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ABSTRACT
We develop a generic method for the review matching prob-
lem, which is to match unstructured text reviews to a list
of objects, where each object has a set of attributes. To
this end, we propose a translation model for generating re-
views from a structured description of objects. We develop
an EM-based method to estimate the model parameters and
use this model to find, given a review, the object most likely
to be the topic of the review. We conduct extensive experi-
ments on two large-scale datasets: a collection of restaurant
reviews from Yelp and a collection of movie reviews from
IMDb. The experiments show that our translation model-
based method is superior to traditional tf-idf based methods
as well as a recent mixture model-based method for the re-
view matching problem.

Categories and Subject Descriptors. I.2.7 [Comput-
ing Methodologies]:Natural Language Processing—Language
models

General Terms. Algorithms, Experimentation, Measure-
ments

Keywords. Language model; review matching; translation
model

1. INTRODUCTION
Reviews are ubiquitous on the web — they exist in a

variety of places on the web including online e-commerce
websites (e.g., amazon.com), verticals (e.g., imdb.com), ded-
icated review websites (e.g., yelp.com), aggregation sites
(e.g., nextag.com), blogs, forums, newspapers, and so on.
With an increased pressure on search engines to present a
holistic view of search results than mere ten blue links in
response to a user query, it becomes critical for them to col-
lect and understand user-generated content such as reviews.
This will be especially useful for queries for which many web
reviews exist — such queries include those related to shop-
ping, dining, products, movies, etc. An important part of
this understanding necessitates deciphering the object that
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is being reviewed, in other words, the search engine is faced
with the review matching problem. Solving this problem
is the stepping stone to enabling more sophisticated appli-
cations such as review aggregation, sentiment and polarity
analysis, and more (Section 2.3).

At first glance, review matching seems a non-problem: af-
ter all, any reasonable review should have information about
the object that is reviewed. Unfortunately, this turns out to
be deceptive for two main reasons: review webpages might
mention other objects that are peripheral to the review and
the information revealed about the object in a review might
be partial or surrogate; we discuss these issues at length in
Section 2.1. In fact, these reasons make the review match-
ing problem not amenable to vanilla techniques based on
information retrieval, entity matching, or clustering; more
on this in Section 2.2.

Our contributions. In this paper we explore the problem
of matching reviews to objects using a translation model.
Given a set of objects where each object has a set of at-
tributes, we posit a simple model for generating a word in
the review for the object from its attributes according to
the following process. The process first chooses an attribute
(independent of the object), and then selects a word in the
chosen attribute of the object, and finally outputs a trans-
lation of this selected word according to a global, attribute-
dependent translation model.

We then obtain a method to estimate the parameters of
the model using a training dataset consisting of a set of
aligned reviews, i.e., a set of pairs of reviews and their cor-
responding objects. The parameter estimation is based on
the Expectation Maximization algorithm, where the maxi-
mization step is a non-linear maximization problem solved
using gradient descent. We use these learned parameters in
order to find, given a review, the object that is most likely
to have generated the review.

Our generative model and the parameter estimation method
represent a substantial generalization of the mixture model
for review matching proposed in [10]. (See Section 3 for a
discussion of the differences.)

We then apply our review matching method on a dataset
of over 83,000 restaurant reviews from Yelp and on a dataset
of over 36,000 movie reviews from IMDb. For the restaurant
reviews, we obtain more than 50% improvement over the tf-
idf method and more than 28% improvement over the mix-
ture model [10]. For the movie reviews, we obtain around
10% improvement over tf-idf and 4.5% over the mixture
model. The improvements are directly due to the power of
the translation model and fully exploiting object attributes.



Our methodology is applicable beyond review matching;
for example, it can be used to extract the primary politi-
cian discussed in a political news article. Going further, our
method can be used in matching unstructured text to struc-
tured objects whenever it is plausible to assume that the
text is produced from the objects using a model similar to
ours.

Organization. In Section 2, we illustrate what makes the
problem hard. Section 3 reviews related work on language
modeling, information extraction, and opinion mining. Sec-
tion 4 presents our generative model and an EM-based method
to estimate the parameters of the model, with Section 5 dis-
cussing certain practical considerations. Section 6 contains
a description of the data used in our experiments. Sec-
tion 7 presents our experimental results on restaurant re-
view (Yelp) and movie review (IMDb) datasets. Section 8
contains concluding remarks.

2. PROBLEM MOTIVATION
In this section we discuss three points that highlight the

motivation for studying the review matching problem in
depth. First, we ask what makes the problem difficult. Sec-
ond, we address the issues with using existing technologies,
from information retrieval to information extraction, to solve
this problem. Third, we outline a set of applications that
are enabled by solving the review matching problem.

2.1 Why is the problem hard?
It is most natural for a review to mention the object that

it reviews. In fact, almost all review webpages typically con-
tain a mention of the object that is reviewed in one form or
another — either the object is mentioned in the review itself
or is explicitly mentioned on the webpage that contains the
review. Given this, how can the problem of review matching
still be hard? We examine two main reasons:

(1) Review webpages may contain mentions of more than
one object. This can occur in the review itself (e.g., the re-
view compares the object to one or more other objects; see
Figure 1). Alternatively, a webpage can contain reviews of
more than one object (this is common in blogs and review ag-
gregating websites, e.g., http://tasteofthesuburbs.blogspot.
com/search/label/chinese%2Fdim%20sum contains a review
of several chinese restaurants); or the reviews are about one
single object, but the webpage can mention nearby or related
objects as part of a website-wide template (this is common
in review websites managed by content-generation software,
e.g., http://www.yelp.com/biz/gochi-japanese-fusion-
tapas-cupertino contains a list of nearby restaurants).

Figure 1: A review snippet mentioning two restau-
rants.

(2) A review might mention an object in a partial manner
or in a way that results in ambiguities. Reviews often tend

to contain partial mentions (e.g., ‘Gochi’ instead of ‘Gochi
Japanese Fusion Tapas’, the official name), abbreviate cer-
tain words (e.g., ‘San Fran’ instead of ‘San Francisco’ or ‘Rd’
instead of ‘Road’), or use related terms (e.g., ‘south bay’ or
‘bay area’ instead of ‘Cupertino’); see Figure 2.

Figure 2: A review snippet with partial and substi-
tute information.

Hence, any review matching method has to cope with both
ambiguity and partial information that may be present on
review webpages. One the other hand, a redeeming aspect
of many review webpages is that they tend to contain clues
about other attributes of the object. For example, a restau-
rant review may contain words that hint at the cuisine of the
restaurant or its location. To achieve good performance, a
review matching scheme should utilize such clues.

2.2 Problems with existing methods
Having examined the difficulties posed by the review match-

ing problem, we consider the tempting proposition to re-
purpose existing methods to solve the review matching prob-
lem. Here we discuss the caveats.

Classical IR methods. It may appear that the review
matching problem is an instance of the standard IR setting:
the review is the query and the set of objects, along with
their attributes, are the documents. Unlike in traditional
IR, however, the query is long and the document is short;
this stipulates adapting established IR concepts such as idf
(inverse document frequency) and document-length normal-
ization to this setting. A dual view of considering reviews as
documents and objects as queries is still problematic since
the goal is to find the best “query” for a given “document”;
such a question is not explicitly addressed by classical IR.
For a detailed discussion of these issues, see [10].

Wrapper induction and information extraction. If we
manage to extract all the objects in the review through some
means, then review matching might become simpler. There
are two ways of extracting objects from webpages, namely,
wrapper induction and information extraction. Wrapper in-
duction constructs rules to navigate to certain portions of
the HTML structure in order to extract objects (e.g., [16]).
The main disadvantages of wrapper-based methods are two-
fold: they primarily apply to highly-structured websites and
they involve considerable human labeling effort that is both
expensive and prone to error. The latter is particularly un-
desirable since it is not a one-time cost: the wrappers have
to be constantly kept up-to-date. The former places a limi-
tation on the scope of the applicability of such methods; in
particular, it is not feasible to study the less structured tail
websites using wrappers. Information extraction methods,
including named-entity recognition, often have limited accu-
racy [7, 23]. Even when they rely on an extensive dictionary



lookup mechanism to identify object mentions in text, an
additional co-reference resolution step might be necessary
to resolve different mentions of the same physical object. In
addition, when they extract multiple objects from a review,
we are still left with the task of selecting one from among
these candidates; this, for instance, will happen for the re-
view snippet in Figure 1. In fact, the relatively large number
of candidates yielded in the candidate generation phase in
our experiments, which can be viewed as light-weight infor-
mation extraction, suggest that this is a practical concern.

Classifier-based methods. Another possibility would be
to try classifier-based methods to classify a review according
to the values of various attributes. This calls for building
a (multi-class) classifier for each of the attributes. Even if
such classifiers are available, one needs to build additional
layers on top of them to combine classifier output with other
evidence present in the text, which is a non-trivial task in
itself. In contrast, our model naturally combines all such
evidence in a principled way.

2.3 Some applications of review matching
Matching reviews to objects is the first step in enabling

many review-related applications. Below, we state three
such applications.

(1) Fine-grained review localization. The problem here is
to localize the review on a webpage such a blog, where the
review is not the only piece of text present on the page. This
can be done, especially in our language model-based method,
by using the attributes of the object. Localized review text
can help in many search engine tasks by indirectly removing
noisy sections of a webpage. Likewise, our language model-
based method can also be used to identify and tease out
reviews of multiple objects in a single webpage.

(2) Review aggregation. The problem here is to aggre-
gate the information contained in all the reviews for a given
object. Aggregation might be as simple as computing the
average rating of the object to as sophisticated as extract-
ing the most hated aspect of the object by a detailed text
analysis of the individual reviews.

(3) Automated information extraction. The task here is to
extract structured information from webpages on a review
website. By identifying the review objects on many web-
pages on a given website, it is possible to learn the HTML
structure of the webpages (such as the HTML DOM node
that contains various attributes of the object); this can be
used in automatic information extraction.

3. OTHER RELATED WORK
The other related work falls into three main categories,

namely, the topic of language modeling in general and its
connections to information retrieval in particular, the litera-
ture on entity matching and information extraction, and the
work on opinion topic identification.

Relationship to review language model [10]. In a re-
cent work [10], we proposed a framework of using a review
language model (RLM) to match reviews to objects. The
specific instantiation explored in that work was a simple
mixture model for generating reviews from a description of
an object, which we refer to as Mixture in this paper. The
current paper is a substantial generalization and extension
of this earlier work. The salient differences between the two
papers are the following.

(1) The model in this paper incorporates two generaliza-
tions over [10]: using the structured nature of the objects in
an explicit fashion and using a translation model;

(2) Consequently, the parameter estimation method is sig-
nificantly more complicated; for instance, there was no need
for EM in [10];

(3) The experiments in this paper were conducted not
only on a much larger restaurant review collection compared
to [10] but also on movie review collection, obtained from
IMDb, which is not present in [10].

The experiments in this paper firmly establish that our en-
hanced model indeed outperforms the basic Mixture model.

Language modeling. Language modeling has been a pow-
erful paradigm in the context of several information retrieval
applications [21, 24, 17, 27]. The principle behind this is to
first estimate a language model for each document and for
a given query, rank the documents in order of the likelihood
of the query according to the estimated model of each doc-
ument [21]. One of the main issues with language modeling
is data sparsity; smoothing is an important means to man-
age data sparsity [9, 28]. Hofmann introduced probabilistic
latent semantic indexing in which he proposed a mixture
model with latent topics to generate words in documents
[12]; while he also aims to go beyond exact word match, un-
like in his case, our topics are patent: they are the attributes
of the objects. Berger and Lafferty [3] introduced the idea of
treating information retrieval as a statistical machine trans-
lation problem [5, 6]; our work is inspired by this translation
viewpoint. Besides being in a non-IR setting and utilizing
the structure in the objects, our setting also has access to
more naturally aligned data, unlike in [3].

Information extraction and entity matching. Entity
matching is a topic that is well studied in databases. There
are three main approaches to entity matching, namely, non-
relational, relational, and collective. Non-relational approaches
consider pairwise attribute similarities between entities [19,
11]. Relational approaches exploit the relationships that
exist between entities [1, 14]. And, collective approaches
exploit the relationship between various matching decisions
[4, 18]. The EROCS system [8], whose goal is to link struc-
tured data with unstructured text, is closest in spirit to our
work. This system, based on information extraction and en-
tity matching uses tf-idf for solving the matching problem.
As our experiments establish, this is sub-optimal.

Opinion mining. Opinion topic identification is also some-
what related to our work. There has been a lot of research on
opinion extraction from reviews [15, 26, 22, 13, 25]. These
papers focus on finding the attributes of the object under re-
view, rather than identifying the object itself. For the case
when the objects are products, dictionary-lookup methods
have limited success on general non-product review texts
[25]. As we mentioned earlier, dictionary-lookup methods
have limitations when applied to our problem: they can
be more effective at identifying presence of object mentions
than at disambiguating similar objects. There has been
some work on finding reviews (regardless of their subjects)
in large-scale collections [20, 2]; this is a logical step that
precedes the review matching step.

4. MODEL AND METHOD
In this section we present the main technical content of

the paper. First we start with the problem formulation and



introduce the basic set up. We then present, in Section 4.2,
a probabilistic model for generating reviews from objects.
In Section 4.3 we briefly describe how to use this generative
model for review matching and in Section 4.4 we describe a
method based on Expectation Maximization (EM) to esti-
mate the model parameters.

4.1 Problem formulation
Let E be a given set of objects. Each object e ∈ E has a

set of attributes. For an object e, let ek be the contents of
its kth attribute; we treat the content of each attribute to
be a bag of words. We use the notation u ∈ ek to denote
that the word u is present in the kth attribute of e.

The review matching problem is the following: given a
review which is mainly about one of the objects in E , find
the object that is being reviewed.

Example 1. We use the following example from the restau-
rant domain as our running example. Let E be the set of
restaurants. Each restaurant e ∈ E has three attributes as-
sociated with it: the name of the restaurant, the city where
it is located, and the type of cuisine it serves. A particular
instantiation of the restaurant object is given below:

name Gochi Japanese Fusion Tapas Restaurant
city Cupertino

cuisine Japanese, Tapas

4.2 A generative model
We posit a simple model for generating a word in the re-

view for an object from its attributes according to the follow-
ing process. To begin, we describe it informally: the process
first chooses an attribute (independent of the object), and
then selects a word in the chosen attribute of the object, and
finally outputs a translation of this selected word according
to a global, attribute-dependent translation model.

Before formally defining it, we illustrate the model us-
ing the restaurant object from Example 1. In this exam-
ple, a review about Gochi restaurant might be composed of
words generated from its name (words such as gochi , restau-
rant) its city (cupertino), or its cuisine (words such as
japanese, tapas). These words sometimes appear verbatim,
and sometimes get translated into other words. For instance,
cupertino (city) might generate words such as south bay or
bay area and japanese (cuisine) might generate words such
as croquette or unagi . In fact, any word in the review can
be accounted for by this translation: for example, a generic
word such as is or of can be translated from any word in
any attribute of any object.

Now we describe the model formally. Let K denote the
set of attributes of the objects and let U denote the set of
all possible words in object attributes. Let V denote the
vocabulary of reviews. Let α be a probability distribution
over K. We use αk to denote the probability of choosing
attribute k. For each k ∈ K, let βk be a function that assigns
a positive real weight βk(u) to each word u in U . Finally,
for each k ∈ K and u ∈ U , let tk(· | u) be a distribution over
V such that the probability of a word w being translated
from u is given by tk(w | u). The parameters α, β, and t are
collectively referred to as θ.

Given parameters θ, a word w in review is generated from
a word in the attribute content of an object e as follows.
First, an attribute k is picked with probability αk. Then,

a word u is picked from the set ek with probability pro-
portional to βk(u); this is given by probability βk(u | e) =
βk(u)/Bk(e), where Bk(e) =

P
u∈ek

βk(u) is the normaliz-
ing factor for e. Finally, a word w is picked with probability
tk(w | u). Note that the word w is generated from the
attribute–word pair (k, u).

Thus, the probability of a word w being generated from
an object e is given by

Pθ(w | e) =
X
k

αk
X
u∈ek

βk(u|e) · tk(w|u). (1)

And the probability of a review r being generated from
an object e is given by

Pθ(r | e) = Z(r) ·
Y
w∈r

Pθ(w | e), (2)

where Z(r) is a normalizing constant depending only on the
length of r.

Example 2. We continue with the setting in Example 1.
Suppose we have the following parameters

αname = 0.2, αcity = 0.1, αcuisine = 0.7.

Then, to generate a review word for the Gochi restaurant,
the attribute cuisine will be chosen with probability 0.7.
Suppose the βcuisine values are as follows:

βcuisine(japanese) = 0.4,

βcuisine(tapas) = 0.1,

βcuisine(italian) = 0.3.

Then, given that the attribute cuisine was chosen for Gochi,
japanese will be picked from the set {japanese, tapas } with
probability 0.4/(0.4 + 0.1) = 0.8. Finally, we look at the
tcuisine(·|japanese) values to pick a review word. Suppose
we have the following:

tcuisine(japanese|japanese) = 0.5,

tcuisine(croquette|japanese) = 0.1,

tcuisine(unagi|japanese) = 0.3.

Then, given japanese, unagi will be picked with probability
0.3. The final probability of generating unagi from (cuisine,
japanese) is 0.7× 0.8× 0.3 = 0.168.

4.3 Review matching using generative model
Given the review language model θ, matching objects to

reviews is straightforward. For a review r, we want to output
the most likely object e∗ given by

e∗ = arg max
e

P(e | r) = arg max
e

P(e)

P(r)
·P(r | e).

In the absence of any information, we assume a uniform dis-
tribution for P(e). (Additional information about objects,
such as their rating/popularity, can be used to model P(e)
more accurately.) From this, we get

e∗ = arg max
e

P(r | e) = arg max
e

Y
w∈r

Pθ(w|e). (3)



4.4 Parameter estimation
In this section we describe the methodology to estimate

the parameters of our generative model. Our training data
consists of a set of aligned reviews, i.e., a set of pairs of
reviews and their corresponding objects. For the sake of
presentation, we treat the training data as a sequence of
pairs (w, e) where w is a word from a review and e is the

object of corresponding review. We use w(i) to denote the
word in the ith pair and e(i) to denote the object in the ith
pair.

Clearly, if we knew which attribute–word pair (k, u) in e(i)

generated the word w(i), for all i, then the parameter esti-
mation would be easy. However, such alignment information
at a word level is not available to us as part of the training

data. We therefore introduce a hidden variable, µ
(i)
u,k, which

denotes the event that w(i) is generated from the attribute–
word pair (k, u). Consider the following function:

F (w, u, k; θ, e) = αk · βk(u|e) · tk(w|u). (4)

Then, we have

Pθ(w
(i), µ

(i)
u,k|e

(i)) = F (w(i), u, k; θ, e(i)).

Clearly,

Pθ(w
(i)|e(i)) =

X
k,u

Pθ(w
(i), µ

(i)
u,k|e

(i)).

Our goal is to estimate θ so as to maximizeY
i

Pθ(w
(i)|e(i)),

or equivalently, to maximizeX
i

log Pθ(w
(i)|e(i)).

We use the Expectation Maximization (EM) method to solve
this maximization problem.

E-step. In the E-step, given the current model θ(t), we
compute

E(t)(µ
(i)
u,k) =

F (w(i), u, k; θ(t), e(i))P
u′,k′ F (w(i), u′, k′; θ(t), e(i))

,

using (4).

M-step. Since the original objective function is difficult to
directly optimize for, we instead compute

θ(t+1) = arg max
θ
Q(θ, θ(t)),

where

Q(θ, θ(t))

=
X
i

X
k,u

E(t)(µ
(i)
u,k) log pθ(w

(i), µ
(i)
u,k|e

(i))

=
X
i

X
k,u

E(t)(µ
(i)
u,k) log

„
αk

βk(u)

Bk(e(i))
tk(w(i)|u)

«
.

Using the Lagrange multipliers method, we compute the
optimal parameters α∗k, t

∗
k, β
∗
k of the new model θ(t+1).

First,

α∗k =
gkP
k′ gk′

,

where

gk =
X
i,u

E(t)(µ
(i)
u,k).

Next,

t∗k(w|u) =
fk(u,w)P
w′ fk(u,w′)

,

where

fk(u,w) =
X

i:w(i)=w

E(t)(µ
(i)
u,k).

Since we cannot obtain a closed form for β∗k , we use the
gradient descent method to estimate β∗k . We obtain ∆βk(u) =

∂Q(θ, θ(t))

∂βk(u)

=
X
i

E(t)(µ
(i)
u,k)

βk(u)
−

X
i|u∈e(i)

k

1

Bk(e(i))

 X
u′

E(t)(µ
(i)

u′,k)

!
.

We solve the above non-linear equation using standard gra-
dient descent. In fact, we can show that the solution is
optimal; we omit the details in this version.

5. PRACTICAL CONSIDERATIONS

5.1 Regularization
Our set of equations is under-constrained, i.e., two differ-

ent set of parameters can give rise to equivalent models. For
instance, in the case of restaurants in Example 1, if there
is a generic word w that is not correlated with any specific
city or cuisine, we can distribute its probability among
city and cuisine in any way we want and get the same
model.

We say that θ ≡ θ′ if for all reviews r and objects e,
Pθ(r | e) = P′θ(r | e).

Theorem 5.1. Let θ be a model such that for some k and
w0, minu tk(w0 | u) > 0. Then, there is a model θ′ such that
θ ≡ θ′ and minu tk(w0 | u) = 0.

Proof. Let c = minu tk(w0 | u); note that c ∈ (0, 1).
Consider any attribute ` 6= k. We will move the probability
mass of w0 from k to ` without affecting the model.

Define θ′ as follows. Let ∆ = c · αk/α`, and consider the
following set of new parameters:

t′k(w0 | u) = (tk(w0 | u)− c)/(1− c)
t′k(w | u) = tk(w | u)/(1− c) for w 6= w0

α′k = (1− c)αk
t′`(w0 | u) = (t`(w0 | u) + ∆)/(1 + ∆)

t′`(w | u) = (t`(w | u))/(1 + ∆) for w 6= w0

α′` = α` + cαk

All other parameters of θ′ are same as those of θ. Clearly,
minu t

′
k(w0 | u) = 0. One can verify that for any w and e,

Pθ(w | e) = P′θ(w | e), i.e., θ ≡ θ′. We omit the details in
this version.



Theorem 5.1 shows that our system is under-constrained.
It also suggests an approach to regularize the model as fol-
lows. We add an extra attribute generic to each object,
which has a value Review. The intuition is that this attribute
accounts for the generic review words that are not correlated
with any specific attribute. For instance, in restaurant re-
views, words like tasty and dinner do not have strong correla-
tions with any specific city or cuisine. We want the attribute
generic to account for all such words. Specifically, we want
tgeneric(w | Review) to denote the probability that a word w
is chosen from a generic review language.

We can use Theorem 5.1 to achieve this. For each at-
tribute k and each word w such that tk(w | u) > 0 for all u,
we can take the minimum tk(u,w), subtract it from everyone
and move it to the generic attribute.

Since regularization does not change the model, it does
not affect the accuracy of the model in the matching task.
However, it serves two purposes. First, it can make individ-
ual translation models, i.e., tk cleaner since now they do not
have to include generic words not related to the attribute.
Second, the regularization can be used as a tool to avoid
overfitting of the model, as we explain in the next section.

5.2 Avoiding overfitting
Recall that we introduce the generic attribute to account

for generic review words. When we learn a model with this
additional attribute, we find that αgeneric gets driven down to
zero after EM, i.e., the generic attribute gets no probability
mass and the model prefers to explain even the seemingly
generic terms using other object-dependent attributes. This
is the result of overfitting. Consider a generic word like din-
ner. While all cuisines and cities should see the word with
roughly the same frequency, it will not occur with the exact
same frequency due to sampling errors. Thus, the model will
let dinner get completely accounted for by words in city

and cuisine, so as to account for the small differences in
observed frequencies with different objects. Overfitting not
only drives αgeneric to zero, it also makes individual transla-
tion models noisy as sampling errors get amplified.

We use a very simple yet effective heuristic to overcome
the problem of overfitting. While learning the model, we
constrain αgeneric to have a high value. Given this con-
straint, the generic attribute accumulates all the generic
review words, and the individual translation models for spe-
cific attributes only account for words specific to them.

5.3 Using additional properties of attributes
We can improve model accuracy and efficiency by using

additional knowledge about attributes, namely the scope of
their translations. Certain attributes like cuisine and city

can get translated to several words specific to the attribute,
while certain other attributes like name or phone number can
only translate to themselves. In general, if we know the set of
words each attribute can translate into, we can incorporate
the knowledge to learn a more effective model.

We use a very simple version of this idea. For each at-
tribute, we label it as either flexible or inflexible. A word
in a flexible attribute can be translated into any word in
the vocabulary while a word in an inflexible attribute can
only get translated into itself. By declaring attributes like
name and phone number as inflexible, we can avoid learning
complete translation models for all possible terms in such
attributes, making models more compact and less noisy.

6. DATA
We consider two datasets, Yelp and IMDb, from two

different domains where objects have different types of at-
tributes.

We obtained the Yelp dataset based on the dataset used
in [10]. The dataset consists of a set of reviews extracted
from the Yelp website, yelp.com and the database of restau-
rant listings in Yahoo! Local, local.yahoo.com. The match-
ing task is to determine, for each Yelp review, the corre-
sponding restaurant listing in Yahoo! Local, where each
restaurant has a name, city, and cuisine attribute. The
dataset also contains the ground truth, i.e., the true map-
ping between Yelp and Yahoo! Local, which we use for train-
ing as well as for evaluation.

Some of the Yelp reviews do not contain any identifying
information and can be as short as “Great place. Awesome
food!!”. In [10], only a subset of reviews, which explicitly
contained the names and cities of restaurants that a human
can use to uniquely identify the restaurant, were selected.
However, a human can match a review even if it does not
contain explicitly information, e.g., a mention of Manhattan
can be used to infer that the restaurant is very likely in New
York. In our evaluation, we consider all reviews, with the
only requirement that they at least mention the restaurant
name (even if only partially). As a result, our dataset is a
superset of the one used in [10], and raw numbers are not
directly comparable.

The resulting dataset consists of 83,478 Yelp reviews cov-
ering 8,006 unique restaurants, which we seek to match with
680,000 Yahoo! Local restaurant listings. We split the
restaurants into training and test sets; 12,500 reviews on
the training restaurants were set aside as training data, and
48,623 reviews are left in the test data.

The IMDb dataset consists of movie reviews from the
IMDb website, www.imdb.com. For each movie, IMDb has
a webpage that contains all the information about it. Also,
each movie page has “User Comments” section where users
submit reviews for the movie. We used hand-crafted extrac-
tion rules to extract all the movie information as well as
reviews from IMDb. We extracted 36,321 reviews covering
3,786 randomly selected movies.

Our task is to match these reviews against the complete
IMDb database of 156,355 movies. For each movie, we use
name, year, genre, director, actor list, and cast list as
attributes. Since the reviews were extracted from the IMDb
for the corresponding movies, we know the true match for
each review. We set aside half of the reviews for training
and use the other half for evaluation. The split was done in
such a way that movies do not overlap across the two sets.

Note that unlike the restaurant domain, a movie can of-
ten be uniquely identified by a combination of different at-
tributes even when its name is not explicitly mentioned in
the review.

7. EXPERIMENTS
We first describe the performance of our method on the

two datasets in Section 7.1. Then, in Sections 7.2 and 7.3, we
discuss in depth the models we learn on the Yelp and IMDb
datasets respectively, and analyze how different aspects of
our modeling help improve the accuracy of review matching.



7.1 Performance on the review matching task
We refer to our review matching method using translation

models as Tmodel. We compare it with two other methods:
(i) the TfIdf method, which uses the classic tf-idf score
between the review and the objects and (ii) the Mixture
method [10], which uses a simpler instantiation of a mixture
model to match reviews to objects and has been shown to
outperform TfIdf in certain cases.
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Figure 3: Accuracy of TfIdf, Mixture, and Tmodel
on Yelp and IMDb data.

Figure 3 shows the accuracy of top-one predictions from
all three methods on Yelp and IMDb. As we see, Tmodel
obtains more than 28% improvement in accuracy over Mix-
ture and more than 50% improvement over TfIdf. Note
that the absolute accuracy numbers are low in general for
the Yelp dataset. This is because a large fraction of reviews
do not have identifying information, and the maximum ac-
curacy that can be achieved even by a human will be sub-
stantially lower than 100%. Likewise, we see that Tmodel
improves over both Mixture (4.5%) and TfIdf (10%).

We then look at all the (review, top-one match) pairs,
sorted by the score given by (3). Note that the reviews can
be of different lengths and hence we normalize the scores
by scaling them by

Q
w∈r Pθ(w|generic). Figures 4(a) and

4(b) present the precision–recall curves. We observe the
same overall trends as in the case of accuracy: Tmodel
outperforms Mixture, which in turn outperforms TfIdf.

7.2 Food for thought
In this section we discuss the model learned on the Yelp

data in more detail. We start by discussing the models
learned for the two flexible-match attributes: cuisine and
city.

As we will see from the example translation tables, while
initially both attributes receive all of the words in a review
as candidate translations, in the final model, top transla-
tions for words in the cuisine attribute are predominantly
food-related, while top translations for words in the city at-
tribute are predominantly location-related. In other words,
as a natural outcome of optimizing for the maximum likeli-
hood of the data, food-related (and object-dependent) words
are mostly accounted for by the cuisine attribute, and
location-related words are mostly accounted for by the city

attribute.

On cuisine. Recall that according to our model, words
with higher βk values are more likely to be chosen from
attribute k. Intuitively, it is advantageous for more salient
words — tokens that better distinguish an object from other
objects — to receive higher β values, so that more generic
words in reviews are left to be explained by the generic re-
view language, and the salient features of the object can
“concentrate” on explaining more object-dependent words.
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Figure 4: Precision–recall of Tmodel, Mixture, and
TfIdf on the test data in Yelp and IMDb.

We now examine the cuisine type attribute of restaurant
objects to see whether the model learned conforms to our
intuition.

In the Yelp aligned data (Yelp reviews aligned with Ya-
hoo! Local listings), there are 96 cuisine types with at least
five restaurants represented in the data. A generic cuisine

type restaurants is associated with all of the objects. Ta-
ble 1 presents the most and least frequent cuisines types, as
well as cuisine types with the highest and lowest β values.
Figure 5 plots the β value assigned to different cuisine types
against the frequency of that cuisine type in the data (i.e.,
number of restaurants associated with that type).

Intuitively, cuisine types that are associated with many re-
views tend to be more generic types that are not very salient.
Indeed, βcuisine(restaurants) is an order of magnitude lower
than all the other β values. Thus, when an object is not
associated with any specific cuisine type, when words are
generated from this attribute, they will be drawn entirely
from the restaurants translation table. On the other hand,
when an object is associated also with a specific cuisine type,
words for this attribute will be predominantly drawn from
the more specific one, given the striking difference in the β
values.

This trend also holds true for the non-generic cuisine types.
For instance, the more general cuisine type southeast asian is
seen more frequently than the more specific cuisine type viet-
namese. As we can see from Table 1, βcuisine(southeast asian)
is among the lowest, while βcuisine(vietnamese) is among the
highest. Thus, if an object is labeled as both southeast asian
and vietnamese, given that βcuisine(vietnamese) is high, it is



most frequent restaurants, american, clubs, bars, italian, seafood, continental, bars and pubs, french
least frequent buffets, casinos, crepe, ethiopian, food delivery, marketing agencies, natural and organic foods, swiss, dim sum
highest βcuisine indian, german, pizza, malaysian, thai, barbecue, japanese, greek, vietnamese, cuban
lowest βcuisine restaurants, american, continental, southeast asian, pubs, clubs, bars, catering services, seafood

Table 1: Example cuisine types

indian german japanese greek cuban moroccan healthy italian french american
(70) (20) (160) (36) (21) (8) (55) (333) (198) (717)
indian german sushi greek cuban moroccan organic italian french shabu
naan schnitzel japanese gyro mojitos couscous bookstore pasta france ye
masala sauerkraut roll pita vieja tagine macrobiotic italy croque dog
tikka germany tempura greece ropa bastilla healthy gnocchi frites sliders
tandoori bratwurst sashimi gyros leche dancer vegan linguine foie pastrami
paneer wiener miso feta cubano powdered cobb rigatoni sous stripper
buffet sauerbraten nigiri tzatziki cane morocco branzino alla souffle grits
samosas jaegerschnitzel rolls moussaka cuba casablanca salads pastas provence etouffee
india spatzle maki opa arroz baklava australia spaghetti sweetbreads ogden
saag spaetzle sake saganaki dulce tagines flatiron di gras officer
korma suppenkuche japan taverna guava marrakech grass chianti pommes rink
palak hefeweizen udon flaming mojito marrakesh emerald bruschetta rillettes creams
vindaloo germans eel greeks versailles carrots grains antipasti tarte lanes
lassi spatzel izakaya baklava havana hips quinoa antipasto pate bradley
chaat bier kaiseki phoenicia miami clark noon mozzarella christophe duties
biryani liter hamachi souvlaki ajiaco filo movement bolognese michelin 4-course
rogan wursts seaweed dolmas leches baba wonton tiramisu paris winemaker
malai berlin soba horiatiki gracias munch eleven parmigiana je dogs
aloo liquors agedashi radishes latin tabbouleh habits secondi parisian trout
samosa munich unagi spanakopita cha-ching dimly cliche peroni ’aime reuben

Table 2: Examples from translation tables for the cuisine attribute: top words w that are translated from u
= different cuisine types, shown from left to right in decreasing order of βcuisine(u) (frequency of cuisine in
the aligned data shown in parenthesis).
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Figure 5: βcuisine (saliency of a cuisine type in the
model) vs. cuisine frequency (number of restaurants
associated with a cuisine type in the aligned data)
for all cuisine types with frequency ≥ 5 (the most
generic cuisine type restaurants is omitted.)

more likely to be chosen to generate words for reviews writ-
ten about this object. Indeed, many of the most frequent
cuisine types (see line 1 of Table 1) were assigned the lowest
β values in the model (see line 4 of Table 1).

Very infrequent cuisine types are not necessarily all salient
(see line 2 of Table 1 for examples). However, they may
appear to be salient as a result of overfitting to the few
reviews associated with them. On the other hand, the salient

ones among them do not receive enough training data to
reach really high β values. In effect, infrequent cuisines were
mostly assigned mid-range β values (Figure 5).

Most of the most salient cuisine types turned out to be
“mid-size” cuisines: cuisines not too general that they are
used to describe too many restaurants, but still popular
enough to receive enough training data. Thus, the area
surrounding the data-points in Figure 5 roughly assumes
a triangle (or sickle, to be more accurate) shape.

Furthermore, we can examine the translation table for
each cuisine type. Table 2 presents tokens with the high-
est t values for selected cuisine types, in decreasing order of
their β values.

First, perhaps not surprisingly, the most likely token for
most cuisine types is the country of origin. One exception is
Japanese, where, at least in the Yelp data, the word sushi
is apparently more representative of Japanese restaurants
than the word Japanese (which comes in as second). On
the other hand, the American restaurants as a label used in
Yahoo! Local data seems to lack a clear definition: the word
American is not even among the top translations. Its lack of
identity is clearly reflected in both the low βcuisine value and
the lack of focus in its translation table. Healthy is a quasi-
cuisine-type that did not have an existence as distinctive as
other cuisine types listed here. While its translation table
is not quite as focused, we still observe reasonable transla-
tions such as organic, vegan, grains that are indeed quite
representative of this type of food. In general, we observe
both distinctive food items (naan, masala for Indian) and
cuisine-related geographic terms (havana, miami for Cuban)
in these top translations.



Reasonable translations were learned for very infrequent
cuisine types as well. For instance, only eight restaurants
were associated with Moroccan in the aligned data, yet it
received words with distinctively Moroccan taste (e.g., cous-
cous, tagine) as its top translations. Note that even those
cuisines with relatively lower β values (apart from Ameri-
can) received reasonable translations (e.g., foie gras, souffle
for French).

On city. We now proceed to examine the translation

chicago york francisco boston
chicago york francisco boston
hashbrowns nyc sf newbury
loop midtown san pool
michigan manhattan mission sox
lincoln yorkers bernal ligaya
byob meatpacking belden copley
dog soho castro hanover
commander jean-georges wharf fenway
frontera chika cha hall
herring uws fisherman profiterole
polish ny soju regina
cubs atif soma faneuil
lux yorker dat boylston
halsted ues richmond kenmore
devon chelsea geary bostonians
chicago-style fondue danko aujourd
navy bukhara embarcadero beacon
swedish fours fillmore chinatown
clark posto gd maki
chicagoans queens soap end

Table 3: Examples from translation tables for the
city attribute: top words w that are translated from
u ∈ {chicago, (new) york, (san) francisco, boston}.

chicago boston bay seattle
chicago boston bay seattle
park newton sausalito bellevue
milwaukee brighton emeryville redmond
madison brookline oakland kirkland
evanston allston monterey portland

Table 4: Examples from translation tables for the
city attribute: top words u that translate into w ∈
{chicago, boston, bay, seattle}.

tables learned for the city attribute.1

Table 3 shows examples of top words w that are translated
from u ∈ {chicago, (new) york, (san) francisco, boston}.
First note that for (new) york and (san) francisco, popu-
lar abbreviations (nyc and sf) were indeed found among top
translations. In addition, when the physical location of a
restaurant is in a metropolitan city, top translations often
include neighborhood names (e.g., manhattan, meatpacking,
chelsea, queens for (new) york), notable streets (e.g., geary
for (san) francisco and arguably michigan (ave) for chicago),
and tourist attractions (e.g., fisherman, wharf for (san) fran-
cisco and copley, faneuil for boston).

On the other hand, when the physical address of a restau-
rant is technically in a satellite city in a metropolitan area,

1Since the city attribute will have only one city in its value,
and we normalize β value for each attribute separately, there
is essentially no competition, and βcity is uniformly dis-
tributed, thus not as interesting to examine.

names of the metropolitan cities often appear in the corre-
sponding reviews and are discovered to be likely translations.
Table 4 presents notable examples. For instance, words that
are most likely to translate into boston (i.e., u ∈ {boston,
newton, brighton, brookline, allston}) are all neighborhoods
in the “Greater Boston” metropolitan area.

On name. As we mentioned earlier, name is an inflexible-
match attribute. Thus, there is no translation table learned:
words picked (according to βname(u|e)) will translate only to
itself. However, the βname values are still worth a brief dis-
cussion. The main intuition that we hope to be captured
by βname values is: certain common words such as ‘restau-
rant’ or ‘cafe’ are likely to be dropped when people refer to
restaurant names in informal reviews. Indeed, our model
captures this intuition. Words with the lowest βname values
(in increasing order) are: restaurant, incorporated, bar, cui-
sine, drive-in, ristorante, lounge, grill, etc. Note at match-
ing time, this leads to higher normalized βname(u|e) values
to the other non-generic terms in name, thereby giving them
higher weights in the name part of the matching score.

This is a good time to step back for a moment and reflect.
One might think the above effect is trivial to achieve by sim-
ply reducing the weights (in the matching score) for common
words in the corpus, which can be achieved by TfIdf. Un-
fortunately, this does not work. First, the β values do not
monotonically decrease with the word frequencies: some rel-
atively frequent words (such as ‘thai’) still receive high βname
scores, which suggests that the model finds it more “prof-
itable” to use the name attribute to account for such words.
On the other hand, for words like ‘restaurant’, even when
they are officially part of the name of the object, our model
finds it more “profitable” to use the generic review language
to account for them, leaving the mass of the probability from
the name attribute to concentrate on other words that are
best explained by this attribute. Through correct “attribu-
tions”, such words are less likely to be picked from the name

attribute in the end. Second, while lower β values are de-
sired for some of the words with high collection frequency,
this is not universally true and depends on different seman-
tics behind different attributes. As we will see in Section
7.3, for the actor attribute of movie objects, the intuition
is the exact opposite: words with higher frequency in collec-
tion (names of more popular actors) are more likely to be
picked than words with lower frequency in collection (names
of unknown actors).

7.3 Notes on movies
Our model provides a fairly general framework. Even

though movie objects are very different from restaurant ob-
jects, the underlying inference process remains the same.

In this section we briefly examine two attributes of movie
objects. The first is a flexible-match attribute genre, where
the results largely corroborate our findings on the Yelp
dataset in that reasonable translation tables are learned.
The second is an inflexible-match attribute actor, where the
β values learned provide interesting contrast to our findings
on the name attribute of restaurant objects.

On genre. Table 5 presents examples from translation ta-
bles for the genre attribute. Top translations for selected
genres are summarized.

On actor. As briefly mentioned in discussions on name in
Section 7.2, higher βactor values are observed for well-known



animation western musical horror crime romance thriller comedy
animation westerns musicals horror crime romantic thriller comedy
animated western busby gore gangster her action funny
disney stagecoach musical slasher noir she horror hilarious
pixar cattle rhps zombie cop love suspense jokes
cartoon gunfighter dubin zombies heist romance plot comedies
animators leone broadway vampire mob comedy killer laugh
cartoons apaches berkeley vampires police woman thrillers humor
dreamworks saloon bjork scary detective chemistry effects laughs
looney outlaw numbers creepy mafia girl tension funniest
voiced derringer songs scares murder relationship bad her

Table 5: Examples from translation tables for the genre attribute: top words w that are translated from u =
different genres.

actors (e.g., bogart, hepburn, nicholson, pacino, hanks), who
appear more frequently in reviews, and lower βactor values
are observed for unknown actors, who appear less frequently
in reviews. This conforms to our intuition of the likelihood
of actors being picked from cast members when a movie is
being discussed in a review, but is in stark contrast to the
case of restaurant name attribute, where the more frequent
words were assigned lower βname values. As we noted earlier,
even though the underlying inference process is the same,
the different semantics behind different attributes lead to
differences in the parameters quite naturally.

8. CONCLUSIONS
We developed a generic method for the review matching

problem. We proposed a statistical translation model that
incorporates the structured description of objects, for gener-
ating reviews. The parameters of the model were estimated
using an EM algorithm. This model was used to find, given
a review, the object most likely to be the topic of the re-
view. We conducted experiments on two real-world datasets,
namely, a restaurant review collection from Yelp and a movie
review collection from IMDb. Our experiments showed that
the translation model is superior not only to traditional tf-
idf based methods but also to a recent mixture model-based
method for the review matching problem.
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