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ABSTRACT
Latent Semantic Indexing is a classical method to produce
optimal low-rank approximations of a term-document ma-
trix. However, in the context of a particular query distribu-
tion, the approximation thus produced need not be optimal.
We propose VLSI, a new query-dependent (or “variable”)
low-rank approximation that minimizes approximation er-
ror for any specified query distribution. With this tool, it
is possible to tailor the LSI technique to particular settings,
often resulting in vastly improved approximations at much
lower dimensionality. We validate this method via a series
of experiments on classical corpora, showing that VLSI typ-
ically performs similarly to LSI with an order of magnitude
fewer dimensions.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Singular value decomposition; G.1.3 [Numerical Analy-
sis]: Numerical Linear Algebra—Sparse, structured, and
very large systems (direct and iterative methods); H.3.3 [Infor-
mation Storage and Retrieval]: Information Search and
Retrieval—Miscellaneous

General Terms
Algorithms, Experimentation, Measurement, Theory
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1. INTRODUCTION

1.1 Overview
Dimensionality reduction is a classic technique in data analy-
sis and mining. Here one has a number of entities, each of
which is a vector in a space of features. For instance in text
retrieval the entities are documents and the features (axes
of the vector space) are usually terms occurring in the doc-
uments. We can then view the set of entities as a matrix
A in the space of features, where each feature is a column
of A. In text analysis for instance, the number of axes in
this vector space can thus be in the tens of thousands, cor-
responding to tens of thousands of terms in the lexicon. An
entry in the matrix connotes some measure of the strength
of a term in a document, usually derived from occurrence
statistics (e.g., the frequency of the term in the document).
Other examples of entities studied in this form include im-
ages (where the features include color, hue etc.), audio, face
recognition, OCR, human fingerprints, etc.

Dimensionality reduction recognizes that despite the large
number of axes in the space of features, most data sets
arising in practical applications result in the matrix A hav-
ing a good low-dimensional approximation A′: a matrix A′

with the same number of rows/columns as A, but with rank
considerably smaller than the number of axes in the vector
space. Intuitively, A′ captures the most salient features of A
but enjoys a representation in a subspace of very low dimen-
sion. In text analysis, for instance, it is widely reported that
good approximations of rank 200-300 exist for typical doc-
ument collections. Computationally such approximations
are typically found using the linear-algebraic technique of
singular value decompositions (SVD’s), a method rooted in
statistical analysis [13]. SVD’s have become a “workhorse in
machine learning, data mining, signal processing, computer
vision, ...” [10]. Eckart and Young [8] proved that in a spe-
cific technical sense (made precise below), the SVD yields
the best possible approximation to any matrix A, given any
target rank for the approximation A′. As a result of the
SVD, each document can be viewed as a vector in a low-
dimensional space of a few hundred dimensions; the axes in
the new space do not in general correspond to terms in the
lexicon.



The classic application of SVD’s to text analysis stems from
work of Dumais et al. [3, 7]. The authors adapted SVD
to the term-document matrix, characterizing their method
as latent semantic indexing (LSI). The principal application
of LSI was to respond to text queries: following standard
practice in text retrieval, each query (expressed as a set of
terms) is viewed as a unit vector in the space in which each
document is represented (whether the original set of terms as
in A, or in the low-dimensional approximate space). Given
a query, the system would identify the documents with the
highest cosine similarity to the query (in the primary or
approximate space) and return these as the best matches to
the query.

Experimentally, these and subsequent papers [4, 5, 6] showed
that latent semantic indexing was effective not only in that
it found a good approximation A′ of rank about 300, but
further that for retrieval on queries the approximation A′ of-
ten yielded better (rather than almost as good) results than
A. Qualitatively, this was explained by Dumais et al. and
others by the following intuition: the approximation A′, in
being forced to “squeeze” the primary vector space (spanned
by A), collapses synonymous terms (axes) such as car and
automobile. Additionally, it was argued that LSI separated
multiple meanings of a single term (such as charge), into
different axes of A′ based on co-occurrences of charge with
disparate groups of other terms (say, electron and proton,
as opposed to brigade and cannon).

Somewhat surprisingly, the entire premise of LSI – the com-
putation of the approximation A′ as well as its empirical
success in retrieval – are oblivious to the characteristics of
queries. Given that the motivation of Dumais et al. was to
respond to queries, it is surprising that the approximation
pays no attention to the types of queries. For a simple ex-
ample, consider querying a collection of news stories. The
approximation constructed by LSI would faithfully represent
all the topics in the news. Suppose now that the distribu-
tion of queries is, however, focused heavily on the subject of
Finance. Could it be that there are better low-rank approxi-
mations to the matrix A that are especially tuned to queries
focused on Finance, ignoring terms (axes) that epitomize
other subjects?

One approach might be to remove terms commonplace in
non-Finance categories from the matrix A, then perform
LSI on the resulting matrix with fewer axes to begin with.
This raises the question: is there a principled way to com-
pute such a query-dependent LSI, and establish its opti-
mality via an analog of the Eckart-Young theorem? Could
such a query-dependent LSI significantly outperform query-
oblivious LSI in retrieval performance? We answer these
questions in the affirmative: we devise a novel form of LSI
that takes the query distribution into account, prove its op-
timality, and establish experimentally that it dramatically
outperforms LSI on retrieval, for any target rank for the
approximation.

Our results are more general than the particular applica-
tion to text. Indeed, one could apply the same technique to
querying images, fingerprints or other entities represented
in a vector space. From a pragmatic standpoint, the query
distribution could be “learned” over time, so that one could

periodically recompute an approximation tuned to the cur-
rent query distribution. More generally, dimensionality re-
duction for data analysis is never performed in a vacuum;
rather, it is performed with a context in mind. To the ex-
tent that this context can be formulated as a certain type of
co-occurrence matrix (made precise below), our technique is
applicable.

1.2 Other related prior work
In addition to the research mentioned above, SVD’s have
been applied to a variety of settings in data analysis in-
cluding face recognition [18], collaborative filtering [12], de-
noising [17] and object analysis [14]. All of these applica-
tions are – in the sense outlined above – query-oblivious.
Weighted generalizations of SVD have been considered be-
fore [23, 25]; however these minimize a weighted Frobenius
norm instead of the usual norm and are not applicable to
our case. Probabilistic latent semantic indexing [11] and
its cousins from statistics [24] use a generative probabilistic
model for the entries of the matrix A, rather than for the
query distribution.

1.3 Our results
Section 2 gives the mathematical development of our new
approximation method, and proves its optimality. By char-
acterizing the queries likely to arise through a probability
distribution (in fact, we use a general model based on where
there is a co-occurrence matrix on pairs of query terms), we
derive a form of query-dependent, or variable LSI, which we
denote VLSI. A nice feature of our approximation is that it
reduces to the standard LSI approximation for the special
case when the co-occurrence matrix is the scaled identity
matrix.

Section 3 details experiments on a collection of documents.
We study various query distributions, including ones that
we tailor to be topic-focused (in the sense of the Finance
example from Section 1.1 above). We study the retrieval ef-
fectiveness as a function of the number of dimensions in the
low-dimensional approximation A′. In all cases, we find that
VLSI dramatically outperforms LSI on retrieval effectiveness
for any given number of dimensions in the low-dimensional
approximation. An alternative way of viewing these results:
for any quantitative level of retrieval effectiveness, the num-
ber of dimensions in the low-rank approximation is dramat-
ically lower for VLSI than for LSI. As an example, whereas
LSI on text corpora appears to require hundreds of dimen-
sions in the approximation, a few tens of dimensions often
suffice for VLSI.

2. ALGORITHM
2.1 Preliminaries and background
Let A ∈ <m×n be the term–document matrix over m terms
(the rows) and n documents (the columns); in this section
we do not address the issue of how this matrix is constructed.
The singular value decomposition (SVD) of a matrix is the
most commonly used orthogonal decomposition of the ma-
trix, expressing it as a product of two orthogonal matrices
and a diagonal matrix. For a matrix A ∈ <m×n, the singular
value decomposition of A is written as

A = UΣV T , (1)



where U = [u1, . . . , un] and V = [v1, . . . , vn] are column or-
thogonal matrices, and Σ = (σ1, . . . , σn) is a diagonal matrix
of nonnegative entries. The columns of U and V are referred
to as the left and right singular vectors of A and the diago-
nal entries in Σ as the singular values of A. It is well known
that every real matrix has an SVD decomposition and if in
addition the matrix is symmetric and positive semidefinite,
then it has a decomposition (the eigenvalue decomposition)
of the form Y ΛY T in which all entries of Λ are non-negative.

Notation. For a matrix A, we use rk(A) to denote its rank
and Tr (A) to denote its trace, i.e., the sum of its diagonal
entries. We use ‖A‖2

F to denote the Frobenius norm, where
‖A‖2

F =
P

ij A2
ij . An alternate expression for the Frobenius

norm is ‖A‖2
F = Tr

�
AT A

�
.

Definition 1 (SVD rank-k approximation). If A =
UΣV T is the singular value decomposition of A, then the
SVD rank-k approximation of A is defined as

Ak =

kX
i=1

σi · ui · vT
i .

We write Ak = UkΣkV T
k , where Uk = [u1, . . . , uk], Σk =

(σ1, . . . , σk) and Vk = [v1, . . . , vk]. Note also that Ak =
AVkV T

k .

A well-known property of the SVD is that it optimizes the
Frobenius norm (cf. [9]).

Theorem 2. For any matrix A ∈ <m×n,

min
X|rk(X)≤k

‖A−X‖2
F = ‖A−Ak‖2

F .

We now show that the SVD rank-k approximation of A
can also be interpreted as the rank-k matrix that best ap-
proximates the average distortion that A imparts to a unit
random vector. Suppose that q = (q1, . . . , qn) is a ran-
dom (query) vector such that E [qi] = 0 for all coordinates
i = 1, . . . , n. Consider the average distortion that occurs
on multiplication of q by A. The rank-k matrix that best
approximates the average distortion is given by

argminX|rk(X)≤kE
h
‖qT (A−X)‖2

2

i
.

We now motivate our approach by showing a relationship
between the SVD of A and optimizing this average distor-
tion.

Definition 3 (Co-occurrence matrix). Let Q be any
distribution on <m. The co-occurrence matrix CQ ∈ <m×m

is defined to be CQ = Eq∼Q[qqT ].

Sometimes it is useful to think of Q as the probability dis-
tribution from which queries are drawn: the i-th coordi-
nate being 1 corresponds to the i-th term appearing in the
query. Note that if Q is the product distribution obtained

by taking, say, the Gaussian N(0, σ2) distribution in each
coordinate, then CQ = σ2I. In general, there is a useful con-
nection between optimizing the average distortion and the
SVD when the co-occurrence matrix is the scaled identity
matrix.

Lemma 4. If for a distribution Q over <m, the co-occurrence
matrix is CQ = σ2I for some σ, then

min
X|rk(X)≤k

Eq∼Q

h
‖qT (A−X)‖2

2

i
= Eq∼Q

h
‖qT (A−Ak)‖2

2

i
.

Proof. To prove this correspondence we just need to
simplify the given expression. Using the fact that for two
vectors u and v, uT v = Tr

�
vuT

�
, we have

E
h
‖qT (A−X)‖2

2

i

= E
h
qT (A−X)(AT −XT )q

i

= E
h
Tr
�
(AT −XT )qqT (A−X)

�i

= Tr
�
(AT −XT )CQ(A−X)

�

= σ2Tr
�
(AT −XT )(A−X)

�

= σ2‖A−X‖2
F .

Thus optimizing the expected distortion can be done by tak-
ing X to be Ak, the SVD rank-k approximation of the matrix
A.

2.2 Main result
We now extend the above result to compute the best rank-k
approximation to a given matrix when the distribution Q is
arbitrary. A random query generated from this distribution
Q is again denoted by q.

First note that CQ is positive semidefinite, as for any vector
v,

vT CQv = E
h
(vT q)2

i
≥ 0.

This also means that any such CQ has an eigenvalue de-
composition CQ = Y ΛY T where Λ = (λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn ≥ 0. If rk(CQ) = r, we write this eigen-
value decomposition as CQ = YrΛrY

T
r .

Motivated by Lemma 4, the natural generalization of SVD
to arbitrary query distributions Q is to find a rank-k ap-
proximation AQ,k to A such that

AQ,k = argminX|rk(X)≤kEq∼Q

h
‖qT (A−X)‖2

2

i
. (2)

Definition 5 (Square root and pseudoinverse). For
a distribution Q, let CQ = YrΛrY

T
r be the co-occurrence

matrix of rank r. The square-root of CQ is defined to be

C
1/2
Q = YrΛ

1/2
r Y T

r and the pseudoinverse of C
1/2
Q is defined

to be C
−1/2
Q = YrΛ

−1/2
r Y T

r .

We show the following.



Theorem 6. Suppose Vk ∈ <n×k contains the top k right

singular vectors of C
1/2
Q A in its columns. Then the matrix

AQ,k minimizing (2) is the matrix AQ,k = AVkV T
k .

Proof. Suppose for now CQ is a full-rank matrix. Then,

C
1/2
Q C

−1/2
Q = Y Y T = I as Y is an n×n orthogonal matrix.

Define the random vector w = C
−1/2
Q q. Then,

E
h
wwT

i
= E

h
C
−1/2
Q qqT C

−1/2
Q

i
= I.

Using this,

E
h
‖qT (A−X)‖2

2

i
= E

h
‖wT C

1/2
Q (A−X)‖2

2

i

= E
h
‖wT (C

1/2
Q A− C

1/2
Q X)‖2

2

i
.

Since the co-occurrence matrix of w is I, we can apply
Lemma 4. Thus, the above expression is minimized when

C
1/2
Q X is the rank-k approximation of the matrix C

1/2
Q A. If

Vk are the top-k right singular vectors of C
1/2
Q A, then the

rank-k approximation of C
1/2
Q A is given by (C

1/2
Q A)VkV T

k .
Therefore, we need

C
1/2
Q X = C

1/2
Q AVkV T

k

X = AVkV T
k

as CQ is a full rank matrix.

If CQ is not full rank, then C
1/2
Q C

−1/2
Q = YrY

T
r , the pro-

jection onto the space spanned by the query vectors. Intu-
itively, the only change that we need to handle this case is
to work in the r-dimensional space spanned by the query
distribution. Below we work out the details for a rigorous

proof. Define w = Y T
r (C

−1/2
Q q) = Λ

−1/2
r Y T

r q. Note that w
is in <r where r is the rank of the query distribution. Also,

E
h
wwT

i
= Ir.

It follows that

E
h
‖qT (A−X)‖2

2

i
= E

h
‖qT YrY

T
r (A−X)‖2

2

i
.

Substituting the value of qT YrY
T

r = wT Y T
r C

1/2
Q in the above

expression, we have

E
h
‖qT (A−X)‖2

2

i

= E
h
‖qT YrY

T
r (A−X)‖2

2

i

= E
h
‖wT Y T

r C
1/2
Q (A−X)‖2

2

i

= E
h
‖wT (Y T

r C
1/2
Q A− Y T

r C
1/2
Q X)‖2

2

i
. (3)

So, arguing as before, we need to compute the rank-k ap-

proximation to the matrix Y T
r C

1/2
Q A. Now, for any vector

v,

‖(C1/2
Q A)v‖ = ‖(YrΛrY

T
r A)v‖

= ‖(YrY
T

r YrΛrY
T

r A)v‖
= ‖Yr(Y

T
r C

1/2
Q A)v‖

= ‖(Y T
r C

1/2
Q A)v‖,

where the last equality follows from the column orthogonal-

ity of Yr. Thus the right singular vectors of Y T
r C

1/2
Q A are

the same as those of C
1/2
Q A. So if Vk are the top k right

singular vectors of C
1/2
Q A, then the rank-k approximation

of Y T
r C

1/2
Q A is (Y T

r C
1/2
Q A)VkV T

k . Thus applying Theorem
2, (3) is minimized when

Y T
r C

1/2
Q X = (Y T

r C
1/2
Q A)VkV T

k ,

and it suffices to choose X = AVkV T
k .

And so, in both the cases, AQ,k = AVkV T
k is the minimizing

choice for (2).

Note that the above approximation collapses to the usual
SVD when Q is the uniform distribution on unit vectors.
In fact, it does so even for isotropic single term query dis-
tributions, i.e., distributions where the probability of any
term appearing is p, say for all terms, and no two terms
appear together in the query, i.e., E [qiqj ] = 0. Then the co-
occurrence matrix of such distributions is CQ = pI. Thus
for this case, our optimization is the same as that of Lemma
(4), and therefore, just computing the SVD of A would serve
our goals.

Finally, the computational requirements of VLSI are similar
to that of standard LSI. One benefit of the rank-k approx-
imation is that instead of storing the matrix A that poten-
tially requires O(mn) space, one could store the rank-k de-
composition (Uk, Σk, Vk) that needs only O(mk+nk) space.
In our case, it is sufficient to store the matrices (AVk, V T

k ),
which needs O(mk + nk) space as well.

3. EXPERIMENTS
We selected the Reuters-21578 document set Distribution
1.0 [16] for our experiments. This corpus has been widely
used in machine learning because it contains detailed topic
labels for each document. We chose the corpus because we
may employ these topic labels in order to be able to gen-
erate controlled query distributions. The corpus contains
21,578 documents that appeared in the Reuters news feed
in 1987. Documents are labeled with membership in five
sets of categories, one of which is TOPICS, which represent
a broad range of 135 economic subject categories such as
“gold” or (the commodity) “coconuts.” Figure 1 shows the
distribution (in words) of the sizes of the documents in the
collection. There are 112,356 distinct words in the corpus,
with an average document length of 134 words.

The lexicon is built as follows. First, the text is extracted
from the XML files in which the Reuters-21578 corpus is de-
livered. Next, tokens are extracted by splitting at whitespace
boundaries. As is commonplace in text processing, tokens
are then Porter-stemmed and case-folded, punctuation is re-
moved, and a standard 416-word stopword list is employed
to remove stopwords. Finally, certain html formations and
tokens that appear only once in the entire corpus are re-
moved. This results in a final cleaned dictionary of 33,749
terms.

Based on this dictionary, the corpus is scanned to produce
a term–document matrix of counts, Ac, for which Ac

ij is the



Figure 1: Histogram of document size for Reuters-
21578 collection.

number of occurrences of term i in document j. From this
matrix, we derive two other matrices on which we perform
our experiments. First, the Boolean matrix Ab is produced
by setting Ab

ij to 1 if Ac
ij is non-zero, and to zero otherwise.

In addition, we study a weighted version of the term–document
matrix. In classic text analysis, various techniques are known
for the derivation of the weight of a term in a document
based on term and corpus statistics. Of the many such map-
pings (from term/corpus statistics to weights) known, one
that has proven particularly successful in text retrieval is
the so-called Okapi weighting, defined for a particular query
Q and a particular document D as follows:

X
t∈Q∩D

ln
N − df + 0.5

df + 0.5
· (k1 + 1)tf

k1(1− b + b(dl/adl)) + tf
· (k3 + 1)qtf

k3 + qtf
,

Here, N is the total number of documents, df is the number
of documents containing term t, tf is the number of occur-
rences of t in document D, dl is the length of D, adl is the
average length of documents in the corpus, and qtf is the
number of occurrences of t in the query.

Accordingly,the Okapi weighting matrix AO is produced by
applying the standard Okapi term weighting algorithm to
the entries of Ac; we note in passing that we use the Okapi
formula parameters k1 = 1.2, b = 0.75, and k3 = 7 common
in prior text analysis [21, 19].

We then used an external memory version of SVDPACKC
1.0 package [2] to perform a 1000-dimensional SVD on the
Boolean and Okapi matrices Ab and AO as a baseline. We
also apply VLSI to each of these matrices with a family of
query distributions defined below. We show results com-
paring the two low-rank approximations using two different
metrics, which we now describe.

3.1 Evaluation metrics
Our evaluation is always in the context of a particular query
distribution Q, where a query in the distribution is a T -
element vector of real numbers representing the weighting

of each of the T terms. For most of our experiments, we
consider single-word queries.

We compare results using two metrics. For any particular
query vector q, the score assigned by some matrix A (taken
generically to represent Ab or AO) to each document is sim-
ply qT A. We will write LSI(A, k) to represent the rank-k
approximation of A produced by LSI, and VLSI(A, Q, k) to
represent the rank-k approximation of A produced by VLSI
with respect to query distribution Q. The L2 error of an
approximation Ã to A for a query q is simply ||qT (A− Ã)||2,
and the error of Ã with respect to distribution Q is

Eq∼Q[‖qT (A− Ã)‖2
2].

Second, we also consider an evaluation metric based on in-
formation retrieval that compares the rankings induced by
A versus Ã. Following the standard vector space ranking
algorithm, for query vector q, consider ranking the columns
of M by their score in qT M (breaking ties by ranking the
smaller index first). Let S be the top k documents as ranked

by Ã, the approximation to A. The competitive precision at
d [22] is defined as 1/d times the number of those documents
that appear in the top d documents as ranked by A. Thus,
a competitive precision approaching 1 means that most of
the highly-ranked documents in our approximation would
also have been ranked highly by the original matrix. We
consider competitive precision at 10 unless specified other-
wise. For brevity, we name one minus competitive precision
as competitive error (CE).

3.2 Query distributions
There is evidence to suggest that query distributions follow
a power law: the probability that a particular query occurs
x times is proportional to x−α for some α. We build on this
evidence to generate some of our query distributions, in a
manner described below. We found three explicit references
to particular power law exponents over query distributions
in the literature. Baeza-Yates [1] reports an exponent of
1.7 in the context of a Chilean search engine; Lempel and
Moran [15] give 2.4 for a log of 7M queries submitted to
the Altavista search engine; and Saraiva et al. [20] report
2.7 for a Brazilian search engine. Given this variation in
exponents, we adopt a power law exponent of 2.4 as being
a middle ground.

We consider the following query distributions. Consider the
lexicon of all terms in the analysis (corresponding to all rows
in the matrix A). Now, rank this lexicon by total number of
occurrences of each term across the entire corpus. Let ti be
the i-th term in this ranking, and let pi be the occurrence
probability of term ti. We consider three distributions over
single-term queries. The first distribution simply mirrors
the distribution of terms in the corpus, while the other three
follow a power law. We then consider two cases of planted
power laws, all with exponent 2.4. First, the power law
is placed over the terms in their order of frequency in the
corpus; second, the power law is placed over terms in random
order. More formally, the three query distributions are as
follows:



D1 : The probability of ti is pi.

D2 : The probability of ti is ci0.714.

D3 : The probability of ti is c(σ(i))0.714 where σ is a ran-
dom permutation of the terms.1

In addition to these three distributions, we also consider dis-
tributions D1 and D2 in which the terms ti are ranked, not
according to their frequency in the corpus, but according
to their frequency in the subset of documents that discuss
a particular topic family. We consider two such topic fam-
ilies: money, and commodities, which cover 2615 and 1849
documents respectively. Both topics contain about 12,000
unique terms. Terms that do not appear in the documents
covering the topic have zero probability in the query dis-
tribution, and all other terms have probability determined
by scheme D1–D3. This yields a further six query distrib-
utions, which we will refer to as “money.(D1,D2,D3)” and
“commodity.(D1,D2,D3),” in addition to the original 3.

3.3 Results
In all our result graphs, we use two measures for the quality
of the approximations: (1) L2 error normalized so that the
error with a single dimension in the approximation is 1, and
(2) competitive error, i.e., one minus competitive precision.
Note that both measures are query-dependent, unlike the
Frobenius norm in the theory of SVD.

Comparing results on query distributions D1–D3.
Figure 2 shows the results for query distributions D1–D3
for the matrix AO using approximations of rank 1 through
1000. For query distribution D1, which mirrors the term
distribution in the original corpus, the trends of LSI and
VLSI are quite similar but at different magnitudes of error.
VLSI shows a 10% improvement at 10 dimensions, a 27%
improvement at 50 dimensions, a 50% improvement at 125
dimensions, and an 80% improvement at 1000 dimensions.
Stated alternatively, VLSI with just 40 dimensions is about
equivalent in performance to LSI with 250 dimensions.

When a power law is introduced to the query log in query
distribution D2, matching the significant skew found in real-
world queries, the results are more significant. Error rates
drop more rapidly for both LSI and VLSI. At 50 dimensions,
the error of LSI is about 60% of the rank-1 error, while the
error of VLSI plunges to about 7%. At 125 dimensions, LSI
remains at 56% the initial error while VLSI has dropped to
under 3%. Viewed alternatively, the error rate of LSI with
250 dimensions is matched by the error of VLSI using only
10 dimensions.

As expected, when the power law is planted over a random
permutation of the terms in the corpus, the results are more
dramatic. At 50 dimensions, the error of LSI has dropped by
barely 5% from a rank-1 approximation. At 22 dimensions,
the error of VLSI is only 7% as great (i.e., down by 93%),
and by 50 dimensions, it is between 1 and 2%. Comparing

1In both D2 and D3, the power law with exponent 2.4 is
equivalent to a Zipf exponent of 0.714 on the rank. c is a
normalizing constant.

Figure 2: LSI and VLSI for query distributions D1–
D3. The first plot shows results for 1000 dimensions
while the second plot show a more detailed view of
the first 200 dimensions.

results at 1000 dimensions, the error of VLSI is four orders
of magnitude smaller. This is an extreme instance, and not
representative of actual query logs.

Boolean versus Okapi weighting. We may ask whether
this significant improvement in approximation for a specific
query distribution is an artifact of the Okapi weighting intro-
duced into the matrix. Fixing upon distribution D2, which
contains a planted power law over the terms with the same
rank order as shown in the corpus distribution of term fre-
quencies, we compare the Okapi-weighted matrix AO to the
Boolean matrix Ab. Figure 3 shows the results. Dropoffs are
much faster for the Boolean matrix for both LSI and VLSI.
The error rate for VLSI begins at about half that of LSI,
and by 100-150 dimensions, it has dropped to about 10% of
the error rate of LSI for a similar number of dimensions.

Topic-specific query distributions. Turning to topic-
specific keyword distributions, we would expect that such



Figure 3: LSI and VLSI for query distribution D2
over both Okapi-weighted matrix and Boolean ma-
trix. The first plot shows results for 1000 dimensions
while the second plot show a more detailed view of
the first 200 dimensions.

distributions focus on specific types of keywords and are
thus an appropriate arena for VLSI. Figure 4 shows the re-
sults for the money and commodity topics. The combination
of topic focus and planted power law results in low-rank
highly-accurate approximations in the VLSI case: the ap-
proximation shows only 10% of the initial error at as few
as 15 dimensions, and only 1% by 100 dimensions. LSI’s
performance at 250 dimensions is approximately similar to
that of VLSI at 25 dimensions. In money.D1, in which the
query distribution follows the corpus distribution within the
money topic, the improvements are slower. VLSI with 25 di-
mensions again is comparable to LSI with 250 dimensions,
but in this case LSI with 1000 dimensions (and VLSI with
100 dimensions) still show 30% of the original error.

Competitive precision. So far, we have considered the L2

error of the approximation. However, we may also consider
competitive precision, which is our rank-oriented measure:
how do various matrix approximations modify the rank or-

Figure 4: LSI and VLSI over 1000 dimensions.
Top figure shows query distributions money.D1 and
money.D2; bottom figure shows commodity.D1 and
commodity.D2.

der in which documents are returned? Figure 5 shows the
results for query distributions D1 and D2, reporting com-
petitive error, i.e., one minus competitive precision. The
competitive error measure does not tend quickly to zero as
tiny differences in the approximation may have significant
impact on the rank order. The queries we study tend to
match a relatively large number of documents, and the or-
dering of those documents in the original and approximate
matrices is largely random until the number of dimensions
becomes extremely high. The two cases show different be-
haviors: D2 drops off extremely quickly due to the skewed
nature of the query distribution, but for each competitive
error parameter, flattens to a particular value dependent on
the size of the result set for different queries weighted by
the query probability. In D1, VLSI at 100 dimensions at-
tains a competitive error comparable to LSI at 1000 dimen-
sions. The same condition holds in D2, but in this case it is
more instructive to note that both schemes have flattened
by around 100 dimensions, and the difference in competitive
error is about a factor of 2 in favor of VLSI.



Figure 5: LSI and VLSI over 1000 dimensions with
query distribution D1 (above) and D2 (below) mea-
sured by competitive error at 10 through 1000 doc-
uments. Plots with points correspond to LSI; those
without points correspond to VLSI.

Uniform measurements. The results so far make heavy
use of the significant skew encountered in query logs. How-
ever, VLSI also shows an improvement when measured in
the following manner. Imagine drawing 100 queries from the
query distribution without replacement, thus significantly
reducing the skew. The results for distribution D2 are shown
in Figure 6. The quality of approximation in either metric
for LSI at 1000 dimensions is about equivalent to that of
VLSI at 100 or fewer dimensions.

Multi-word queries. All experiments so far have been
performed on single-term query distributions. In this case,
the formulation in Section 2 has a clean form and is straight-
forward to implement. However the formulation is more gen-
eral, and allows the query distribution to be over arbitrary
vectors. Therefore, we consider a small experiment over
two-word queries. The distribution is computed as follows.

Figure 6: LSI and VLSI over 1000 dimensions with
query distribution D2 measured via 100 queries
drawn from the distribution without replacement.

Figure 7: LSI and VLSI over 100 dimensions with
two-word query distribution.

First, the documents for the commodity topic are scanned,
and the counts of all bigrams are kept. The top 25 bigrams
are dropped as they are very frequent without being mean-
ingful queries. The remaining bigrams are ranked according
to frequency, and a power law with exponent 2.4 is planted
on this ranking, as we did in the single-term case for query
distribution D2. The results of this experiment are shown
in Figure 7 for both L2 distance and competitive error at
10. Due to computational constraints, we completed the ex-
periment for 100 dimensions only. About ten dimensions of
VLSI produced the same L2 error and competitive error as
100 dimensions of LSI.

4. CONCLUSIONS
Beginning with the observation that latent semantic index-
ing (and its precursors) are data-dependent but query-oblivious,
we developed a new form of low-rank approximation that is
query-dependent. Experiments with our new approximation



are extremely encouraging, suggesting an order of magni-
tude improvement in the quality of approximation for the
purposes of serving queries. A number of further directions
arise:

• How do we combine our technique with an algorithm
that learns/adapts to a query distribution over time?

• Our formal development suggests a particular optimal
low-rank approximation; the computational require-
ments for this requirement are fairly high. Could one
compute, quickly, an approximation to this approxi-
mation that is nearly as good for retrieval effectiveness
on the given query distribution?

• We have established empirically a dramatic improve-
ment in the domain of text documents. Can one repli-
cate this experimental success in other domains?
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