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Abstract
We study the problem of automatically and efficiently generating

itineraries for users who are on vacation. We focus on the common

case, wherein the trip duration is more than a single day. Previous

efficient algorithms based on greedy heuristics suffer from two

problems. First, the itineraries are often unbalanced, with excel-

lent days visiting top attractions followed by days of exclusively

lower-quality alternatives. Second, the trips often re-visit neighbor-

hoods repeatedly in order to cover increasingly low-tier points of

interest. Our primary technical contribution is an algorithm that

addresses both these problems by maximizing the quality of the

worst day. We give theoretical results showing that this algorithm’s

competitive factor is within a factor two of the guarantee of the

best available algorithm for a single day, across many variations of

the problem. We also give detailed empirical evaluations using two

distinct datasets: (a) anonymized Google historical visit data and

(b) Foursquare public check-in data. We show first that the overall

utility of our itineraries is almost identical to that of algorithms

specifically designed to maximize total utility, while the utility of

the worst day of our itineraries is roughly twice that obtained from

other approaches. We then turn to evaluation based on human

raters who score our itineraries only slightly below the itineraries

created by human travel experts with deep knowledge of the area.
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1 Introduction
Google aims to produce high-quality collections of information

responsive to user needs. In the context of travel planning, it is

often important to organize information about specific points of

interest at a destination into a useful form such as an itinerary

for a visit. We have developed and launched such a capability,

which is used at various places in Google’s product offerings. In
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one setting, the itinerary is pre-computed for hundreds of cities,

which is then shown to users searching for travel in a particular

city as an aid to jump-start the travel planning process. In another

setting, users who have “saved” points of interest will see itineraries

generated on the fly to feature the specific places they have saved.

And in yet a third setting, users who have downloaded the Google

Trips app will see dynamic editable itineraries which may be edited

and reconfigured in real time to suit the user’s needs. In this last

setting, the algorithm must be sufficiently responsive to compute

new itineraries in real time even running locally on a mobile device.

Hence, the algorithmic generation of high-quality itineraries under

various constraints is an important problem for Google, and one

that we continue to explore.

The problem of generating tourist itineraries has been studied

before, often in the guise of a combinatorial problem called the

Orienteering problem: given a graph with costs on the edges and

benefits on the vertices, find a max-benefit tour subject to a cost

budget. This formulation easily captures, for example, finding a

ten-hour tour of London that visits the best spots, even if the notion

of “best” is personal and complex.

However, most trips range from 3–8 days, and many are even

longer. The orienteering problem must therefore be extended to

cover multiple days. This seemingly innocuous extension in fact

raises a host of new issues. First, the problem tends to be larger

in scale, as one can visit many more places during a longer trip.

Second, standard greedy approaches perform well from a worst-

case algorithmic standpoint in some settings, but do not yield good

user experience for multi-day trips. For example, the first day of

a visit might cover all the best destinations, then each subsequent

day might visit places one tier more boring than the day before.

Worse yet, each of these days may revisit the same neighborhoods

along the same routes, simply replacing high-quality stops with

lower-quality ones. Some heuristics may be employed to re-order

days, encourage good balance, and penalize re-visits, but as our

experience has shown, these heuristics are difficult to tune appro-

priately across the wide range of cities that human civilization has

produced.

A better approach is to re-formulate the problem to make all

days of the tour good, by maximizing the benefit of the worst day

rather than maximizing the sum of benefits of all days. This will

avoid the issue of good versus bad days, and will also naturally

encourage the algorithm to spend time one day focusing on a range

of good and bad places within a particular neighborhood, moving

on tomorrow to a fresh new area.

We present a simple algorithm and a proof showing its competi-

tive factor is not much worse than the factor of whatever algorithm

https://doi.org/10.1145/3159652.3159697
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Figure 1: A precomputed tour of London.

Figure 2: Tours of New York City and Paris generated on mobile.

is available to optimize a single-day visit. In particular, we show

that, given an α approximation algorithm for various single-day

orienteering models, our algorithm achieves an α+2 approximation

for maximizing the value of the worst day. The models covered

by this result include the simplest orienteering model where the

graph is undirected and there are no restrictions on obtaining the

reward of a node (where we achieve a 4 + ϵ approximation) as well

as extensions to orienteering with deadlines, or more generally,

time-windows for the nodes and extensions to directed graphs (for

which we achieve polylog approximations).

In response to the criticism that, while the greedy algorithm may

perform well in some worst-case settings, this does not guarantee

that users will enjoy the results, we provide extensive empirical

verification of the performance of our algorithm and a benchmark

set of alternatives. Our analysis selects two families of measures

to apply to the algorithms. The first are computable measures of

quality based on the objective: number of places visited, total ben-

efit from those places, and so forth. We also add a second class

of measures based on human evaluation: we employed a pool of

raters tasked to assess the quality of the algorithms generated by

the different algorithms. Our experimental analysis exhibits that

our algorithm manages to improve the value of the worst day to

a significant extent compared to a well established multi-day ori-

enteering algorithm that maximizes the total reward obtained (on

average our algorithm more than doubles the value of the worst

day for 5-day itineraries across 200 cities) while at the same time

sacrificing no value with respect to the total reward. In the human

rater evaluation, our algorithm nearly matches the ratings of a set

of multi-day itineraries curated by travel experts.

2 Related Work
Algorithmically, the orienteering problem is an excellent model for

the application of planning a tourist itinerary in a city. In orienteer-

ing, the goal is to maximize the reward extracted by visiting nodes

in a graph, starting and ending at a given node, subject to a budget

constraint on the length of the tour. The best known approximation

algorithms for orienteering and orienteering with time windows

(i.e., when the reward of a node is extracted if and only if its time

of visit is within a prescribed time window) are given in [7]. These

algorithms follow work in [2] and [1], where the orienteering prob-

lem is solved by a dynamic program that uses the k-path algorithm

from [6] as a subroutine. In the k-path problem, the goal is to mini-

mize the cost of a path that visits at least k nodes. In turn, the work

in [6] relies on a primal-dual algorithm for k-MST [15], which is

the problem of constructing a tree of minimum cost that spans k
nodes. The algorithm for the undirected case with no time windows

is a 2 + ϵ approximation, while the algorithms for the other models

are poly-logarithmic approximations. We discuss the best known
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approximation factors for various orienteering models in more de-

tail in Section 3. A different approach to orienteering on undirected

graphs without time windows was given very recently by Friggstad

and Swamy [14]. The idea is to define a linear program that en-

codes orienteering and use a rounding algorithm to come up with

a solution that is a 3 approximation to the optimal. On multi-tour

orienteering, the work in [2] presents a simple greedy algorithm

that uses a single-tour algorithm as a subroutine and approximates

the total reward across days almost without any loss to the approx-

imation factor of the single-day case. An extension to submodular

rewards has been studied in [8], where a quasipolynomial log factor

approximation is described.

As far as the application domain is concerned, various approaches

to the tourist itinerary planning problem have been proposed. The

authors in [3, 16, 17, 29] present comprehensive surveys of heuris-

tic and algorithmic approaches to the problem. The work most

closely related to ours is presented in [9]. The authors there focus

on generating tourist itineraries based on data extracted from social

media, in particular Flickr photos. They also model the problem

as an orienteering instance and use the photos dataset to extract

the popularity of a place, the duration of visits, and the transit

time between different points of interest. We now explain the main

differences of our work to the one in [9]. First, we work with a

fundamentally different dataset, specifically, the work in [9] seeks

to extract the number of visits to an attraction, the visit durations

and the transit times from Flickr data, whereas our dataset explic-

itly includes this information. Secondly, the authors in [9] focus

primarily on single day itineraries and mention the multi-day case

as an interesting extension, whereas our main focus is on multi-day

itineraries: we propose an extension of orienteering to the multi-

tour case where the objective is to optimize for the value of the

worst tour and present original algorithmic work for that problem,

as well as experimentally evaluate it in a large number of cities

world wide.

Other interesting papers in the domain of itinerary planning

include [34], where the authors use GPS data to build an itinerary

recommendation engine and evaluate it using Beijing as an exam-

ple, [26], which focuses on suggesting routes in a city that also offer

some utility to the user as opposed to just being the shortest source-

destination paths, as well as various approaches that use geo-tagged

social media, e.g., [4, 21, 24, 25, 30, 32, 33, 35], and approaches based

on personalization [5, 11, 12, 18–20, 22, 23, 27, 28]. A final inter-

esting piece of related work is [31] where the authors study the

orienteering problem in a tourist application from a game-theoretic

view-point. They consider settings such as large amusement parks

where many travelers visit the same attractions and there are con-

gestion effects at the attractions and on the travel routes from one

attraction to another. The objective of the work in [31] is to compute

good equilibrium solutions to the problem.

3 Orienteering Model and Preliminaries
Consider a complete (either directed or undirected) graph G =
(V ,E) with a designated start and end node s , visit duration costs

dv for every v ∈ V , and travel time costs ce for every e ∈ E. We

assume the edge costs satisfy the triangle inequality. For any given

path P , we write V (P) for the set of nodes in P and E(P) for the
set of edges in P . We say that a vector of node visit times τ P is

admissible if for every edge (u,v) ∈ E(P), with v , s , it is the case
that

τ Pv ≥ τ Pu + du + c(u,v).

Inmulti-tour orienteering, our input consists of a graphG with a des-

ignated start and end node s , a number k (the number of requested

tours), and a (per-tour) cost budget B. For the start/end node s , we
prescribe (for simplification and without loss of generality) that the

duration cost ds and the visit time τ Ps is always 0.

A feasible output is a set of k tours P and a set of corresponding

admissible visit time vectors τ , such that each pair of tours intersect

only at s , i.e., for all P1 , P2 ∈ P,

V (P1) ∩V (P2) = {s},

and, for each tour P ∈ P, the budget constraint is satisfied i.e., if

t(P) is the last node of P before returning to s , then,

τ Pt (P ) + dt (P ) + c(tP ,s) ≤ B.

For a tour P and corresponding admissible visit time vector τ P ,

the utility function U
(
P ,τ P

)
outputs the induced utility, which is

given as follows. The utility of any node v ∈ V is a fixed number

uv , which is obtained if and only if the visit time of the node τ Pv is

within a prescribed non empty time windowwv , i.e.,

U
(
P ,τ P

)
=

∑
v ∈V (P )

uv · 1{τ Pv ∈wv }
.

In sum orienteering, the objective is to maximize

SUM(P,τ ) =
∑
P ∈P

U
(
P ,τ P

)
,

while in max-min orienteering the objective is to maximize

MIN (P,τ ) = min

P ∈P
U

(
P ,τ P

)
.

Mapping the model to our application, the graph represents a

city that a traveler visits, with the nodes being the various points of

interest (POIs) of the city and the edges being the travel routes be-

tween them. The utility of a node is determined by the correspond-

ing POI’s tourist popularity and the duration cost is the expected

time one should spend there to enjoy what the POI has to offer.

The cost of an edge is the transit time required to move from the

POI corresponding to its first endpoint to the POI corresponding to

its second endpoint. The start node corresponds to the traveler’s

hotel (or other accommodation) where the tour needs to begin and

end, and the number of paths k corresponds to the number of days

spent in the city. Time 0 corresponds to the time the tour may start

at each day (e.g. 9am or 10am) and time B (the budget) corresponds

to the time the user needs to return to the hotel.

Single-Tour Orienteering. The sum and max-min models ob-

viously coincide when k = 1, i.e, for single-tour orienteering. The

multi-tour algorithms we will discuss in Section 4 make use of

a single-tour oracle and for this reason, we next survey the best

known single-tour algorithms.

For the case when the graph is undirected and there are no time

windows, i.e.,wv = [0,∞) for all v ∈ V , the best known algorithm

achieves a 2 + ϵ approximation, for any ϵ > 0 [7]. For undirected

graphs with deadline constraints on the nodes, i.e., wv = [0, tv ]
for every v ∈ V , the best known is an O(logOPT ) approximation,
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with OPT the value of the optimal solution [2]. For undirected

graphs with time windows, [7] presents anO(max{logOPT , logL})
approximation, with L the length of the largest time window.

Moving to directed graphs, [7] presents an O
(
log

2OPT
)
ap-

proximation for the case with no time windows, an O
(
log

3OPT
)

approximation for the case with deadlines, and for the case with

general time windows an O
(
log

2OPT ·max{logOPT , logL}
)
ap-

proximation.

All these algorithms rely on large dynamic programs and, hence,

are complicated and slow, with running times of O(n8) or worse,
where n = |V |. Alternatively, a simpler linear-programming based

algorithm of [14] for the undirected model without time windows

achieves a 3 approximation.

We note that all these algorithms assume there are no node

costs, which is in contrast to our setting. However, we observe

that a simple transformation can convert any instance with node

costs to an equivalent instance with zero node costs. Namely, for

both undirected and directed graphs, increase the cost of each edge

adjacent to a node by half of the node’s cost. Then the cost of any

tour remains the same as before the transformation. It is not hard

to see that the triangle inequality property is preserved under this

transformation.

Before wrapping up the section on single-tour orienteering, we

describe an algorithm specifically tailored for use in practical set-

tings, which means the algorithm is very fast (with run-times of

50ms or less) and performs well in real world instances. The algo-

rithm greedily builds a tour by recalculating the traveling salesman

tour of the so-far selected nodes plus each possible candidate node

and picking the candidate that is the most cost-effective. We term

this algorithm GreedyTSPCost and evaluate its quality in Section

5.2.

GreedyTSPCost Algorithm. We conclude our discussion of

single tour orienteering with the description of our GreedyTSP-

Cost algorithm, which is in fact the one we use as the single tour

subroutine in the experimental evaluation of our multi-tour algo-

rithms in Section 5.2. The algorithm is very efficient and useful in

practice, even though it can’t provide good worst case guarantees.

The algorithm proves useful in scenarios where orienteering needs

to be solved with very limited computational resources, for instance

on mobile devices with no connectivity. The algorithm’s behavior

is reminiscent of greedy knapsack algorithms, always adding the

node that offers us the biggest bang for the buck, i.e., yields the

highest marginal increase to the utility of the tour, normalized by

the marginal increase to the cost of the tour. We provide the details

in Algorithm 1.

Theorem 3.1. Algorithm 1 is an Ω(OPT ) approximation, with
OPT the optimal utility.

Proof. Consider a simple instance such that all nodes have unit

utilities and zero duration costs. In such instances, Algorithm 1

will pick, in each iteration, the node that has the smallest distance

from the set of already selected nodes. Suppose the start/end has

two outgoing edges of unit cost. One leads to a single node and

the other leads to a clique of n nodes with 0 distances. The rest

of the edge costs are the shortest tour distances on the graph we

Algorithm 1: GreedyTSPCost
Input: Graph G, budget B, start/end node s
Output: Tour P , visit times τ P

P∗ ←MakeSingleNodeTour(s)

do
P ← P∗

best_margin← 0

P∗ ← null

for ∀v ∈ V do
P ′ ← TSP(V (P) ∪ {v}) // Use heuristic, e.g. 2-OPT

margin← (U (P ′) −U (P))/(Cost(P ′) − Cost(P))

if margin > best_margin and Cost(P ′) < B then
best_margin← margin

P∗ ← P ′

while P∗ , null
τ Ps ← 0

for e = (u,v) ∈ E(P) do
τ Pv ← τ Pu + du + ce

return
(
P ,τ P

)
described so far. Let the budget be B = 2. Algorithm 1 might spend

this budget to move to the isolated single node as opposed to the

zero cost clique and extract utility 2 as opposed to n + 1. □

Such adversarial instances are very unlikely in real world cities.

In fact, the specific structure of real world instances (which include

very skewed utility distributions and where the visit times at nodes

dominate the transit times through the city) is such that a greedy

knapsack-style algorithm is expected to perform well. We point to

the experimental evaluation of Section 5.2 and the positive results

therein as further support of this intuition. With respect to the

algorithm’s running time, we observe that, assuming the size of the

induced itinerary is always small in comparison to the size of the

graph, GreedyTSPCost is linear in the number of nodes.

4 Multi-Tour Orienteering Algorithms
In this section we will present algorithms for solving sum and max-

min orienteering. The algorithm for sum orienteering was described

in [2]. We present it in Section 4.1 for completeness and then we

proceed with our algorithm for max-min orienteering, which we

present and analyze in Section 4.2. Both algorithms rely on access

to an algorithm for the special case with k = 1, i.e., single-tour

orienteering, which they use as a subroutine. We discussed the

best known approximation factors for several models of single-tour

orienteering in Section 3.

4.1 Sum Orienteering

A simple greedy algorithm (see Algorithm 2) solves the sum version

of the multi-tour orienteering problem almost without any loss to

the approximation factor from the single-tour case. More specifi-

cally, given an α approximation for the k = 1 case, the work in [2]

shows that Algorithm 2 achieves a β = 1/

(
1 − e−1/α

)
≈ α + 1/2

approximation to the optimal solution for the sum objective.
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Algorithm 2: GreedySumOrienteering [2]

Input: Graph G = (V ,E), budget per tour B, number of

required tours k , start/end node s
Output: Set of tours P, visit times τ
P ← ∅

τ ← ∅

for i = 1, 2, . . . ,k do
(P ,τ P ) ←SingleTourOrienteering(G,B, s)

P ← P ∪ {P}

τ ← τ ∪ {τ P }

G ←RemoveNodesFromGraph(G,V (P))

return (P,τ )

Theorem 4.1. [2] Given an α approximation algorithm for single-

tour orienteering, Algorithm 2 achieves a β = 1/

(
1 − e−1/α

)
approx-

imation to SUM(P,τ ).

Algorithm 2 does very well with respect to the sum objective,

however, the output can be considered poor for a practical travel-

planning setting. The reason is that itineraries tend to be front-

loaded with the first few days visiting all important attractions,

whereas the remaining days are poor in quality. A bad experience

on one of the days can have a big impact on the perception of the

quality of the entire trip, as a traveler may feel that a whole day

of travel was wasted or unnecesarry to begin with. This motivates

the study of max-min orienteering, which is the focus of the next

section.

4.2 Max-Min Orienteering

In this section, we describe and analyze Algorithm 3, an approxima-

tion algorithm for max-min orienteering that loses a factor α + 2,
with α the approximation factor of single-tour orienteering. The

algorithm receives as input the graphG (with costs for the edges

and costs, utilities, and time windows for the nodes), the start/end

node s , the per-tour budget B, the required number of tours k , and a
target valueT which all tours should achieve. If the algorithm man-

ages to find k tours with at least valueT , it returns them, otherwise

it returns an empty solution. Let γ = α + 2, with α the approxima-

tion factor of the single-tour case, and letOPT be the optimal value

forMIN (P,τ ). We will prove that whenT = OPT /γ , the algorithm
is guaranteed to return k tours with value at least T , and, hence,
achieves a γ approximation to the MIN (P,τ ) objective. We may

run the algorithm multiple times with different guesses forT , using
standard techniques (e.g., doubling the guess every time and later

running binary search to pinpoint the best achievable value). The

pseudocode is given in Algorithm 3. We now summarize the main

stages. We will make the simplifying assumption that every node in

the graph is reachable within distance B/2 from s (or equivalently
that any node further than B/2 from s is removed from the graph).

Stage 1. In the first stage, the algorithm scans all nodes in the

graph and removes every node that has utility at least T . Each one

of these nodes,v , gives rise to a tour (s,v, s). Suppose the algorithm
finds q such nodes. If q ≥ k , we return this set of two-node tours.

Otherwise we proceed to the following stages, with the assumption

that q < k .

Algorithm 3:MaxMinOrienteering

Input: Graph G = (V ,E), budget per tour B, number of

required tours k , start/end node s , target value T
Output: Set of tours P, visit times τ
// Stage 1: Extract high utility nodes into tours

P ← ∅

for ∀v ∈ V : uv ≥ T do(
P ,τ P

)
←MakeTwoNodeTour(s,v)

P ← P ∪ {P}

τ ← τ ∪ {τ P }

G ←RemoveNodeFromGraph(G,v)

q ← |P|

if q ≥ k then
return

(
{P1, . . . ,Pk } ,

{
τ P1 , . . . ,τ Pk

})
// Stage 2: Iteratively run single-tour and truncate

for i = 1, 2, . . . ,k − q do
(P ,τ P ) ←SingleTourOrienteering(G,B, s)

(P ,τ P ) ←TruncateTour(P ,τ P ,T )

P ← P ∪ {P}

τ ← τ ∪ {τ P }

G ←RemoveNodesFromGraph(G,V (P))

// Stage 3: Check the output and return

if ∀P ∈ P,U (P ,τ P ) ≥ T then
return

(
{P1, . . . ,Pk } ,

{
τ P1 , . . . ,τ Pk

})
else

return (∅, ∅)

Algorithm 4: TruncateTour

Input: Tour P , visit times τ P , target value T
Output: Tour P , visit times τ P

for ∀v ∈ V (P) do
V (P) ← V (P) \ {v}

τ P ← τ P \ {τ Pv }

if
∑
v ∈V (P ) uv ≤ 2 ·T then
break

return
(
P ,τ P

)
Stage 2. On the remainder of the graph, we run the single-tour

algorithm k − q times, and after each run we do the following: (i)

keep removing a node from the tour (keeping the visit times of the

remaining nodes unchanged) until the tour’s value is 2 ·T or less,

and (ii) update the graph by removing the nodes that are ultimately

in the tour. Finally, before proceeding with the next iteration, we

remove from the graph every node that was picked by our current

iteration.

Stage 3. If Stage 2 outputs k −q tours with value at leastT each,

return the union of tours output by Stages 1 and 2, otherwise return

the empty set.

For the remainder of the section we prove the following result.
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Theorem 4.2. Given an α approximation for single-tour orien-
teering, running Algorithm 3 with T = OPT /(α + 2) achieves an
α + 2 approximation toMIN (P,τ ), with OPT the optimal max-min
objective value.

Proof. Let γ = α + 2. If Stage 1 results in q ≥ k , all tours
have utility at least OPT /γ and, hence, the algorithm achieves a

γ approximation. Now suppose q < k . We prove the following

statement: Let (P∗,τ ∗) be the solution that optimizes MIN (P,τ ).
At the end of iteration i of Stage 2 in Algorithm 3, the utility of

(P∗,τ ∗) not picked by Algorithm 3 is at least

(k − q) ·OPT −
2

γ
· i ·OPT ≥

(
1 −

2

γ

)
· (k − q) ·OPT . (1)

We may see this as follow. After Stage 1 of Algorithm 3, we have

removed q nodes. Even if we delete all tours from (P∗,τ ∗) that have
any of these nodes, there will still be at least k − q tours left and

each one of them has value at leastOPT , by definition. Hence, there
is at least (k − q) ·OPT utility left. Subsequently, each iteration of

Stage 2, extracts value at most 2 ·OPT /γ . Hence, the utility left is

at least as in (1). We now prove that each of the tours returned by

Stage 2 have value at least OPT /γ . By the fact that the utility in

(P∗,τ ∗) not picked by the algorithm is always at least(
1 −

2

γ

)
· (k − q) ·OPT ,

it follows that there is always one tour in (P∗,τ ∗) for which the

algorithm has not picked (
1 −

2

γ

)
·OPT

of its utility. Since the single-tour orienteering algorithm that is

used as a subroutine is an α approximation, it follows that the tour

returned by single-tour orienteering will have value at least(
1 −

2

γ

)
·
OPT

α
=

OPT

γ
.

To complete the proof, it remains to show that the process of trun-

cating a tour will never reduce its utility to less than OPT /γ . Trun-
cating a tour is performed by removing a node at a time, until the

utility of the tour drops below 2 ·OPT /γ . By the fact that, due to

Stage 1, Stage 2 never sees nodes with utility more than OPT /γ , it
follows that the last node removal of any tour will not take it to

less than OPT /γ utility. □

Corollary 4.3. For max-min orienteering on undirected graphs
with no time windows, Algorithm 3 achieves a 4 + ϵ approximation,
for any ϵ > 0. For all other models discussed at the start of the section,
it achieves the same asymptotic guarantees as the single day case.

5 Orienteering in Practice: Planning Itineraries
In this section we focus on the challenges of applying the orien-

teering model in a practical setting where we wish to plan tourist

itineraries for a large number of cities in the world and on evalu-

ating our method and decisions. One of the starting issues is that

one needs to define a utility and cost model where the utility and

duration of a node as well as other orienteering input parameters

are extracted from historical visits and transit data. In Section 5.1,

we explain our utility and cost model and how we apply it in two

distinct datasets: a large dataset of Google data on 200 cities across

the world and a smaller public set of Foursquare check-in data in

New York City. We then proceed to experimentally evaluate the per-

formance of our multi-tour algorithms for constructing itineraries

in these real world cities in Section 5.2.

5.1 Data Extracted Input: Utility, Costs, andTimeWindows

Google dataset. The main dataset we have at our disposal con-

sists of a large number of anonymized historical visits to tourist

attractions. The entries to the dataset include an arrival and a de-

parture timestamp. Given this data, we wish to extract the utility

of a place of interest (POI) and the typical duration of a visit to that

POI. We adopt a clean and simple approach for both.

The utility of a place is expected to be an increasing function

of the number of historical visits to the POI. Setting the utility

to be equal to the number of historical visits is the simplest such

function, but also has a natural interpretation; it is proportional to

the probability that a random tourist visits the POI: Assuming no

tourist visits the same POI more than once (we may fairly assume

that this is a very rare occurrence), this probability is equal to the

ratio of the POI’s number of visits to the total number of tourists

and hence proportional to the number of visits.

Understanding the typical amount of time tourists spend at a

POI reduces to picking an aggregate that is a good representative

of a set of given durations to the POI. We simply set the duration of

a POI to be the median time spent at the place among all historical

visits.

The travel times which are used as edge costs in our input to

orienteering are given by a set of transit time predictions (provided

by Google Maps) between all pairs of POIs and for various forms

of transportation (e.g., walking, driving, public transit, any com-

bination of those, etc.). We may fix a specific form of travel (e.g.,

walking only) or allow ourselves to select the smallest possible

transit time between our designated endpoints. For the purposes of

our experiments we allow any form of transit and use the quickest

available option.

Finally, the node time windows are obtained by available data on

the vast majority of POIs around the world (and which also surface

on Google Maps). We set a start time for our tours (e.g. 9am) and

the start and end of each time window are the corresponding offsets

in minutes from the start time.

Foursquare data. We also evaluate our algorithms on a publicly

available dataset of Foursquare check-ins [10, 27]. Entries in this

dataset include location, category and timestamp. The utility model

follows similarly to what we described above. Extracting durations

of visits from this data is not possible, so we assign uniformly

random durations in [30, 60] minutes to the POIs.

Nature of instances. Given that transit time ti, j from POI i
to POI j can differ from the transit time tj,i from POI j to POI i ,
and also given the presence of opening hours, real world cities

manifest as instances of orienteering in directed graphs with time

windows. However, the instances are far from adversarial. Transit

times ti, j and tj,i can be different but in most cases their difference

is small, while opening hours usually appear closer to deadline

versions of orienteering (with most POIs open at the start of the

tourist’s day) or even orienteering without time windows (e.g., for



Orienteering Algorithms for Generating Travel Itineraries WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

3 4 5

0

0.5

1

# of days

M
a
x
-
m
i
n
u
t
i
l
i
t
y

GreedySumOrienteering MaxMinOrienteering

3 4 5

0

0.5

1

# of days

S
u
m

u
t
i
l
i
t
y

GreedySumOrienteering MaxMinOrienteering

Figure 3: Max-min and sum comparison in New York City using Google data. Values have been normalized so that the largest
is 1.
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Figure 4: Max-min and sum comparison in New York City using Foursquare data. Values have been normalized so that the
largest is 1.
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Figure 5: Average normalized max-min and sum utilities of the two algorithms across 200 cities using Google data. (By “nor-
malized”, we mean that the utilities in each city have been scaled so that GreedySumOrienteering achieves unit utility.)
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10am-3pm itineraries, one would expect almost all POIs in the city

to be open). In the evaluation that follows we will examine the

performance of our multi-tour generating algorithms in hundreds

of real world cities. As explained earlier, theoretical orienteering

algorithms that are able to handle opening hours are very time

consuming, especially with large graph sizes.

5.2 Evaluation

In this section we will experimentally evaluate our max-min orien-

teering multi-tour algorithm. Our first set of experiments shows

that in real world cities under our utility and duration model, Al-

gorithm 3 (MaxMinOrienteering) significantly improves on the

performance of the literature-established multi-tour algorithm, Al-

gorithm 2 (GreedySumOrienteering), with respect to themax-min

objective, while incurring virtually no loss with respect to the sum

objective. For our experiments, we generate itineraries that begin

at 9am each day and have an 8 hour budget. For a starting location,

we select some point near the center of the city. We note that, in our

actual implementation,MaxMinOrienteering is supplemented by

a post-processing stage where tours that still have enough budget

left, may spend it and add more nodes via single-tour orienteer-

ing. Figures 3 and 4 present the relative performance of the two

algorithms with respect to our two objectives in New York City

using Google data and Foursquare [13] data respectively. Figure

5 aggregates the comparisons on Google data over 200 cities as

follows: For each city, we normalize the utility values, both for

max-min and for sum, so that GreedySumOrienteering achieves

unit utility. The aggregate values forMaxMinOrienteering are

then the averages across all cities.

We observe that our algorithm, MaxMinOrienteering, man-

ages to improve the max-min objective to a large extent. For ex-

ample, for the case with k = 5 days in the itinerary, the max-min

solution is improved on average by a factor very close to 2, in

comparison to GreedySumOrienteering, the standard multi-tour

algorithm proposed in the literature. At the same time, there is vir-

tually no loss with respect to the sum objective. In fact, the precise

sum objective values for MaxMinOrienteering in Figure 5 are

0.99 for k = 3, 0.996 for k = 4, and 1.05 for k = 5. This suggests the

performance of the two algorithmswith respect to the sum objective

is so close that, in some sets of instances,MaxMinOrienteering

even beats GreedySumOrienteering.

Our second set of experiments consists of an evaluation of the

produced itineraries by human raters. These evaluations put to

the test both our algorithms and our model of extracting utilities

and durations for the nodes. The rating methodology is as follows.

Raters are randomly picked from a pool and are given the task of

rating a multi-tour itinerary in a given city. Each city has either

a two or three day itinerary. The rater has to score each separate

day as good or poor and each city (i.e., multi-day itinerary) as good,
mediocre, or poor. Each city is given to three raters. The score of

each itinerary and each city is given by a majority rule. For cities,

if all three scores are given, the itinerary is considered mediocre.
The human rater evaluation is presented in two parts. In the first

part, we compare the ratings of our itineraries with two and three

day itineraries that have been carefully curated by experts in 59

cities. The results exhibit that our performance is very close to that

of travel experts and is presented in Figure 6. In the second part, we
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Figure 6: Evaluation by human raters for multi-day
itineraries in 59 cities.
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Figure 7: Evaluation of three-day algorithmic itineraries in
200 cities by human raters.

let raters evaluate our itineraries in a more challenging set of three

day itineraries in 200 cities. The results are presented in Figure 7.

6 Conclusion

In our paper we describe an algorithm that aims to provide high

quality multi-day tourist itineraries by maximizing the value of the

worst day. Conceptually, the goal of this exercise is two-fold. First,

do not let the travel experience be downgraded by the existence

of a full day visiting low quality attractions. Second, try to impose

an indirect limit on how much one can visit on a single day, thus

keeping daily itineraries local and not revisiting the same neigh-

borhoods across days. We complement the algorithm with an input

model that uses real world data (Google transit time, hours, and

historical visit data and public Foursquare check-ins) to construct

orienteering instances. Our two sets of experiments served the

purposes of, firstly, evaluating the performance of our max-min

algorithm versus a standard baseline (numerical experiments) and,

secondly, evaluating our overall approach of obtaining orienteer-

ing instances from data and solving them using our algorithm to

produce multi-day travel itineraries (human rater evaluation).



Orienteering Algorithms for Generating Travel Itineraries WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

Improving travel planning and the actual travel experience from

a system perspective is still a fruitful area with many open chal-

lenges welcoming future work. On the algorithmic side, we con-

clude by proposing two interesting extensions. A first interesting

direction is to extend our max-min algorithm to the case when

the utility of a tour is a submodular function of the visited nodes.

The sum algorithm is known to extend to this case but a similar

extension of max-min is not straightforward. Another interesting

problem is to extend both the sum and max-min algorithms to a

setting where itineraries are generated for groups of people and

the objective is to keep every one of them as happy as possible, by

optimizing the minimum orienteering objective across all travelers.
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