
SemTag and Seeker: Bootstrapping the semantic web via
automated semantic annotation

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo,
Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, and Jason Y. Zien

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120

ABSTRACT
This paper describes Seeker, a platform for large-scale text analyt-
ics, and SemTag, an application written on the platform to perform
automated semantic tagging of large corpora. We apply SemTag to
a collection of approximately 264 million web pages, and generate
approximately 434 million automatically disambiguated semantic
tags, published to the web as a label bureau providing metadata re-
garding the 434 million annotations. To our knowledge, this is the
largest scale semantic tagging effort to date.

We describe the Seeker platform, discuss the architecture of the
SemTag application, describe a new disambiguation algorithm spe-
cialized to support ontological disambiguation of large-scale data,
evaluate the algorithm, and present our final results with informa-
tion about acquiring and making use of the semantic tags. We argue
that automated large scale semantic tagging of ambiguous content
can bootstrap and accelerate the creation of the semantic web.

1. INTRODUCTION
The WWW has had a tremendous impact on society and business

in just a few years by making information instantly and ubiqui-
tously available. During this transition from physical to electronic
means for information transport, the content and encoding of infor-
mation has remained natural language. Today, this is perhaps the
most significant obstacle to streamlining business processes via the
web. In order that processes may execute without human interven-
tion, documentsmustbecome more machine understandable.

The Semantic Web [5] is a vision of a future web of machine-
understandable documents and data.1 On a machine understand-
able web, it will be possible for programs toeasilydetermine what
documents are about. For instance, the people, places, events, and
other entities that a document mentions will be canonically anno-
tated within it. As a consequence, it is hoped that a new breed of
smarter applications will become available.
Where will the data come from? For the semantic web vision to
come to fruition, two classes of meta-data must become extensive
and pervasive. The first is ontological support in the form of web-
available services which will maintain metadata about entities and
provide them when needed. The second is large-scale availability
of annotations within documents encoding canonical references to
mentioned entities.
1Today, machines can understand very little of the content on the
web – almost all the markup contained in web pages pertains to
formatting.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

Ontological support for the semantic web is an active area of
both research and business development, but not the focus of this
paper. Instead, we use the TAP ontology [30] in our experiments.

In partial support of the second class of data, document annota-
tions, it is expected that enterprises will make business data avail-
able in Semantic Web formats (RDF, XML, or OWL). It is also ex-
pected that productivity tools will make it possible for individuals
to author semantically annotated documents.

Nonetheless, for all this to happen, we need applications that can
effectively leverage semantically tagged data. In turn, these appli-
cations cannot be useful unless there is enough semantically tagged
data on the web in the first place. Unfortunately, today’s reality is
that few documents contain such annotationsa priori, and we are
in a state of circular dependency. Organizations that might create
powerful tools based on semantic annotations are leery of sinking
significant developmental effort while the number of available tags
remains small; and content creators are similarly unwilling to cre-
ate annotations while no tools exist to make use of them. The size
of the web makes this bootstrapping problem is both formidable
and acute.

1.1 Our contributions
SemTag is an application that performs automated semantic tag-

ging of large corpora. We apply SemTag to a collection of ap-
proximately 264 million web pages, and generate approximately
434 million automatically disambiguated semantic tags, published
to the web as a label bureau[37] providing metadata regarding the
434 million annotations. To our knowledge, this is the largest scale
semantic tagging effort to date, and demonstrates the viability of
bootstrapping a web scale semantic network. The key challenge is
resolving ambiguities in a natural language corpus. To this end, we
introduce a new disambiguation algorithm called TBD, for Taxonomy-
Based Disambiguation.

Maintaining and updating a corpus the size of the Web requires
infrastructure of a scale which most tagging applications cannot be
expected to support. We also need a platform which different tag-
ging applications can share. Seeker is a platform designed for this
purpose. It provides highly scalable core functionality to support
the needs of SemTag and other automated semantic annotation al-
gorithms.

1.2 Paper structure
The remainder of the paper will consist of a review of the current

state of the art (Section 2), an outline of the SemTag application
approach (Section 3), the results of running the SemTag application
on the web corpus (Section 4), an outline of what the underlying

Seeker system requires (Section 5), a brief discussion of the design
and implementation of that system (Section 6) followed by general
conclusions (Section 7).

2. RELATED LITERATURE
In the last couple of years, as part of the Semantic Web activ-

ity, a number of different systems have been built. These systems
help perform one of two tasks: (1) create ontologies, and (2) anno-
tate web pages with ontology derived semantic tags. By and large,
both classes of systems have been focused on manual and semi-
automatic tooling to improve the productivity of a human ontologist
or annotator rather than on fully automated methods. Such systems
have the advantage that humans can provide extremely fine-grained
semantic tags. However, as reported in [11], even with the machine
assistance, this is an arduous, time consuming and error-prone task.

A number of annotation tools for producing semantic markups
exist. Protege-2000 [28] is a tool which supports the creation of
ontologies for the semantic web. OntoAnnotate [34], a frame-
work for the semantic web, includes tools for both manual and
semi-automatic annotation of pages. Annotea [17] provides RDF-
based markup but it does not support information extraction nor is
it linked to an ontology server. SHOE, [14] was one the earliest sys-
tems for adding semantic annotations to web pages. SHOE Knowl-
edge Annotator allows users to mark up pages in SHOE guided by
ontologies available locally or via a URL. These marked up pages
can be reasoned about by SHOE-aware tools such as SHOE Search.
Such tools are described in [36, 19]. AeroDAML [23] is an inter-
esting tools which takes an ontology and automatically produces
a semantically marked up page which can then be checked by a
human.

More recently, there have been efforts to automate some of these
tasks using machine learning as a palliative measure. The principal
tool is “wrapping” (see, for instance, [18, 20, 10]). These systems
try and extract detailed structural data out of the pages and require
significant training before they can be productive. Furthermore,
such systems don’t work against common shared ontologies, which
is the focus of the semantic web.

SemTag is different from both these classes of systems in that it
tags very large numbers of pages, with terms from a standard ontol-
ogy, in an automated fashion. Furthermore, since SemTag operates
as a centralized application with access to the entire database and
associated metadata, it has many advantages over a local, per-page
tagger. For example, it can make use of corpus-wide statistics to
increase the quality of semantic tags. It can easily be re-run as
new annotation algorithms and new semantic repositories become
available. And it can perform operations that are only possible
in the presence of many tags, such as automated alias discovery.
More recent work, e.g. [22], which combines natural language un-
derstanding with learning to automatically generate annotations for
specific domains is similar in spirit to SemTag. The current focus
of SemTag is detecting the occurrence of particular entities in web
pages. One of the critical steps in this process is that of resolving
ambiguities. This is an area with a rich body of work ([40, 32, 21,
26, 29]) from the language understanding community.

In this paper, we present results of SemTag using the TAP knowl-
edge base [31]. TAP is a shallow knowledge base that contains a
broad range of lexical and taxonomic information about popular
objects like: Music, movies, authors, sports, autos, health, etc. We
used the TAP knowedge base in its standard ontology. Building a
web scale ontology will require much larger knowledge bases. Fu-
ture work involves using techniques such as those described in [31]
to bootstrap from TAP to build much larger and richer ontologies.

With SemTag’s current shallow level of understanding, RDFS

[7] provides an adequate language for representing the annotations
it generates. We expect that in the future, as SemTag’s level of
understanding improves, we will have to use more advanced lan-
guages [24] and move towards OWL [38].

SemTag is built on the Seeker platform for large scale text ana-
lytics. The explosive growth of the web, and the difficulty of per-
forming complex data analysis tasks on unstructured data, has led
to several different lines of research and development. Of these, the
most prominent are the web search engines, (see for instance [12,
3]) which have been primarily designed to address the problem of
“information overload.” A number of interesting techniques have
been suggested in this area, however since this is not the direct
focus of this paper, we omit these here. The interested reader is
referred to the survey by Broder and Henzinger [8].

Several authors [1, 15, 4, 33, 25] describe relational approaches
to web analysis. In this model, data on the web is seen as a col-
lection of relations (for instance, the “points to” relation) each of
which are realized by a function and accessed through a relational
engine. This allows a user to describe his or her query in declara-
tive form (SQL, typically) and leverages the machinery of SQL to
execute the query. In all of these approaches, the data is fetched dy-
namically from the network on a lazy basis, and therefore, runtime
performance is heavily penalized.

The Stanford WebBase project [16], while targeting a system that
allows easy sequential and random access to a copy of the web,
does not provide the same prototyping and development environ-
ment Seeker does. Specifically, it lacks the functionality that al-
lows developers to annotate web pages, and easily reuse the results
of other analysis components.

Compaq SRC web-in-a-box (WIB) project [39] is another sys-
tem designed to allow researchers to develop text analysis tools
that have access to a copy of the web. While WIB allows analy-
sis components to annotate web pages, it does not provide storage
for any derived data (such as people or organizations) other than
web pages. Furthermore, its architecture does not allow users to
compose complex data mining modules from simpler data mining
modules, or re-use data.

The Internet Archive [35], has a different objective. The data
is crawled and hosted, as is the case in web search engines. In
addition, a streaming data interface is provided which allows ap-
plications to access the data for analysis. However, a sophisticated
querying system is not provided, nor is a method to perform large
scale data analysis.

3. SEMTAG: A SEMANTIC TAGGER
Consider a world in which all documents on the web contained

semantic annotations based on TAP. So the sentence: “The Chicago
Bulls announced yesterday that Michael Jordan will. . . ” would ap-
pear as:

The <resource ref="http://tap.stanford.edu/
BasketballTeam_Bulls">Chicago Bulls</resource>
announced yesterday that <resource ref=
"http://tap.stanford.edu/AthleteJordan,_Michael">
Michael Jordan</resource> will...’’

Thus, the annotation:

<resource ref="http://tap.stanford.edu/
AthleteJordan,_Michael">Michael Jordan</resource>

says that the string “Michael Jordan” refers to the resource whose
URI is “http://tap.stanford.edu/AthleteJordan,Michael.” It is ex-
pected that querying this URI will result in encoded information
which provides greater detail about this resource.

The bulk of documents on the web today do not contain anno-
tations of this form. Consequently, application developers cannot

rely on such annotations. On the other side, website creators are
unlikely to add annotations in the absence of applications that use
these annotations. A natural approach to break this cycle and pro-
vide an early set of widespread semantic tags is automated gener-
ation. This is the goal of SemTag. SemTag seeks to provide an
automated processes for adding these to the existing HTML corpus
on the Web. In this paper, we look at what needs to be done to
address this problem at the scale of the web.

We adapt the concept of a label bureau from PICS so that an ap-
plication of the Semantic Web can obtain semantic annotations for
a page from a third party even when the author of the page has an-
notated the page. Semantic annotations can be retrieved separately
from the documents to which they refer. To request annotations in
this way, an application contacts aSemantic Label Bureau. A se-
mantic label bureau is an HTTP server that understands a particular
query syntax. It can provide annotations for documents that reside
on other servers.

Because SemTag does not have write access to the original doc-
ument, the resulting annotations are written into a web-available
database. The contents of this data base are made available via a
semantic label bureau from which it is possible to extract semantic
tags using a variety of mechanisms. For instance, one application
may request the semantic tags for a given document, while another
may request all semantic tags regarding a particular object (say, the
basketball player Michael Jordan).

3.1 SemTag flow
The overall SemTag architecture is shown in Figure 1. SemTag

Spot
Window
DB

Minimal Training

SemTag
Spotter

WWW
(In Seeker)

TBD
Algorithm

TAP KB

Figure 1: The SemTag architecture.

works in three phases:

Spotting pass Documents are retrieved from the Seeker store, to-
kenized, and then processed to find all instances of the ap-
proximately 72K labels that appear in the TAP taxonomy.
Each resulting label is saved with ten words to either side as
a “window” of context around the particular candidate ob-
ject. This first stage takes place at approximately 10,000
documents per second on the Seeker infrastructure, naively
distributed over 64 machines.

Learning pass A representative sample of the data is then scanned
to determine the corpus-wide distribution of terms at each
internal node of the taxonomy, as described in Section 3.3.
This processing takes place at approximately 8,000 windows/second
on a single machine.

Tagging passFinally, the windows must be scanned once more to
disambiguate each reference. When a string is finally deter-
mined to refer to an actual TAP object, a record is entered
into a database of final results containing the URL, the refer-
ence, and any other associated metadata. This pass can be

performed sequentially at approximately 1,200-3,000 win-
dows/second on a single machine. For details on the algo-
rithm used in doing this see section 3.3.

3.2 SemTag Ambiguity resolution
In this section, we describe the Taxonomy Based Disambigua-

tion (TBD) algorithm. TBD performs disambiguation of references
to entities within a large-scale ontology.
Ambiguity within SemTag: Automated tagging algorithms, un-
like human tagged data, can have significant levels of mis-classification.
Thus, sources of ambiguity within the ontology is a significant con-
cern. There are two fundamental categories of ambiguities:

1. Some labels appear at multiple locations in the TAP ontol-
ogy. For instance, the string “Michael Jordan” may refer to
a statistician, a basketball player, or many others. This oc-
curs infrequently in the current taxonomy, but we expect it to
occur with increasing frequency as the taxonomy grows.

2. Some entities have labels that occur in contexts that have no
representative in the taxonomy. For instance, the term Na-
talia sometimes refers to the musician, but ordinarily denotes
simply a person’s first name, which has no entry in the taxon-
omy. This occurs frequently in our current data set, and will
probably continue to occur frequently even as the taxonomy
grows.

Evolution of ontologies : Ontologies such as TAP will continue
to evolve. Our expectation is that tailored algorithms with human-
tuned parameters will be applied to a small number of critical sec-
tions, with automated approaches still dealing with the bulk of the
ontology. In keeping with this philosophy TBD makes use of two
classes of training information:

Automatic metadata A large amount of automatically-generated
metadata allows the algorithm to estimate whether windows
around candidate references are likely to have been generated
within a particular subtree of the taxonomy.

Manual metadata A small amount of manually-generated meta-
data (approximately 700 yes/no judgments regarding whether
a label in a given context refers to some objects) gives the
algorithm information regarding nodes of the taxonomy that
contain highly ambiguous or unambiguous labels. These judg-
ments are used to determine which portions of the taxonomy
can most fruitfully benefit from particular disambiguation
schemes.

3.3 Overview of TBD
We begin with a few formal definitions. Terms are italicized

when first defined.
An ontologyO is defined by four elements. A set ofclasses,

C, a subClassrelationS ⊆ C × C, a set ofinstancesI, and a
typerelationT ⊆ I × C. We use the notationt(i, c) to denote the
boolean function(i, c) ∈ T ands(c1, c2) likewise. We assume that
instances are closed over super-classing. Namely, for anyi, c1, c2,
t(i, c1)&s(c1, c2) ⇒ t(i, c2).

An taxonomyT is defined by three elements: a set ofnodes,
V ; a root r ∈ V ; and finally, aparent function, p : V 7→ V .
We require that (1) the root is its own parent,p(r) = r, (2) for
all other nodes, this is not so, i.e. ifv 6= r, p(v) 6= v, and (3)
the rootr is in the ancestry of every node, i.e. for everyv ∈ V ,
r ∈ {v, p(v), p(p(v)), p(p(p(v))), . . .}. Henceforth, we will use
π(v) to denote the ancestry chain ofv. The internal nodesof the
taxonomy are given by{u : u = p(v)for somev}. A taxonomy
can be derived given an ontology, which is a more general concept.

Each nodev ∈ V is associated with a set oflabels, L(v). For
instance, taxonomy nodes aboutcats, football, computersandcars
all contain the label “jaguar.” Aspot (`, c) is a label` in a con-
text c ∈ C, whereC is the space of all possible contexts. The
context consists of 10 preceding and 10 succeeding words of text
surrounding the label, culled from the document in which the label
occurred. We use the spot to tag the label with its semantic tag,
which is always an node ofT .

With each internal nodeu ∈ T we associate asimilarity func-
tion fu : C 7→ [0, 1] mapping from a context to a similarity. Good
similarity functions have the property that the higher the similarity,
the more likely that the spot contains a reference to an entity that
belongs in the subtree rooted atu. The similarity functions encap-
sulate the automatically-generated metadata regarding nodes of the
taxonomy.

We can use the similarity function to define an algorithm Sim
to guess whether a particular contextc is appropriate for a partic-
ular node, as follows. We will then use Sim to define TBD. The
definition of Sim is given in Figure 2.

Sim(c, v)
Let b = argmin

u∈π(v)

{fu(c)}

if b = r return 0
else return 1

Figure 2: Algorithm Sim

For our problem instance, we must focus on disambiguating ref-
erences in the taxonomy versus references outside the taxonomy. If
the focus is instead on disambiguating references that may belong
to multiple nodes of the taxonomy, then the testb = r should be
replaced withb 6= p(v).

Finally, with a small number of popular internal nodesu ∈ T we
associate ameasurement(ma

u, ms
u) ∈ [0, 1]2. ma

u gives the prob-
ability as measured by human judgments that spots for the sub-
tree rooted atu are on topic. ms

u gives the probability that Sim
correctly judges whether spots for the subtree rooted atu are on
topic. Thus, the set of measurements encapsulates the manually-
generated metadata in the system, and can be seen as a training set
for the algorithm.

Algorithm TBD is defined in Figure 3. The algorithm returns 1
or 0 to indicate whether a particular contextc is on topic for a node
v ∈ T .

Thus, the small numbers of measurements allow TBD to deter-
mine whether it is operating in a region of the taxonomy that is

TBD(c, u)
Let u be the nearest ancestor ofv with a measure-

ment.
if | 0.5−ma

u |>| 0.5−ms
u |

if ma
u > 0.5
return 1

else
return 0

else
if ms

u > 0.5
return Sim(c, u)

else
return 1 - Sim(c, u)

Figure 3: Algorithm TBD

highly unambiguous, or a region that is highly ambiguous. If the
former, it will choose to adopt references with certainly; if the lat-
ter, it will apply a probabilistic algorithm.

In Section 4 we evaluate various different approaches to the sim-
ilarity functionfu.

4. RESULTS
We implemented the SemTag algorithm described above, and ap-

plied it to a set of 264 million pages producing 270G of dump data
corresponding to 550 million labels in context. Of these labels, ap-
proximately 79% are judged to be on-topic, resulting in a final set
of about 434 million spots, with accuracy around 82%. Details are
given below.

4.1 Methodology
As described above, we first dumped context surrounding each

spot. We then processed those contexts as follows:

Lexicon generation: We built a collection of 1.4 million unique
words occurring in a random subset of windows containing ap-
proximately 90 million total words. Following standard practice,
we created a final lexicon of 200,000 words from the 1.4 million
unique words by taking the most frequent 200,100, and removed
the most frequent 100. All further computations were performed in
the 200,000-dimensional vector space defined by this set of terms.

Similarity functions: We estimated the distribution of terms cor-
responding to each of the 192 most common internal nodes of the
taxonomy in order to derive the similarity functionfu described
in Section 3.3. We experimented with several standard similarity
measures; the results are given in Section 4.2.

Measurement values: Based on 750 relevance judgments from
human judges, we determined the measurement values associated
with the 24 largest taxonomy nodes, as described in Section 3.3.

Full TBD processing: We applied the TBD algorithm to the entire
dataset of 550 million spots using the family of similarity functions
deemed to be most effective in Section 4.2, and using the human-
and machine-generated metadata described above.

Evaluation: Finally, we collected an additional 378 human judg-
ments against a previously unevaluated set of contexts in order to
evaluate the effectiveness of TBD.

We now describe briefly our process for collecting human judg-
ments, our measure of accuracy, and some baseline experiments
regarding the difficulty that human judges have in coming to a sin-
gle unambiguous conclusion about a particular spot.

4.1.1 Evaluation and human judgments
As is well known from research in Knowledge Acquisition [13]

and more recently from studies of manual semantic tagging of doc-
uments, there are many cases where different people choose differ-
ent terms from an ontology with which to tag a phrase or a docu-
ment. Therefore, we need to be careful when evaluating the results
of SemTag.

We created a web-based tool that displays to an evaluator a spot
consisting of a label in a context. The tool asks the evaluator to
determine whether the spot is on topic for a particular node of
TAP. This information is used to generate the measurements of Sec-
tion 3.3.

Because there are several locations in TAP that may be appro-
priate for a particular entry (we evaluate this phenomenon below),
the tool also checks to see if TBD suggested that the spot belongs
elsewhere—if so, the tool also asks whether the algorithm’s output
is a valid answer.

We gathered two sets of evaluations. For the first set of evalua-
tions, a set of 11 volunteers were asked to examine 1100 selections
made by SemTag. The first 2/3 of these evaluations were used as
human-generated metadata for TBD. The remaining 1/3 of the eval-
uations were used to score the performance of the algorithm.

Finally, a set of three volunteers were each asked to evaluate the
same set of 200 labels in context, using the same tool described
above. Of these 200, all three evaluators agreed on 137; i.e., only
68.5% were unambiguous to the humans. Furthermore, the tool
was modified in this experiment to allow the users to indicate that
a particular piece of context (typically ten words to either side of
the label) was insufficient to understand the denotation of the la-
bel. The evaluators each selected this option in only 2.5% of the
instances. Therefore, we conclude that while a 10-word window to
either side of a label is typically sufficient to understand the sense
of the label, human judgment is highly ambiguous regarding the
placement of the label into the taxonomy.

The remainder of this section proceeds as follows. Section 4.2
describes our evaluation of different similarity functions. Sections 4.3
and 4.4 then give results of a sensitivity analysis to the availability
of machine- and human-generated metadata to develop the similar-
ity functions and measurement values respectively of Section 3.3.

4.2 Similarity between a Spot and a Collection
Consider some fixed node of the taxonomy, and a new spot(`, c)

that may belong in the subtree rooted at that node. As presented
in Section 3.3, TBD must determine whether the contextc corre-
sponding to the new spot looks similar to the contexts that typically
occur around spots from that node. We evaluate four standard can-
didates for similarity functions.

First, we must cover the preliminaries. We generate a 200K-
dimensional vector (over the terms of the lexicon) corresponding
to each internal nodeu ∈ T , or more precisely, to the contexts
that occur around spots for theu. In scheme “Prob”, each entry
of the vector is simply the probability of the term occurring in the
window. In scheme “TF-IDF”, each entry of the vector is the fre-
quency of the term occurring at that node, divided by the corpus
frequency of the term. In all cases, the vectors are normalized to
length 1.

Next, we consider two variants of algorithms to compute the sim-
ilarity of a spot given a vector. Algorithm “IR” computes the stan-
dard “cosine measure” vector product of the sparse vector corre-
sponding to the current spot and the (probably dense) vector corre-
sponding to the node. Algorithm “Bayes”computes the probability
that the terms in the context would have been generated by a source
generating terms independently according to the distribution given
by the vector corresponding tou.

Algorithm IR Bayes

Prob 78.04% 76.98%
TF-IDF 82.01% 78.31%

Table 1: Accuracy (probability of correctness) for each algo-
rithm under each vector weighting scheme over test set.

The results are show in Table 1. As the table shows, the most
effective scheme is the cosine measure with tf-idf weightings. Fur-
thermore, the tf-idf weighting scheme dominates the unweighted
scheme, and so we adopt it henceforth for our other comparisons,
and simply compare the IR and Bayes algorithms.

Overall, the accuracy of classification under the favored scheme
is roughly 82%. As we show later, even comparing human judge-
ments to other human judgments shows a systematic error rate of

Node Fraction of spots

Class 100.00%
UnitedStatesCity 12.97%
ProfessionalType 10.21%
Country 9.66%
Musician 8.14%
City 7.86%
ProductType 7.31%
Fortune1000Company 4.41%
TechnologyBrand 3.45%
PersonalComputerGame 3.45%
University 3.45%
Book 3.17%
Movie 3.03%
UnitedStatesState 2.90%
Actor 2.07%
OperatingSystem 1.93%
MusicalInstrumentBrand 1.66%
ComedyTVShow 1.38%
Author 1.38%
ConsumerElectronicsCorporation1.10%
Athlete 1.10%
ComicStrip 0.97%
HomeAndGardenBrand 0.83%
SportingGoodsBrand 0.83%

Table 2: Nodes of TAP with percentage of spots occurring in
corresponding subtree.

roughly this amount, leading us to believe that significant improve-
ments will be quite difficult to achieve.

4.3 Sensitivity to availability of human-derived
metadata

Next, we consider the sensitivity of TBD to the amount of human-
derived metadata present in the system. When TBD makes use of
all human-derived metadata, there are 24 internal nodes ofT with
measurements. Figure 4 shows for each such node what fraction of
the total labels are covered by that node. The first node with mea-
surement data is the rootr, whose subtree covers all measurements;
thus, the leftmost point of the graph hasy-value 100. The next node
with measurement data corresponds to cities in the United States,
and covers around 13% of the total spots. The actual values, and
node labels, are given in Table 2.

Figure 5 shows the performance of TBD when onlyi of the 24 to-
tal measurements are available to the system. As the figure shows,
TBD is effective even with extremely minimal metadata.

4.4 Sensitivity to availability of machine-generated
metadata

Finally, we consider the sensitivity of the algorithm to the amount
of automatically-generated metadata maintained at internal nodes
of the taxonomy. As described above, the representation of the sim-
ilarity function is a vector of 200K dimensions. We now consider
keeping only the largest few dimensions of that vector for each of
the internal nodes of the taxonomy. We proceed as follows. We
fix some fractionf , and for each internal nodeu ∈ T with vector
~u, we keep only the largestmax (100, f · | {i|~ui 6= 0} |) entries of
~u. Table 3 shows, for various different values of the fractionf , the
total number of non-zero entries over all internal nodes (i.e., the
total number of values that must be maintained in order to execute

Figure 4: Percentage of spots influenced by hand classified data

Figure 5: Accuracy of the two algorithms employed in SemTag

Fraction Num entries IR Bayes

0.0001 15K 79% 71%
0.0005 15K 79% 71%
0.001 15K 80% 73%
0.0025 15K 81% 76%
0.005 16K 81% 77%
0.01 18K 81% 78%
0.025 27K 81% 80%
0.05 44K 81% 79%
0.075 62K 81% 80%
0.1 80K 81% 80%
0.2 155K 81% 79%
0.3 230K 81% 80%
0.4 305K 81% 80%
0.5 381K 81% 79%
0.6 456K 81% 79%
0.7 532K 81% 79%
0.8 608K 81% 79%
0.9 683K 81% 78%
1.0 759K 82% 78%

Table 3: Nodes of TAP with percentage of spots occurring in
corresponding subtree.

TBD), and the performance of the IR and Bayes algorithms using
this smaller set of machine-generated metadata. The performance
of the IR algorithm is extremely stable down to 100 non-zero en-
tries per node, and the performance of the Bayes algorithm begins
to degrade slightly sooner.

5. SYSTEM REQUIREMENTS
The purpose of this paper is to describe an approach to large-

scale automated centralized semantic tagging delivered to consumers
through a label bureau. SemTag is an application that demon-
strates the feasibility of this approach. However, SemTag relies
upon Seeker, which we have developed as an ongoing platform to
support increasingly sophisticated text analytics applications, par-
ticularly including future generations of semantic taggers.

The goal of Seeker is to provide Scalable, Extensible Extraction
of Knowledge from Erratic Resources. Anerratic resourceis one
that may have limited availability, a rapid rate of change, contain
conflicting or questionable content, or may be impossible to ingest
in totality (e.g., the World Wide Web). We have identified the fol-
lowing design goals:

Composibility There are multiple ways a page might be anno-
tated. These annotations should be available to other anno-
tators, to allow for more complex observations to be created
incrementally. This requirement of shared annotation is not
unlike the blackboard system approach [27].

Modularity Various types of annotations require differing method-
ologies. The architecture needs to support the “plugging in”
different approaches, as well as the switching to newer, better
implementations of existing approaches as they evolve.

Extensibility As we have found with SemTag, approaches to an-
notation evolve rapidly when confronted with real data. It is
thus important that the Seeker architecture allow essentially
arbitrary new approaches to annotation to be constructed and
deployed.

Scalability Scalability is important in two respects; first, the abil-
ity to develop a particular annotation approach on a represen-
tative subset of the corpora is an important design tool. Once
an approach has been proved out on a test sub-corpora, it is
desirable that the code scaled up to a multi-billion document
corpora with minimal changes (e.g., none).

RobustnessOn very large, distributed systems, failure of individ-
ual components is not a possibility, it is a certainty. The sys-
tem needs to deal intelligently with failure of portions of the
system, so that the faults in one component do not bring the
whole system down.

6. THE SEEKER DESIGN
To meet the design requirements expressed in Section 5, we adopt

the architecture shown in Figure 6.

Index

Crawler Store Joiner

C

A B

Infrastructure Analysis Agents

Applications

Seeker Run Time Environment

Vinci XML Substrate

Figure 6: Architecture of the Seeker system.

Because the system must be modular and extensible, we adopt
a web services style architecture in which all agents communicate
with each other through a set of language-independent network-
level APIs defined on an XML substrate. To support scalability
and robustness, we classify a small set of critical services within
this web services framework asinfrastructure components. These
are large, scalable, well-tested, distributed, high-performance com-
ponents that provide baseline functionality such as crawling, in-
dexing, storage of data and annotations, and query processing. A
larger set of loosely coupled analysis agents communicate through
a centralized data store (itself an infrastructure service). Such an
agent may execute at a different time and place, and in a different
language, than another agent it depends on. The runtime environ-
ment performs monitoring and control of all services in the system.
For analysis agents, the runtime monitors them, manages their work
flow, scheduling, and (where possible) parallelism, and causes them
to see the set of data and annotations necessary for their success.

The current Seeker environment consists of 128 dual processor
1GHz machines, each attached via switched gigabit network to 1/2
terabyte of network attached storage. Half of this cluster was used
for the SemTag tests. Since each of these nodes runs at approxi-
mately 200 documents per second, the total time taken to reprocess
the web is 32 hours.

IO for this speed completely occupies one of the two 1GHz pro-
cessors, requiring that the spotter/classifier run at around 200 docs
per second (3MB/sec) on a single 1GHz processor. This limits the
complexity of the spotter/classifier that can run.

In Section 6.1 we describe the XML substrate of Figure 6. Sec-
tion 6.2 then describes the current set of infrastructure components
within Seeker. Finally, Section 6.3 describes the analysis agents,
which include the various components of SemTag.

6.1 The XML substrate
Functionality in Seeker is delivered through a network services

model, in which components publish their availability through a
centralized registry, and export a network-level API. Thus, Seeker
is aservice oriented architecture(SOA): a local-area, loosely-coupled,
pull-based, distributed computation system. We require high speed
(≈ 10, 000 RPCs per second), high availability (automatic fail-over
to backup services), and efficient multiple programming language
support (due to integration and performance issues). As a result we
choose to base our network services on Vinci[2] a SOAP[6]-derived
package designed for higher performance intra-net applications.

Vinci uses a lightly encoded XML (employing thextalk pro-
tocol) over raw TCP sockets to provide the required RPC rate. It
includes translation gateways allowing SOAP components to be in-
tegrated with minimal difficulty.

6.2 Infrastructure components
Infrastructure services must address issues of reliability and scal-

ability; therefore, the implementation of these core services in-
cludes a systems engineering problem. The main infrastructure
components of Seeker include a centralized store, an extensible
full-text indexer, a scalable web crawler, and a query processing
component called the joiner. We will cover here only the compo-
nents that are relevant to semantic tagging applications.

6.2.1 The Data Store
The data store is the central repository for all long-term shared

data storage within Seeker. The store not only serves as a storage
service for the rest of Seeker, but it also serves as the main com-
munication medium between miners. Annotators store their output
in the data store, and other miners depending on them retrieve that
information from the store, possibly much later and in a very dif-
ferent environment, enabling loose coupling of miners.

A Seeker store containsentities, each of which is identified by a
globally unique 128 bitUniversal Entity Identifier(or UEID). The
store provides both fast batched and random access to entities. En-
tities are of a particularentity type. A web page would be stored as
an entity of type “Page,” for instance, while the information about
a particular person would be stored as an entity of type “Person”.
The key/value pairs associated with an entity describe all the infor-
mation that has been extracted about that entity.

6.2.2 The Indexer
The Seeker system contains a generic large-scale distributed in-

dexer capable of indexing sequences of tokens. The index built
contains not only a positional text index of the web, but also addi-
tional document annotations generated by miners. The indexer is
fed documents as a stream of tokens, similar to the MultiText model
[9], which allows us to achieve high performance during indexing
due to the simple data model. For flexibility, each token that is in-
dexed can have arbitrary attribute data associated with it. Analysis
agents can generate additional tokens that overlay text tokens to in-
dicate higher-level semantic information. These tokens are indexed
along with the text, and may be used in queries to mix semantic
information with full-text queries.

6.2.3 The Joiner
Indexers within the system are generic components. The indexer

described above builds and serves a positional index that allows
proximity queries, phrase search, and so forth. However, for some
applications, an index that supports range queries of numeric val-
ues might be more appropriate—consider for example queries for
locations within a particular region. Other queries may desire in-

formation about closure of spans of information, or be geospatial
in nature or be part of a hand selected collection or any of a number
of restrictions.

The joiner is a service that takes a request, for example

SELECT url FROM web WHERE
SemTag = ’Athlete,Jorden,_Michael’

and PageLocation within 20 miles of SanJose

and returns the set of URLs of pages that meet the restriction crite-
ria.

The joiner allows more complicated annotators to only examine
those documents which meet some basic criteria, allowing them to
take more time on those pages of interest.

6.3 Analysis agents
An analysis agent is an encapsulated piece of functionality that

executes in the Seeker environment, roughly equivalent to a “mod-
ule” in a traditional programming language. As such, it is a com-
pletely generic object that could perform simple processing of indi-
vidual pages, or could perform complex distributed operations with
built-in fault tolerance and parallelism. Clearly, it is not possible
to provide development tools that will make all annotators easy to
write. Instead, we identified a limited but common class of analysis
agents calledannotatorsand we have worked to provide significant
support for these agents, while allowing the more sophisticated user
full generality to create more complex agents. All the initial Sem-
Tag components are annotators. We then defineminersto be agents
that do not fall into this limited set.

6.3.1 Annotators
An annotator is defined as an analysis agent that can be written

to process each entity of a certain type independently. We focus im-
mediately on the most common category of annotators, in which the
entity type is the page, and the annotator performs some local pro-
cessing on each web page, and writes back results to the store in the
form of an annotation. For example, analysis agents that scan each
web page and recognize geographic locations, or proper names, or
weights and measures, or indications that the page contains porno-
graphic content, are all annotators. Similarly, analysis agents that
perform complex tokenization, summarization, or language identi-
fication, or that automatically translate between languages, are also
annotators.

Annotators manifest strong locality of reference in that they can
be run independently on each individual web page without refer-
ence to other pages. Thus, they can be executed by the system on
a machine with limited resources, and handed one page at a time.
The system provides special support for annotators, making them
almost trivial to program. The programmer need write only a sim-
ple process one page() function, and the system will make
sure the function is applied to all pages in the dataset, and the re-
sults are published in the store for all others annotators to use.

In SemTag, the operation of dumping all windows containing
references to TAP objects is coded as an annotator. Due to the
simplicity of creating and running annotators, it was possible to
post-process the TAP RDF file in order to extract the labels for each
node of the ontology, create an annotator to extract the windows
around each label, and run the annotator on the full set of data,
within a 24 hours period.

A similar annotator can be used to write annotations back into
the store once processing has completed on the large collections
of windows. However the intermediate processing, generation of
automatic metadata, and incorporation of manual metadata from

human judgments, does not fit the limited definition of an annotator,
and must therefore be coded a more general miner.

6.3.2 Miners
Miners are analysis agents that need to look at a number of enti-

ties (of one or more entity type) together in order to arrive at their
conclusions. The overall SemTag application (using the TBD algo-
rithm) is a good example of such a system, as it looks at the results
of spots on many pages in order to disambiguate them.

Examples of other cross-entity miners are those that generate co-
occurrence information, aggregate site information, and hub and
authority scores.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

We believe that automated tagging is essential to bootstrap the
Semantic Web. As the results of the experiments with SemTag
show, it is possible to achieve interestingly high levels of accuracy
even with relatively simple approaches to disambiguation. In the
future we expect that there will be many different approaches and
algorithms to automated tagging. Unfortunately, storing a copy of
the web and creating the infrastructure for running a tagger on bil-
lions of pages is beyond the scope of most researchers. It is our
goal to provide a tagging of the web as a label bureau. Further,
we would also like to provide Seeker as a public service for the
research community to try various experimental approaches for au-
tomated tagging.

Acknowledgments
We would like to thanks our colleagues in the Seeker development,
business and management teams for their contributions: Rakesh
Agrawal, Laura Andreson, Srinivasan Balasubramanian, Bruce Baum-
gart, Varun Bhagwan, Michael Boroch, Krishna P. Chitrapura, Arthur
Ciccolo, Tom Costello, Matthew Denesuk, Rajesh Desai, Ajay K.
Dhawale, Maritza Dubec, Mike Dybicz, Richard Hirst, Ann Ho-
sein, Kobus Jooste, Sachindra Joshi, Vinay Kaku, David Kamalsky,
Reiner Kraft, Krishna Kummamuru, Bryan Langston, Jimmy Lin,
Peter Mandel, Rajesh Manjrekar, Kevin Mann, Kiran Mehta, Joerg
Meyer, Robert Morris, Alison Mortinger, Amit A. Nanavati, Ross
Nelson, Tram Nguyen, Wayne Niblack, Norm Pass, Pradhan Pat-
tnayak, Jan Pieper, Julius Quiaot, Jerell Shelton, Kim Sherman,
David Smith, Amit Somani, Magnus Stensmo, Thomas Truong,
Roger Williams, David Williamson, Jeonghee Yi, and Zachary Zhang.

We would also like to thank the TAP project at Stanford for pro-
viding the ontology used for the semantic tagging. In particular, we
would like to thank: Rob McCool, Ed Feigenbaum, Richard Fikes,
Shiela McIlraith and Deborah McGuiness.

Finally, a special thanks to Bruce Baumgart for hardware wiz-
ardry that made the experiments described above possible.

8. REFERENCES
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The

lorel query language for semistructured data.International Journal of
Digital Libraries, 1(1):68–88, 1997.

[2] R. Agrawal, R. Bayardo, D. Gruhl, and S. Papadimitriou. Vinci: A
service-oriented architecture for rapid development of web
applications. InProceedings of the Tenth International World Wide
Web Conference (WWW10), pages 355–365, Hong Kong, China,
2001.

[3] AltaVista. http://www.altavista.com .
[4] G. Arocena, A. Mendelzon, and G. Mihaila. Applications of a Web

query language. InProceedings of the 6th International World Wide
Web Conference (WWW6), pages 1305–1315, Santa Clara, CA, 1997.

http://www.altavista.com

[5] T. Berners-Lee, J. Hendler, and O. Lassila. Semantic web.Scientific
American, 1(1):68–88, 2000.

[6] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winder. Simple Object Acceess
Protocol.http://www.w3.org/TR/SOAP/ , May 2000.

[7] D. Brickley and R.V.Guha. Rdf schema.
http://www.w3.org/TR/rdf-schema/ .

[8] A. Broder and M. R. Henzinger. Algorithmic aspects of information
retrieval on the web. In M. R. J. Abello, P.M. Pardalos, editor,
Handbook of Massive Data Sets. Kluwer Academic Publishers,
Boston, to appear.

[9] C. Clarke, G. Cormack, and F. Burkowski. Shortest substring
ranking. InProceedings of the Fourth Text Retrieval Conference,
pages 295–304, Gaithersburg, MD, November 1995.

[10] W. Cohen and L. Jensen. A structured wrapper induction system for
extracting information from semi-structured documents. In
Proceedings of the Workshop on Adaptive Text Extraction and
Mining (IJCAI’01), 2001.

[11] M. Erdmann, A. Maedche, H. Schnurr, and S. Staab. From manual to
semi-automatic semantic annotation: About ontology-based text
annotation tools. In P. Buitelaar and K. Hasida, editors,Proceedings
of the COLING 2000 Workshop on Semantic Annotation and
Intelligent Content, August 2000.

[12] Google.http://www.google.com .
[13] T. R. Gruber. Towards Principles for the Design of Ontologies Used

for Knowledge Sharing. In N. Guarino and R. Poli, editors,Formal
Ontology in Conceptual Analysis and Knowledge Representation,
Deventer, The Netherlands, 1993. Kluwer Academic Publishers.

[14] J. Heflin and J. Hendler. Searching the web with shoe. InAAAI-2000
Workshop on AI for Web Search, 2000.

[15] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hilldrum, D. Maden, V. Raman, and M. A. Shah. Adaptive query
processing: Technology in evolution.IEEE Data Engineering
Bulletin, 23(2):7–18, 2000.

[16] J. Hirai, S. Raghavan, A. Paepcke, and H. Garcia-Molina. WebBase:
A repository of Web pages. InProceedings of the 9th International
World Wide Web Conference (WWW9), pages 277–293, Amsterdam,
The Netherlands, 2000.

[17] J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure
for shared web annotations. InWorld Wide Web, pages 623–632,
2001.

[18] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper
induction for information extraction. InIntl. Joint Conference on
Artificial Intelligence (IJCAI), pages 729–737, 1997.

[19] T. Leonard and H. Glaser. Large scale acquisition and maintenance
from the web without source access. http://semannot2001.aifb.uni-
karlsruhe.de/positionpapers/Leonard.pdf,
2001.

[20] K. Lerman, C. Knoblock, and S. Minton. Automatic data extraction
from lists and tables in web sources. InIJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, August 2001.

[21] G.-A. Levow. Corpus-based techniques for word sense
disambiguation. Technical Report AIM-1637, MIT AI Lab, 1, 1997.

[22] J. Li, L. Zhang, and Y. Yu. Learning to generate semantic annotation
for domain specific sentences.
http://semannot2001.aifb.uni-karlsruhe.de/
positionpapers/GenerateSemAnnot.pdf .

[23] P. K. Lockheed. AeroDAML: Applying information extraction to
generate DAML annotations from web pages.

[24] D. L. McGuinness. Description logics emerge from ivory towers. In
Description Logics, 2001.

[25] G. Mecca, A. Mendelzon, and P. Merialdo. Efficient queries over
web views. InProceedings of the 6th International Conference on
Extending Database Technology (EDBT’98), volume LNCS 1377,
pages 72–86, Valencia, Spain, 1998. Springer-Verlag.

[26] R. Mihalcea. Word sense disambiguation and its application to the
internet search. Master’s thesis, Southern Methodist University, 1999.

[27] A. Newell. Some problems of the basic organization in
problem-solving programs. InProceeding of the Second Conference
on Self-Organizing Systems, pages 393–423, Washington, DC, 1962.

[28] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and

M. A. Musen. Creating semantic web contents with protege-2000.
IEEE Intelligent Systems, 2(16):60–71, 2001.

[29] J. Pustejovsky, B. Boguraev, M. Verhagen, P. Buitelaar, and
M. Johnston. Semantic indexing and typed hyperlinking. In
Proceedings of the American Association for Artifical Intelligence
Conference, Spring Symposium, NLP for WWW, pages 120–128,
1997.

[30] R.Guha and R. McCool. Tap: Towards a web of data.
http://tap.stanford.edu/ .

[31] E. Riloff and J. Shepherd. A corpus-based approach for building
semantic lexicons. InProceedings of the Second Conference on
Empirical Methods in Natural Language Processing (EMNLP-97),
pages 117–124, Providence, RI, 1997.

[32] H. Scḧutze. Automatic word sense discrimination.Computational
Linguistics, 24(1):97–124, 1998.

[33] E. Spertus and L. A. Stein. Squeal: A structured query language for
the web. InProceedings of the 9th International World Wide Web
Conference (WWW9), pages 95–103, Amsterdam, The Netherlands,
2000.

[34] S. Staab, A. Maedche, and S. Handschuh. An annotation framework
for the semantic web. In S. Isjizaki, editor,Proceedings of the First
Workshop on Multimedia Annotation, Tokyo, Japan, January 2001.

[35] The Internet Archive.http://www.archive.org .
[36] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt, and

F. Ciravegna. MnM: Ontology driven semi-automatic and automatic
support for semantic markup. InThe 13th International Conference
on Knowledge Engineering and Management (EKAW 2002), 2002.

[37] W3C. Platform for internet content selection.
http://www.w3.org/PICS/ .

[38] W3C. Web ontology language.
http://www.w3.org/2001/sw/WebOnt/ .

[39] Web-in-a-Box.http://research.compaq.com/SRC/
WebArcheology/wib.html .

[40] Y. Wilks and M. Stevenson. Sense tagging: Semantic tagging with a
lexicon. InProceedings of the SIGLEX Workshop Tagging Text with
Lexical Semantics: What, why and how?, pages 47–51, 1997.

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/rdf-schema/
http://www.google.com
http://semannot2001.aifb.uni-karlsruhe.de/positionpapers/GenerateSemAnnot.pdf
http://semannot2001.aifb.uni-karlsruhe.de/positionpapers/GenerateSemAnnot.pdf
http://tap.stanford.edu/
http://www.archive.org
http://www.w3.org/PICS/
http://www.w3.org/2001/sw/WebOnt/
http://research.compaq. com/SRC/WebArcheology/wib.html
http://research.compaq. com/SRC/WebArcheology/wib.html

	Introduction
	Our contributions
	Paper structure

	Related Literature
	SemTag: A Semantic Tagger
	SemTag flow
	SemTag Ambiguity resolution
	Overview of TBD

	Results
	Methodology
	Evaluation and human judgments

	Similarity between a Spot and a Collection
	Sensitivity to availability of human-derived metadata
	Sensitivity to availability of machine-generated metadata

	System Requirements
	The Seeker Design
	The XML substrate
	Infrastructure components
	The Data Store
	The Indexer
	The Joiner

	Analysis agents
	Annotators
	Miners

	Conclusions and Future Directions
	REFERENCES -9pt

