the selected multi-dimension. We describe



this query type in some detail, and then provide a moreGrowth.  This query type finds regions of most rapid

cursory walkthrough of the remaining types. InvibE, growth; Section 4.4 gives an example of finding regions
we ask fora PDAT = {h4, ..., h;} thatis complete (i.e., of rapid growth of a stock. The query type is defined when
contains all the documents of’; see [1] for details) and D’ is a single numerical dimension. The base elements of
that maximizesf(hy) o --- o f(hy), wheref(X’;¢) isthe  the lattice are assumed to be a partition of the numerical di-
number of documents of’ that appear at elemefbfthe  mension into fixed-width intervals such as days or weeks,

multi-dimension, that is, and all other intervals are assumed to be aligned with these
) , base intervals. The growy{i) of base interval, is defined
F(X750) = #(X|o), as 1Ly, Then
and the combine function is min. Thus, a PDCH =
{h1,...,hy} is given a scoref(hy) o --- o f(hy) = FX'50) = log(g(i))
min{f(h1),..., f(hg)}. The score of a PDC is therefore i€l

the size of the largest node, and the formulation finds the . L » . )
PDC that maximizes the smallest node, giving a balance@nd the combine function is addition. This query type is
representation of the content of the documents. This is éur/n-addmve. A query of this type is: among dEquments
min-monotone query type. A sample query of this query(X ) that mention Mel Gibson, find date rangdg’) that
type is: partition the documentsk() that mention any SHOW significant growth.
movie star intds intervals of time ') such that every doc-  Recency. The goal of this query type is to find, for ex-
ument belongs to an interval, and the number of documentgmple, media types that have published more content on a
in each interval is roughly the same (i.e., every interval conparticular topic during the last few weeks than their history
tains at least documents for the largest possible would warrant. It scores nodes 6fccording to the ratio
Differentiate. This query type returns nodes for which a ©f the density of documents appearing at the node during
larger relative fraction of the documents &f appear than  SOMe recent intervakl compared to some earlier interval
would be expected, given the statistics of sdraekground £ 0f some numerical dimension, salgte . Thus,
setB C X. Thus, we define ,

#(X'|¢,rr)

#(X'e)  #(Ble) #(X'|e,m1)

fB (XI>€) = -
and the combine function is addition. This query type is

FX50) =

#(X)  #(B)

The combine function is addition. This query type is sum-sum-additive. A sample query of this type is: among all
additive. A sample query of this query type is: comparedocuments X’), find restrictions D’) of geography and
documents X’) that mention George Bush to documents Organizations in which coverage grew significantly over the
(B) about politicians that do not mention George Bush, andast month.

return date rangesX) in which the documents that men- yj51,e  This query type applies a quality score to each
tion Bush also mention other politicians. individual page in a collection. Positive values mean that
Discover. This query type returns nodes of the multi- the page has positive quality and will overall add to the
dimensions that ardistinct with respect to a separate set measure; negative values mean the opposite. The quality
M C D of measurement dimensions. “Distinct” means Of a collection is the sum of the quality of the pages in
that documents ok’ located at/ are cohesive according the collection. We consider two quality scores. The first
to the metric implied by)/, and that these documents are is star rating which is the number of movie star entities
well-separated from the other documentsdf again ac- mentioned on the page, minus some threshold value. The
cording to the metric implied by/. These intuitions are second i€urope affinitywhich is the number of references
formalized in [1]; for reasons of space we refer the readef0 any European location on the page. If the score of a page

to that paper, which defines: x is given bys(z) then:
FX50) = 2exly, yexnxriy W(@y) fo(X 0 = ) s(@)
’ #(X'|e) #(X7\ (X']0)) X 'ls
2 yex), 4 (2,y) ando is addition. This query type is sum-additive. A sam-
#(X']e)? ple query of this type is: among media documentg)(

. L : find date ranges/}’) that contain significant number of ref-
The combine function is sum. Hereis a parameter ofthe grences to European locatior&ufope affinity.
query type that trades off the cohesion of the documents at

£ against the_|r sep_arauon from qther documents. A samg Experimental results
ple query using this query type is: among all documents
(X), find categoriesp’) of people who tend to occur in This section presents our experimental evaluation of the
documents /) that mention Paris. system and queries described above. To our knowledge,



MSDB queries represent optimization problems that have Num | n | Index (ms)| Total (ms)
not been studied at the petabyte scale in previous work. Our 100 330 | 32.79 229.72
goal in this section is not to compare different techniques 500 330 | 117.60 1035.62
for the computation of such queries, but rather to demon- 1,000 | 330 | 189.71 1936.71
strate that execution times measured in seconds or tens of 2,500 | 330 | 388.64 4475.30
seconds are attainable for a set of queries that are reason- 5,000 | 330 | 792.09 8631.06
ably broad and representative over a data set that is large. 10,000| 330 | 1413.48 15768.39

An earlier paper [1] covered a series of multi-structural
queries from a qualitative perspective, evaluating particuTable 1: Warm cache timings, averaged over 33 queries,
lar results to show utility. In this paper, our focus is ratherfor various sizes of document sets. The Num column in-
on performance: all results in this section pertain to the feadicates the number of documents with associated metadata
sibility of implementing such queries in a real system, andretrieved per query. The column gives the number of
do not include user studies or other qualitative evaluatiormeasurements of fetches of this size (10 per query). The
of thenatureof the results. Index column shows the number of milliseconds spent in
the index to retrieve the relevant information. The Total
column shows the total time spent gathering backend data,
including marshaling and unmarshaling of content at the
Our measurements are structured as follows. We breaglient, processing time in the index, and network latency.
timing information into backend and frontend components.
The backend represents the operation of generating a sufable 1 shows the aggregate statistics for warm cache back-
ficiently large and accurate sample of the &8t C X, end timings over 28 benchmark queries. Of the 28 queries
annotated with all relevant entries from the relatirfor ~ in our benchmark set, five arelEFERENTIATE queries,
documents in the sample. Notice that relevant entries typeach requiring a foreground and background sample. Thus,
ically include all entries in the dimensiod® C D given ~ computing our entire benchmark requires 33 total distinct
as part of the query, plus possibly some auxiliary informa-network requests. Queries performed with sample size 100
tion such as the date of the document for the recency querypically return very quickly, and represent a “high-level”
type. The frontend then processes the Samp|e, Compﬂting result which may be sufficient to guide the user to more de-
for elements of the multi-dimension as necessary, and agailed queries. Samples of 10,000 documents require more
p|y|ng the appropriate optimization a|gorithm to generateovera” time: 1.4 seconds in the index on average, with al-
the resulting PDC. most 16 seconds total latency. The significant difference
Backend queries are processed by the WebFountain di§) these timings is for two reasons. First, the amount of
formed on a 1.2MHz IBM x335 server with 2GB of mem- details below). Second, the particular transport mechanism
ory. The backend processing is performed by issuing net¥€ employ is not optimized for very large frame sizes. Sig-
work requests from this machines to the WebFountain innificant optimizations of these times is possible in a tuned
dex. Once results have been returned to the frontendByStem. _ _
processing begins to compute the optimal PDC. Table 1 shows average times only, so we now provide a
Backend processing is measured in two ways. First, w&hore detailed view. Figure 3 shows a histogram of thg time
instrument the frontend to report the overall latency of geni0 complete a query for the same range of sample sizes of
erating the sample with all necessary metadata. Second, We000 documents and 10,000 documents. Backend speed
instrument the index to measure the amount of time sperfiMOSt never exceeds a second until we reach 10,000 doc-
from receiving the query to generating the response. Thug/ment samples, and overall backend latency for 1,000 doc-
the first latency measurement includes marshaling and ufiment samples, which is a reasonable tradeoff between de-
marshaling data at the client, network latency, and index lat@il and performance, is typically 1-4 seconds.
tency; the second measurement covers only index latency. C0!d cache timings are performed by streaming a large
All backend requests are saved in a cache on the fronteridmount of data through the index between queries, in or-
server, and frontend-only timings are generated as end-tdier to flush both the in-memory cache and the file system

end times given that the appropriate sample data is loade@p/ffer cache. Our experiments showed that running a 100-
from a local cache. second query was sufficient to perform this flush. Because

each query requires 100 seconds of heavy processing, and
62 Backend timi the system is supporting customers, we were restricted to
-2 Backend timings running tests at night and we performed a smaller number

We consider “warm cache” and “cold cache” backend tim-©f trials. The aggregate results are shown in Table 2. Each
ings. The warm cache case might more accurately be reduery was run either once or twice for each sample of three
ferred to as “hot cache”, since the query has been peSample sizes: 100, 1,000, and 5,000 documents. The in-
formed recently, and the results are assumed to be cach&§x timings are higher than in the warm cache case, but the
in memory on the index server, or in file system cache if thePverall end-to-end latencies are not significantly larger.
result requires processing of a significant amount of data.

6.1 Experimental environment
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Fi 3 The top fi h the hist fth b Table 3: Average time in seconds to solve multi-structural
Igure 5. The top ngure shows the histogram orthe NUMDeR, oy, - after all data and metadata has been loaded from

of seconds spent in the backend generating all necessagy, packend, over 28 benchmark queries for various sample
data. The left frame shows 1,000 document samples an&zes and PDC sizds

the right frame shows 10,000 document samples. The bot-
tom figure shows the same results for end-to-end processoth values ofk, it is clear that certain query types have

ing time. significantly higher processing times than others. These
gueries have more compute-intensifdunctions, which
Num | n [ Index (ms)| Total (ms) dominate the runtime of the queries that take more than
100 | 46| 119.30 311.35 one minutes.
1,000 | 46 | 1292.07 3028.46 Figure 6 shows aggregate end-to-end timings of the en-
5,000 | 51 | 2099.35 9544.45 tire system, from the network requests to generate the data

and metadata, to the time to compute the optimal PDC in
Table 2: Cold cache timings, averaged over 33 queries, fothe query engine. For 100 documents, all queries complete
various sizes of document sets. The columns are to be irn under five seconds, and most complete in under a sec-
terpreted as in Table 6.2. ond. For 1,000 documents, most queries complete in under
~ 10 seconds, but some require as much as 40 seconds over-
We now explore the bytes of data and metadata being)|. For 5,000 documents, most queries complete in under a
returned by these queries. Figure 4 shows a histogram gfinute, and some require as much as three minutes. Higher
the cached size for sample sizes pf 1,000 documents armJery times are dominated by the query engine processing,
10,000 documents. Several queries at the 10,000 docuyggesting that further algorithmic work and query engine

ment size return in excess of 100M of data, which mustyning is an appropriate direction to improve performance.
be marshaled, transferred over the network, unmarshaled,

and written to disk in the client cache.
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