Your Two Weeks of Fame and Your Grandmother’s*

James Cook
UC Berkeley'
jcook@cs.berkeley.edu

Atish Das Sarma

eBay Research Labs?
atish.dassarma@gmail.com

Alex Fabrikant
Google Research
fabrikant@google.com

Andrew Tomkins
Google Research
atomkins@gmail.com

April 19, 2012

Abstract

Did celebrity last longer in 1929, 1992 or 20097 We
investigate the phenomenon of fame by mining a col-
lection of news articles that spans the twentieth cen-
tury, and also perform a side study on a collection
of blog posts from the last 10 years. By analyzing
mentions of personal names, we measure each per-
son’s time in the spotlight, using two simple met-
rics that evaluate, roughly, the duration of a sin-
gle news story about a person, and the overall du-
ration of public interest in a person. We watched
the distribution evolve from 1895 to 2010, expect-
ing to find significantly shortening fame durations,
per the much popularly bemoaned shortening of soci-
ety’s attention spans and quickening of media’s news
cycles. Instead, we conclusively demonstrate that,
through many decades of rapid technological and so-
cietal change, through the appearance of Twitter,
communication satellites, and the Internet, fame du-
rations did not decrease, neither for the typical case
nor for the extremely famous, with the last statis-
tically significant fame duration decreases coming in
the early 20th century, perhaps from the spread of
telegraphy and telephony. Furthermore, while me-
dian fame durations stayed persistently constant, for
the most famous of the famous, as measured by either
volume or duration of media attention, fame dura-
tions have actually trended gently upward since the
1940s, with statistically significant increases on 40-
year timescales. Similar studies have been done with
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much shorter timescales specifically in the context of
information spreading on Twitter and similar social
networking sites. To the best of our knowledge, this is
the first massive scale study of this nature that spans
over a century of archived data, thereby allowing us
to track changes across decades.

Keywords: culturomics, media, attention modeling,
social media, time series, historical trends, fame du-
ration, news archives

1 Introduction

Beginning in the 19th century, long-distance commu-
nication transitioned from foot to telegraph on land,
and from sail to steam to cable by sea. Each new
form of technology began with a limited number of
dedicated routes, then expanded to reach a large frac-
tion of the accessible audience, eventually resulting in
near-complete deployment of digital electronic com-
munication. Each transition represented an opportu-
nity for news to travel faster, break more uniformly,
and reach a broad audience closer to its time of in-
ception.

Even today, the increasing speed of the news cy-
cle is a common theme in discussions of the soci-
etal implications of technology. Stories break faster,
are covered in less detail, and news sources quickly
move on to other topics. Online and cable outlets ag-
gressively search for novelty in order to keep eyeballs
glued to screens. Popular non-fiction dedicates signif-
icant coverage to this trend, which by 2007 prompted
The Onion', a satirical website, to offer the follow-
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ing commentary on cable news provider CNN’s? of-
ferings [1]: “CNN is widely credited with initiating
the acceleration of the modern news cycle with the
fall 2006 debut of its spin-off channel CNN:24, which
provides a breaking news story, an update on that
story, and a news recap all within 24 seconds.”
With this speed-up of the news cycle comes an as-
sociated concern that, whether or not causality is at
play, attention spans are shorter, and consumers are
only able to focus for progressively briefer periods on
any one news subject. Stories that might previously
have occupied several days of popular attention might
emerge, run their course, and vanish in a single day.
This popular theory is consistent with a suggestion
by Herbert Simon [10] that as the world grows rich in
information, the attention necessary to process that
information becomes a scarce and valuable resource.
The speed of the news cycle is a difficult concept
to pin down. We focus our study on the most com-
mon object of news: the individual. An individual’s
fame on a particular day might be thought of as the
probability with which a reader picking up a news
article at random would see their name. From this
idea we develop two notions of the duration of the in-
terval when an individual is in the news. The first is
based on fall-off from a peak, and intends to capture
the spike around a concrete, narrowly-defined news
story. The second looks for period of sustained pub-
lic interest in an individual, from the time the public
first notices that person’s existence until the public
loses interest and the name stops appearing in the
news. We study the interaction of these two notions
of “duration of fame” with the radical shifts in the
news cycle we outline above. For this purpose, we
employ Google’s public news archive corpus, which
contains over sixty million pages covering 250 years,
and we perform what we believe to be the first study
of the dynamics of fame over such a time period.
Data within the archive is heterogeneous in nature,
ranging from directly captured digital content to op-
tical character recognition employed against micro-
film representations of old newspapers. The crawl is
not complete, and we do not have full information
about which items are missing. Rather than attempt
topic detection and tracking in this error-prone envi-
ronment, we instead directly employ a recognizer for
person names to all content within the corpus; this
approach is more robust, and more aligned with our
goal of studying fame of individuals.
Based on these different notions of periods of refer-
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ence to a particular person, we develop at each point
in time a distribution over the duration of fame of
different individuals.

Our expectation upon undertaking this study was
that in early periods, improvements to communica-
tion would cause the distribution of duration of cov-
erage of a particular person to shrink over time. We
hypothesized that, through the 20th century, the con-
tinued deployment of technology, and the changes to
modern journalism resulting from competition to of-
fer more news faster, would result in a continuous
shrinking of fame durations, over the course of the
century into the present day.

Summary of findings.

We did indeed observe fame durations shortening
somewhat in the early 20th century, in line with our
hypothesis regarding accelerating communications.
However, from 1940 to 2010, we see quite a differ-
ent picture. Over the course of 70 years, through a
world war, a global depression, a two order of magni-
tude growth in (available) media volume, and a tech-
nological curve moving from party-line telephones to
satellites and Twitter, both of our fame duration met-
rics showed that neither the typical person in
the news, i.e. the median fame duration, nor
the most famous, i.e. high-volume or long-
duration outliers, experienced any statistically
significant decrease in fame durations.

As a matter of fact, the bulk of the distribu-
tion, as characterized by median fame dura-
tions, stayed constant throughout the entire
century-long span of the news study and was
also the same through the decade of Blogger
posts on which we ran the same experiments.
As another heuristic characterization of the bulk of
the distribution, both news and Blogger data pro-
duced roughly comparable parameters when fitted to
a power law: an exponent of around -2.5, although
with substantial error bars, suggesting that the fits
were mediocre.

Furthermore, when we focused our attention on the
very famous, by various definitions, all signs pointed
to a slow but observable growth in fame durations.
From 1940 onward, on the scale of 40-year in-
tervals, we found statistically significant fame
duration growth for the “very famous”, defined
as either:

e people whose fame lasts exceptionally long: 90th
and 99th percentiles of fame duration distribu-
tions; or

e exceptionally highly-discussed people: using dis-
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Figure 1: The volume of news articles by date.

tributions among just the top 1000 people or the
top 0.1% of people by number of mentions within
each year.

In the case of taking the 1000 most-often-
mentioned names in each year, the increasing could
be explained as follows: as the corpus increases in
volume toward later years, a larger number of names
appear, representing more draws from the same un-
derlying distribution of fame durations. The quan-
tiles of the distribution of duration for the top 1000
elements will therefore grow over time as the corpus
volume increases. On the other hand, our experi-
ments that took the top 0.1% most-often-mentioned
names, or the top quantiles of duration, still showed
an increasing trend. We therefore conclude that the
increasing trend is not completely caused by an in-
crease in corpus volume.

To summarize, we find that the most famous figures
in today’s news stay in the limelight for longer than
their counterparts did in the past. At the same time,
however, the average newsworthy person remains in
the limelight for essentially the same amount of time
today as in the past.

2 Working with the news cor-
pus

We perform our main study on a collection of the
more than 60 million news articles in the Google
archive that are both (1) in English, and (2) search-
able and readable by Google News users at no cost. In
Section 5, we cross-validate our observations against
the corpus of public blog posts on Blogger, which is
described there.

The articles of the news corpus span a wide range
of time, with the relative daily volume of articles over
the range of the corpus shown in Figure 1. There are a
handful of articles from the late 18th century onward,
and the article coverage grows rapidly over the course
of the 19th century. From the last decade of the 19th
century through the end of the corpus (March 2011),

there is consistently a very substantial volume of ar-
ticles per day, as well as a wide diversity of publi-
cations. For the sake of statistical significance, our
study focuses on the years 1895-2011.

The news corpus contains a mix of modern arti-
cles obtained from the publisher in the original dig-
ital form, as well as historical articles scanned from
archival microform and OCRed, both by Google and
by third parties. For scanned articles, per-article
metadata such as titles, issue dates, and boundaries
between articles are also derived algorithmically from
the OCRed data, rather than manually curated.

Our study design was driven by several features
that we discovered in this massive corpus. We list
them here to explain our study design. Also, data
mining for high-level behavioral patterns in a di-
achronous, heterogeneous, partially-OCRed corpus of
this scale is quite new, precedented on this scale per-
haps only by [9] (which brands this new area as “cul-
turomics”). But, with the rapid digitization of his-
torical data, we expect such work to boom in the near
future. We thus hope that the lessons we have learned
about this corpus will also be of independent inter-
est to others examining this corpus and other similar
archive corpuses.

2.1 Corpus features, misfeatures, and
missteps

2.1.1 News mentions as a unit of attention

Our 116-year study of the news corpus aims to ex-
tend the rich literature studying topic attention in
online social media like Twitter, typically over the
span of the last 3-5 years. Needless to say, 100-year-
old printed newspapers are an imperfect proxy for
the attention of individuals, which has only recently
become directly observable via online behavior. Im-
plicit in the heart of our study is the assumption that
news articles are published to serve an audience, and
the media makes an effort, even if imperfect, to cater
to the audience’s information appetites. We coarsely
approximate a unit of attention as one occurrence
in a Google News archive article, and we leave open
a number of natural extensions to this work, such as
weighting articles by historical publication subscriber
counts, or by size and position on the printed page.
Due to the automated OCR process, not every
“item” in the corpus can be reasonably declared a
news article. For example, a single photo caption
might be extracted as an independent article, or a
sequence of articles on the same page might be mis-



interpreted as a single article. Rather than weighting
each of these corpus items equally when measuring
the attention paid to a name, we elected to count
multiple mentions of a name within an item sepa-
rately, so that articles will tend to count more than
captions, and there is no harm in mistakenly grouping
multiple articles as one.

We manually examined (A) a uniform sample of 50
articles from the whole corpus (which, per Fig. 1, con-
tains overwhelmingly articles from the last decade),
and (B) a uniform sample of 50 articles from 1900
1925. We classified each sample into:

e News articles: timely content, formatted as a
stand-alone “item”, published without external
sponsorship, for the benefit of part of the publi-
cation’s audience,

e News-like items: non-article text chunks where a
name mention can qualify as that person being
“in the news” — e.g. photo captions or inset
quotes,

e Non-news: ads and paid content, sports scores,
recipes, news website comments miscategorized
as news, etc.

The number of items of each type in the two samples
are given in the following table.

| full corpus sample | 1900-1925 sample

news articles 31 28
news-like items 3 2
non-news items 16 20

We expect that the similarity in these distributions
should result in minimal noise in the cross-temporal
comparisons, and leave to future work the task of
automatically distinguishing real news stories from
non-news.

2.1.2 Compensating for coverage

Even once we discard the more sparsely covered 18th
and 19th centuries, there is still more than an order of
magnitude difference between article volume in 1895
and 2011. We address these coverage differences by
downsampling the data down to the same number of
articles for each month in this range. We address the
nuanced effects of this downsampling on our method-
ology in Section 3.3.

2.1.3 Evolution of discourse and media —
why names?

We set out originally to understand changes in the
public’s attention as measured by news story topics.
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Figure 2: Articles with recognized personal names
per decade

There are a myriad heuristics to define a computa-
tionally feasible model of a “single topic” that can
be thought to receive and lose the public’s attention.
But over the course of a century, the changes in so-
ciety, media formatting, subjects of public discourse,
writing styles, and even language itself are substan-
tial enough that neither sophisticated statistical mod-
els trained on plentiful, well-curated training data
from modern media nor simple generic approaches
like word co-occurrence in titles are guaranteed to
work well. Very few patterns connect articles from
1910 newspapers’ “social” sections (now all but for-
gotten) about tea at Mrs. Smith’s, to 1930 articles
about the arrival of a trans-oceanic liner, to 2009 ar-
ticles about a viral Youtube video.

After trying out general proper noun phrases pro-
duced inconclusively noisy results, we decided to fo-
cus on occurrences of personal names, detected in
the text by a proprietary state-of-the-art statistical
recognizer. Personal names have a relatively stable
presence in the media: even with high OCR error
rates in old microform, over 1/7th of the articles even
in the earliest decades since 1900 contain recognized
personal names (see Figure 2).

But personal names are not without historical
caveats, either. A woman appearing in 2005 stories
as “Jane Smith” would be much more likely to be ex-
clusively referenced as “Mrs. Smith”, or even “Mrs.
John Smith”, in 1915. Also, the English-speaking
world was much more Anglo-centric in 1900 than now,
with much less diversity of names. An informal sam-
ple suggests that most names with non-trivial news
presence 100 years ago referred overwhelmingly to a
single bearer of that name for the duration of a par-
ticular news topic, but many names are not unique
when taken across the duration of the whole corpus
— for instance, “John Jacob Astor”, appearing in the



news heavily over several decades (Fig. 3), in refer-
ence to a number of distinct relatives. On account
of both of these phenomena, among others, we aim
to focus on name appearance patterns that are most
likely to represent a single news story or contiguous
span of public attention involving that person, rather
than trying to model the full media “lifetime” of in-
dividuals, as we had considered doing at the start of
this project.

2.1.4 OCR errors in data and metadata

We empirically discovered another downfall of study-
ing long-term “media lifetimes” of individuals. In
an early experiment, we measured, for each personal
name, the 10th and 90th percentiles of the dates
of that name’s occurrence in the news. We then
looked at the time interval between 10th and 90th
percentiles, postulating that a large enough fraction
of names are unique among newsworthy individu-
als that the distribution of these inter-quantile gaps
could be a robust measure of media lifetime. After
noticing a solid fraction of the dataset showing inter-
quantile gaps on the scale of 10-30 years, we examined
a heat map of gap durations, and discovered a regular
pattern of gap durations at exact-integer year offsets,
which, other than for Santa Claus, Guy Fawkes, and
a few other clear exceptions, seemed an improbable
phenomenon.

This turned out to be an artifact of OCRed meta-
data. In particular, the culprit was single-digit OCR
errors in the scanned article year. While year errors
are relatively rare, every long-tail name that occurred
in fewer than 10 articles (often within a day or two
of each other), and had a mis-OCRed error for one
of those occurrences contributed probability mass to
integral-number-of-years media lifetimes. As extra
evidence, the heat map had a distinct outlier seg-
ment of high probability mass for inter-quantile range
of exactly 20 years, starting in the 1960s and ending
in the 1980s — the digits 6 and 8 being particularly
easy to mistake on blurry microfilm. Note that short-
term phenomena are relatively safe from OCR date
errors, thanks to the common English convention of
written-out month names, and to the low impact of
OCR errors in the day number.

OCR errors in the article text itself are ubiquitous.
Conveniently, the edit distance between two recogniz-
able personal names is rarely very short, so by agree-
ing to discard any name that occurs only once in the
corpus, we are likely to discard virtually all OCR er-
rors as well, with no impact on data on substantially

newsworthy people. We should note that OCR er-
rors are noticeably more frequent on older microfilm,
but the reasonable availability of recognizable per-
sonal names even in 100-year-old articles, per Fig. 2,
suggests that this problem is not dire. A manually-
coded sample of 50 articles with recognized names
from the first decade of the 1900s showed only 8 out
of 50 articles having incorrectly recognized names (in-
cluding both OCR errors and non-names mis-tagged
as names).

2.1.5 Simultaneity and publishing cycles

There are also pitfalls with examining short time-
lines. In the earliest decades we examine, telegraph
was widely available to news publishers, but not fully
ubiquitous, with rural papers often reporting news
“from the wire” several days after the event. An in-
formal sample seems to suggest that most news by
1900 propagated across the world on the scale of a
few days. Also, many publications in the corpus un-
til the last 20 years or so were either published ex-
clusively weekly or, in the case of Sunday newspaper
issues, had substantially higher volume once a week,
resulting in many otherwise obscure names having
multiple news mentions separated by one week — a
rather different phenomenon than a person remain-
ing in the daily news for a full week. On account of
both of these, we generally disregard news patterns
that are shorter than a few days in our study design.

3 Measuring Fame

We begin by producing a list of names for each arti-
cle. To do this, we extract short capitalized phrases
from the body text of each article, and keep phrases
recognized by an algorithm to be personal names.
For every name that appears in the input, we con-
sider that name’s timeline, which is the multiset of
dates at which that name appears, including mul-
tiple occurrences within an article. We intend the
timeline to approximate the frequency with which a
person browsing the news at random on a given day
would encounter that name. The accuracy of this
approximation will depend on the volume of news ar-
ticles available. In order to avoid the possibility that
any trends we detect are caused by variations in this
accuracy caused by variations in the volume of the
corpus, we randomly choose an approximately equal
number of articles to work with from each month. We
describe and analyze this process in Section 3.3.



In general, our method can be applied to any collec-
tion of timelines. In Section 5, we apply it to names
extracted from blog posts.

3.1 Finding Periods of Fame

Once we have computed a timeline for each name that
appears in the corpus, we select a time during which
we consider that name to have had its period of fame,
using one of the two methods described below. In
order to compare the phenomenon of fame at different
points in time, we consider the joint distribution of
two variables over the set of names: the peak date and
the duration of the name’s period of fame. We try the
following two methods to compute a peak date and
duration for each timeline.

e Spike method. This method intends to capture
the spike in public attention surrounding a par-
ticular news story. We divide time into one-week
intervals and consider the name’s rate of occur-
rence in each interval. The week with the highest
rate is considered to be the peak date, and the
period extends backward and forward in time as
long as the rate does not drop below one tenth
its maximum rate. Yang and Leskovec [13] used
a similar method in their study of digital media,
using a time scale of hours where we use weeks.

e Continuity method. This method intends to
measure the duration of public interest in a per-
son. We define a name’s period of popularity to
be the longest span of time within which there is
no seven-day period during which it is not men-
tioned. The peak date falls halfway between the
beginning and the end of the period. We find, in
Section 4, that durations are short compared to
the time span of the study, so using any choice
of peak date between the beginning and end will
produce similar distributions.

To demonstrate the distinction between these two
methods, Figure 3 shows the occurrence timeline for
Marilyn Monroe. The “continuity method” picks out
the bulk of her fame — 1952-02-13 (“A”) through
1961-11-15 (“D”), by which point her appearance in
the news was reduced to a fairly low background level.
The “spike method” picks out the intense spike in in-
terest surrounding her death, yielding the range 1962-
7-18 (“E”) — 1962-8-29 (“H”).

Very often these two methods identify short mo-
ments of fame within a much longer context. For ex-
ample, in Figure 3, we see the timeline for the name
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Figure 3: Timelines for “Marilyn Monroe” (top) and
“John Jacob Astor” (bot).

“John Jacob Astor”, normalized by article counts.
The spike method identifies as the peak the death
of John Jacob Astor III of the wealthy Astor family,
with a duration of 38 days (March 8 to February 15,
1890). The continuity method identifies instead the
death of his nephew John Jacob Astor IV, who died
on the Titanic, with a period of five months [12]. The
period begins on March 23, 1912, three weeks before
the Titanic sank, and ends August 31. Many of the
later occurrences of the name are historical mentions
of the sinking of the Titanic.

3.2 Choosing the Set of Names

Basic filtering In all our experiments, to reduce
noise, we discard the names which occurred less than
ten times, or whose fame durations are less than two
days. (In both methods, a name whose fame begins
Monday and ends Wednesday is considered to have
a duration of two days.) We also remove peaks that
end in 2011 or later, since these peaks might extend
further if our news corpus extended further in the
future.

Top 1000 by year For each peak type, we repeat
our experiment with the set of names restricted in the
following way. We counted the total number of times
each name appeared in each year (counting repeats
within an article). For each year, we produced the
set of the 1000 most frequently mentioned names in
that year. We took the union of these sets over all
years, and ran our experiments using only the names
in this set. Note that a name’s peak of popularity



need not be the same year in which that name was in
the top 1000: so if a name is included in the top-1000
set because it was popular in a certain year, we may
yet consider that name’s peak date to be a different
year.

Top 0.1% by year We consider that filtering to
the top 1000 names in each year might introduce the
following undesirable bias. Suppose names are as-
signed peak durations according to some universal
distribution, and later years have more names, per-
haps because of the increasing volume of news. If a
name’s frequency of occurrence is proportional to its
duration, then selecting the top 1000 names in each
year will tend to produce names with longer dura-
tions of fame in years with a greater number of names.
With this in mind, we considered one more restriction
on the set of names. In each year y, we considered
the total number of distinct names n, mentioned in
that year. We then collected the top n, /1000 names
in each year y. We ran our experiments using only
the names in the union of those sets. As with the
top-1000 filtering, a name’s peak date will not nec-
essarily be the same year for which it was in the top
0.1% of names.

3.3 Sampling for Uniform Coverage

The spike and continuity methods for identifying pe-
riods of fame may be affected by the volume of arti-
cles available in our corpus. For example, suppose a
name’s timeline is generated stochastically, with ev-
ery article between February 1 and March 31 contain-
ing the name with a 1% probability. If the corpus
contains 10000 articles in every week, then both the
spike and continuity methods will probably decide
that the article’s duration is two months. However,
if the corpus contains less than 100 articles in each
week, then the durations will tend to be short, since
there will be many weeks during which the name is
not mentioned.

We propose a model for this effect. Each name
v has a “true” timeline which assigns to each day
t a probability f,(¢) € [0,1] that an article on that
day will mention v.> For each day, there is a total
number of articles ny; we have no knowledge of the
relation between n; and v, except that there is some
lower bound n; > ny;, for all ¢ within some reason-
able range of time. Then we suppose the timeline for

3In fact, articles could mention the name multiple times,
but in the limit of a large number of articles, this will not
affect our analysis.

name v is a sequence of independent random vari-
ables X, ; ~ Binom(f,(t),n;). Our goal is to ensure
that any measurements we take are independent of
the values n;.

To accomplish this independence of news volume,
we randomly sampled news articles so that the ex-
pected number in each month was npi,. Let X,’j)t
be the number of sampled articles containing name
v. If we were to randomly sample n,;, articles
without replacement, then we would have X, ~
Binom(f, (), nmin). Notice that the joint distribu-
tion of the random variables X, , is unaffected by the
article volumes n;. Any further measurement based
on the variables X, ;, will therefore also be unrelated
to the sequence n;. In practice, instead of sampling
exactly npi, articles without replacement, we flipped
a biased coin for each of the n; articles at time ¢,
including each article with probability nyin/n:. For
a large enough volume of articles, the resulting mea-
surements will be the same.

We removed all articles published before 1895,
since the months before 1895 had less than our tar-
get number n,;, of articles. We also removed articles
published after the end of the year 2010, to avoid hav-
ing a month with news articles at the beginning but
not the end of the month, but with the same number
of sampled articles.

As an example of the effect of downsampling, the
blue dotted lines in Figure 9 show the 50th, 90th
and 99th percentiles of the distribution of fame du-
rations using the continuity method. We see that
they increase suddenly in the last ten years, when our
coverage of articles surges with the digital age. The
red lines show the same measurement after downsam-
pling: the surge no longer appears.

3.4 Graphing the Distributions

We graph the joint distribution of peak dates and
durations in two different ways. We consider the set
of names which peak in successive five-year periods.
Among each set of names, we graph the 50th, 90th
and 99th percentile durations of fame. These appear
as darker lines in the graphs; for example, the top of
Fig. 6 shows the distribution for the spike method.
The lighter solid red lines show the same three quan-
tiles for shorter three-month periods. For compari-
son, the dashed light blue lines show the same results
if the article sampling described in Sec. 3.3 is not per-
formed (and articles before 1895 and after 2010 are
not removed). Fig. 9 shows the same set of lines us-
ing the continuity method. All the later figures are



produced in the same way, except they do not include
the non-sampled full distributions.

The second type of graph focuses on one five-year
period at a time. The bottom of Fig. 6 shows a cu-
mulative plot showing the number of names with du-
ration greater than that shown on the z-axis. This
is plotted for many five-year periods. The graphs of
measurements using the spike method look more like
step functions because that method measures dura-
tions in seven-day increments, whereas the longest-
stretch method can yield any number of days. (Recall
that peaks that last less than two days are removed.)

3.5 Estimating Power Law Exponents

We test the hypothesis that the tail of the distribution
of fame durations follows a power law. For a given
five-year period, we collect all names which peak in
that period, and consider 20% of the names with the
longest fame durations — that is, we set dpyi, to be
the 80th percentile of durations, and consider dura-
tions d > dpin. Among those 20%, we compute a
maximum likelihood estimate of the power law ex-
ponent &, predicting that the probability of a dura-
tion d > dpin is p(d) oc d*. Clauset et al [3] show
that the maximum likelihood estimate & is given by
& =14+(3"  In(d;/dmin)). We include a line on each
plot of cumulative distributions of fame durations, of
slope & + 1 on the log-log graph because we plot cu-
mulative distributions rather than density functions.
The & values we measure are discussed in the follow-
ing sections, and summarized in Figure 4 for the news
corpus and Figure 5 for the blog corpus.

3.6 Statistical Measurements

We used bootstrapping to estimate the uncertainty in
the four statistics we measured: the 50th, 90th and
99th percentile durations and of the best-fit power
law exponents. For selected five-year periods, we
sampled |S| names with replacement from the set S
of names that peaked in that period of time. For each
statistic, we repeated this process 25000 times, and
reported the range of numbers within which 99% of
our samples fell. The results are presented in Figures
4 (for the news corpus) and 5 (for the blog corpus).

4 Results: News Corpus

We measure periods of popularity using the spike
and continuity methods described in Section 3, and
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Figure 6: Fame durations measured using the spike
method, plotted as the 50th, 90th and 99th per-
centiles over time (top) and for specific five-year pe-
riods (bottom). The bottom graph also includes a
line showing the max-likelihood power law exponent
for the years 2005-9. (The slope on the graph is one
plus the exponent from Fig. 4, since we graph the
cumulative distribution function.) To illustrate the
effect of sampling for uniform article volume, the first
graph includes measurements taken before sampling;
see Sec. 3.3. Section 3.4 describes the format of the
graphs in detail.

in each case plot the distribution of duration as it
changes over time.

Figures 6 and 9 show the evolution of the distri-
bution of fame durations for the full set of names
in the corpus (after the basic filtering described in
Section 3.2) using the spike and continuity methods,
respectively. (Section 3.4 describes the format of the
graphs in detail.)

Median durations For the entire period we stud-
ied, the median fame duration did not decrease, as we
had expected, but rather remained completely con-
stant at exactly 7 days, for both the spike and the
continuity peak measurement methods. For the spike
method alone, this would not have been surprising.
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Figure 7: Fame durations, restricting to the union of
the 1000 most-mentioned names in every year, using
the spike method to identify periods of fame.

Peaks measured by the spike method are discretized
to multiples of weeks, so a perennial median of 7
days just shows that multi-week durations have never
been common. On the other hand, the continuity
method freely admits fame durations in increments of
1 day, with only 1-day-long peaks filtered out. Yet,
the median has remained at exactly 7 days for all
the years studied, and, per the full-corpus “50th per-
centile” measurements, shown in blue in Figure 4, for
all decades where we’ve tried bootstrapping, 99% of
bootstrapped samples also matched the 7-day mea-
surement exactly (for the continuity method and, less
surprisingly, for the spike method). This gives strong
statistical significance to the claim that 7 days is in-
deed a very robust measurement of typical fame du-
ration, which has not varied in a century.

The most famous We next consider specially the
fame durations of the most famous names, in two
correlated, but distinct senses of “most famous”:

e “Duration outliers” — people whose fame lasts
much longer than typical, as measured by
the 90th and 99th percentiles of fame durations
within each year. These correspond to the top
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Figure 8: Fame durations, restricting to the union of
the 0.1% most-mentioned names in every year, mea-
sured using the spike method.

two lines in the timelines of Figures 6 and 9, and
the columns “90 %ile” and “99 %ile” of the first
and fourth blocks of Figure 4.

e “Volume outliers” — the names which appear
the most frequently in the news, by being ei-
ther in the top 1000 most frequent names in some
year, or, separately, names in the top 0.1%, as
per Section 3.2. The graphs for these subsets of
names are shown in Figures 7 and 8 for the spike
method, and Figures 10 and 11 for the conti-
nuity method, and the statistical measurements
appear in blocks 2, 3, 5 and 6 of Figure 4.

From the 1900’s to the 1940’s, the fame durations
in both categories of outliers do tend to decrease, with
the decreases across that time interval statistically
signicantly lower-bounded by 1-2 weeks via 99% boot-
strapping intervals. Heuristically, this seems consis-
tent with our original hypothesis that accelerating
communications shorten fame durations: 1-2 weeks
is a reasonable delay to be incurred by sheer commu-
nications delay before the omnipresence of telegraphy
and telephony. We note with curiosity that this ef-
fect applies only to the highly-famous outliers rather
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periods (bottom). To illustrate the effect of sampling,
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sampling; see Section 3.3. Section 3.4 describes the
format of the graphs in detail.
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Figure 10: Fame durations, restricting to the union of
the 1000 most-mentioned names in every year, mea-
sured using the continuity method.

than the typical fame durations. We posit that this is
perhaps due to median fame durations being typically
attributable to people with only geographically local-
ized fame, which does not get affected by long com-
munication delays. We leave to further work a more
nuanced study to test these hypotheses around local-
ity and communication delays affecting news spread
in the early 20th century.

After the 1940’s, on the other hand, we see no such
decrease. On the contrary, the durations of fame for
both the duration outliers and the volume outliers re-
verse the trend, and actually begin to slowly increase.
Using the bootstrapping method, per Section 3.6, we
get the results marked in red in Figure 4: in almost
all of the outlier studies?, we see that the increase in
durations is statistically significant over 40-year gaps
for both categories of fame outliers. For example, the
median fame duration according to continuity peaks

47 out of the 8 outlier studies show statistically significant
increases between the 1940’s and the 1980’s, and between the
1960’s and the 2000’s. The sole exception is the 90th percentile
of the spike method. Given that the bootstrap values in that
experiment, discretized to whole weeks, range between 3 and 4
weeks, we don’t consider it surprising that the increases there
were not measured to be significant by 99% bootstrap intervals.
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Figure 11: Fame durations, restricting to the union of
the 0.1% most-mentioned names in every year, mea-
sured using the continuity method.

for the top 1000 names (50th percentile column of
the fifth block) appears as “27 (25 .. 29)” in the pe-
riod 1945-9 and “52 (49 .. 56)” for the period 1985-9:
with 99% confidence, the median duration was less
than 29 days in the former period, but greater than
49 days in the latter.

We also ran experiments for names that have out-
lier durations within the subset of names with outlier
volumes. The same general trends were seen there
as with the above outlier studies, but, with a far
shallower pool of data, the bootstrapping-based er-
ror bars were generally large enough to not paint a
convincing, statistically significant picture.

Power law fits The column titled “power law ex-
ponent” in Figure 4 shows the maximum likelihood
estimates of the power law exponents for various five-
year-long peak periods. We focus on the first and
fourth blocks, which show the estimates for the full
set of names for the spike method and the continuity
method respectively.

For both peak methods, the fitted power law expo-
nents remain in fairly small ranges — between -2.77
and -2.45 for continuity peaks, and between -2.63 and
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-2.32 for spike peaks. In Figures 9 and 6 we show
the actual distributions, and, for reference, compar-
isons with the power-law fit for the 2005-2009 data
(a straight line on these log-log plots).

Furthermore, the continuity peaks fits also sup-
port the above observation of slowly-growing long-tail
fame durations from 1940 onward. That is, power-
law exponents from 1940 onward slowly move toward
zero, with statistically significant changes when com-
pared at 40-year intervals. The fluctuations and the
error bars for both methods are rather noticeable,
though, suggesting that power laws make for only a
mediocre fit to this data.

5 Results: Blog Posts

We also ran our experiments on a second set of data
consisting of public English-language blog posts from
the Blogger service. We began by sampling so that
the number of blog posts in each month in our data
set was equal to the number of news articles we sam-
pled in each month, as per Sec. 3.3. The cumula-
tive graphs of fame duration from six experiments
are shown in Fig. 12. We combine the two meth-
ods for identifying periods of fame with three sets of
names described in Section 3.2. The respective dis-
tributions from the news corpus are superimposed for
comparison.

The graphs of fame duration measured using the
continuity method are much smoother for the blog
corpus than for the news corpus. This happens be-
cause whereas we only know which day each news
article was written, we know the time of day each
blog entry was posted.

The continuity-method graphs (bottom of Fig-
ure 12) had a distinctive rounded cap which surprised
us at first. We believe it is caused by the following ef-
fect. Peaks with only two mentions in them are fairly
common, and have a simple distinctive distribution
that is the difference between two sample dates con-
ditioned on being less than a week apart. Since two
dates that are longer than one week apart cannot
constitute a longest-stretch peak, the portion of the
graph with durations longer than one week does not
include any names from this two-sample distribution,
and so it looks different. Our estimates of power-law
exponents only consider the longest 20% of durations,
so they ignore this part of the graph.

The estimates we computed for the power-law ex-
ponents of the duration distributions for blog data



are shown in Figure 5, and can be compared to the
figures for news articles in Figure 4.

The medians for both blogs and news for both
methods are remarkably the same, with no statisti-
cally significant differences. The power law fits are
also quite similar, although they show enough vari-
ation to produce statistically significant differences.
Qualitatively, we take these as evidence that the fame
distributions in news and blogs are coarsely similar,
and that it is not unreasonable to consider these re-
sults as casting some light on more fundamental as-
pects of human attention to and interest in celebri-
ties, rather than just on the quirks of the news busi-
ness.

We do leave open the question of accounting for the
occasionally significant distinctions between outlier
results for blogs, as compared to news, especially for
outlier-volume continuity peaks.

6 Related Work

Michel et al. [9] study a massive corpus of digitized
content in an attempt to study cultural trends. The
corpus they study is even larger than ours in terms
of both volume and temporal extension.

Leetaru [7] presents evidence that sentiment anal-
ysis of news articles from the past decade could have

been used to predict the revolutions in Tunisia, Egypt
and Libya.

Our spike method for identifying periods of fame
is motivated in part by the work of Yang and Le-
scovec [13] on identifying patterns of temporal varia-
tion on the web. Szabo and Huberman [11] also con-
sider temporal patterns, in their case regarding con-
sumption of particular content items. Kleinberg stud-
ies other approaches to identification of bursts [6].

Numerous works have studied the propagation of
topics through online media. Leskovec et al. [8] de-
velop techniques for tracking short “memes” as they
propagate through online media, as a means to under-
standing the news cycle. Adar and Adamic [2], and
Gruhl et al. [5] consider propagation of information
across blogs.

Finally, a range of tools and systems provide access
to personalized news information; see Gabrilovich et
al [4] and the references therein for pointers.
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method filtering | period | 50th %ile (days) 90th %ile (days) 99th %ile (days) power law exponent

spike all 1905-9 7(7..7) 28 (28 .. 28) 91 (78 .. 106)  -2.45 (-2.55 .. -2.21)
spike all 1925-9 7(7..7) 28 (28 .. 28) 65 (63 .. 78)  -2.63 (-2.74 .. -2.33)
spike all 1945-9 7(7..7) 21 (21 .. 28) 56 (49 .. 63)  -2.44 (-2.50 .. -2.38)
spike all 1965-9 7(7..7) 21 (21 .. 28) 63 (56 .. 70)  -2.37 (-2.44 .. -2.31)
spike all 1985-9 7(7.7) 21 (21 .. 28) 70 (63 .. 78)  -2.32 (-2.36 .. -2.27)
spike all 2005-9 7(7..7) 28 (28 .. 28) 84 (78 .. 91)  -2.48 (-2.53 .. -2.43)
spike top 1000 | 1905-9 | 21 (21 .. 21) 63 (56 .. 70) 155 (133 .. 192)  -2.75 (-3.15 .. -2.56)
spike top 1000 | 1925-9 | 21 (14 .. 21) 49 (46 .. 56) 91 (78 .. 113)  -3.22 (-3.74 .. -2.99)
spike top 1000 | 1945-9 | 21 (14 .. 21) 49 (42 .. 49) 91 (70 .. 130)  -3.33 (-3.73 .. -2.89)
spike top 1000 | 1965-9 | 21 (21 .. 21) 56 (49 .. 63) 119 (99 .. 164)  -2.90 (-3.54 .. -2.65)
spike top 1000 | 1985-9 | 21 (21 .. 28) 63 (56 .. 78) 161 (121 .. 366)  -2.85 (-3.19 .. -2.57)
spike top 1000 | 2005-9 | 35 (28 .. 35) 99 (84 .. 119) 309 (224 .. 439)  -2.64 (-2.96 .. -2.44)
spike | top 0.1% | 1905-9 | 35 (28 .. 42) 122 (91 .. 155) 289 (161 .. 381) -2.82 (-3.96 .. -2.36)
spike | top 0.1% | 1925-9 | 28 (21 .. 35) 63 (56 .. 82) 145 (91 .. 218)  -3.49 (-4.82 .. -2.92)
spike | top 0.1% | 1945-9 | 21 (21 .. 28) 56 (49 .. 67) 133 (84 .. 161)  -3.35 (-4.32 .. -2.78)
spike | top 0.1% | 1965-9 | 28 (21 .. 35) 70 (63 .. 99) 162 (119 .. 494)  -2.90 (-3.77 .. -2.47)
spike | top 0.1% | 1985-9 | 35 (28 .. 35) 90 (70 .. 113) 327 (140 .. 443)  -2.66 (-3.13 .. -2.35)
spike | top 0.1% | 2005-9 | 35 (35 .. 42) 119 (99 .. 140) 338 (263 .. 557)  -2.76 (-3.10 .. -2.44)
continuity all 1905-9 7(7.7) 20 (19 .. 21) 70 (64 .. 79)  -2.67 (-2.76 .. -2.59)
continuity all 1925-9 7(7..7) 18 (17 .. 19) 64 (56 .. 71)  -2.64 (-2.72 .. -2.53)
continuity all 1945-9 7(7..7) 16 (15 .. 16) 53 (49 .. 58)  -2.74 (-2.82 .. -2.66)
continuity all 1965-9 7(7.7) 17 (16 .. 18) 66 (58 .. 75)  -2.58 (-2.69 .. -2.52)
continuity all 1985-9 7(7..7) 18 (17 .. 18) 77 (71 .. 83)  -2.48 (-2.56 .. -2.44)
continuity all 2005-9 7(7..7) 21 (20 .. 21) 101 (96 .. 108)  -2.43 (-2.46 .. -2.40)
continuity | top 1000 | 1905-9 | 24 (23 .. 26) 69 (62 .. 76) 166 (136 .. 229)  -3.01 (-3.35 .. -2.70)
continuity | top 1000 | 1925-9 | 22 (21 .. 24) 58 (53 .. 66) 176 (131 .. 338)  -3.01 (-3.39 .. -2.67)
continuity | top 1000 | 1945-9 | 27 (25 .. 29) 66 (57 .. 80) 211 (169 .. 332)  -2.92 (-3.32 .. -2.59)
continuity | top 1000 | 1965-9 | 34 (32 .. 35) 92 (81 .. 104) 262 (203 .. 622) -2.75 (-3.11 .. -2.48)
continuity | top 1000 | 1985-9 | 52 (49 .. 56) 135 (118 .. 147) 312 (231 .. 739)  -3.20 (-3.62 .. -2.83)
continuity | top 1000 | 2005-9 | 87 (80 .. 91) 229 (211 .. 250) 649 (532 .. 752)  -2.97 (-3.32 .. -2.75)
continuity | top 0.1% | 1905-9 | 66 (59 .. 79) 146 (126 .. 176) 968 (209 .. 4287) -3.29 (-5.20 .. -2.24)
continuity | top 0.1% | 1925-9 | 53 (47 .. 61) 125 (104 .. 161) 476 (258 .. 2498) -2.67 (-3.72 .. -2.20)
continuity | top 0.1% | 1945-9 | 57 (52 .. 66) 150 (123 .. 194) 419 (218 .. 1089) -3.19 (-4.26 .. -2.52)
continuity | top 0.1% | 1965-9 | 69 (61 .. 79) 168 (143 .. 214) 713 (261 .. 874)  -3.01 (-4.01 .. -2.45)
continuity | top 0.1% | 1985-9 | 85 (78 .. 94) 187 (158 .. 216) 732 (276 .. 892)  -3.40 (-4.30 .. -2.80)
continuity | top 0.1% | 2005-9 | 113 (107 .. 119) 271 (246 .. 306) 681 (614 .. 874)  -3.16 (-3.59 .. -2.85)

Figure 4: Percentiles and best-fit power-law exponents for five-year periods of the news corpus. Each entry
shows the estimate based on the corpus, and the 99% boostrap interval in parentheses, as described in
Section 3.6. Results discussed in section 4.
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method filtering | period | 50th %ile (days) 90th %ile (days)  99th %ile (days)  power law exponent
spike all 2000-4 T(7T.T7) 35 (28 .. 35) 123 (84 .. 189) -2.37 (-2.52 .. -2.23)
spike all 2005-9 7(7..7) 28 (21 .. 28) 75 (63 .. 84)  -2.34 (-2.76 .. -2.27)
spike top 1000 | 2000-4 21 (14 .. 21) 56 (49 .. 63) 265 (148 .. 479) -2.51 (-2.83 .. -2.18)
spike | top 1000 | 2005-9 | 14 (14 .. 21) 49 (42 .. 54) 109 (91 .. 151)  -2.74 (-3.03 .. -2.41)
spike | top 0.1% | 20004 | 39 (28 .. 56) 189 (106 .. 305) _ 717 (286 .. 840)  -2.26 (-3.05 .. -1.85)
spike | top 0.1% | 20059 | 28 (25 .. 35) 88 (74 .. 102) 213 (113 .. 1674)  -3.29 (-5.40 .. -2.23)
continuity all 2000-4 T(7T.T7) 22 (20 .. 23) 114 (95 .. 160) -2.38 (-2.49 .. -2.28)
continuity | all 2005-9 6(6..7) 18 (17 .. 19) 80 (66 .. 93)  -2.62 (-2.72 .. -2.53)
continuity | top 1000 | 20004 | 20 (18 .. 21) 71 (59 .. 83) 387 (237 . 810)  2.32 (2.54 .. 2.12)
continuity | top 1000 | 2005-9 | 21 (20 .. 22) 50 (53 .. 73) 408 (211 .. 1057) -2.37 (-2.62 .. -2.18)
continuity | top 0.1% | 2000-4 | 102 (89 .. 123) 372 (236 .. 768) 2010 (768 .. 2238) -2.24 (-3.15 .. -1.86)
continuity | top 0.1% | 2005-0 | 83 (70 .. 93) 302 (193 .. 617) 2083 (954 .. 2991) -2.12 (-2.75 .. -1.79)

Figure 5: Percentiles and best-fit power-law exponents for five-year periods of the blog corpus. Each entry
shows the estimate based on the corpus, and the 99% boostrap interval in parentheses, as described in

Section 3.6. Results discussed in Section 5.
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Figure 12: Cumulative duration-of-fame graphs for the blog corpus. The graphs at the top show the spike
method results (for all names, top 1000, and top 0.1%), and those at the bottom show the continuity method

results.
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