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ABSTRACT
In this paper we study the limiting dynamics of a sequential pro-

cess that generalizes Pólya’s urn. This process has been studied

also in the context of language generation, discrete choice, repeat

consumption, and models for the web graph. The process we study

generates future items by copying from past items. It is parame-

terized by a sequence of weights describing how much to prefer

copying from recent versus more distant locations. We show that, if

the weight sequence follows a power law with exponent α ∈ [0, 1),

then the sequences generated by the model tend toward a limiting

behavior in which the eventual frequency of each token in the

alphabet attains a limit. Moreover, in the case α > 2, we show that

the sequence converges to a token being chosen infinitely often,

and each other token being chosen only constantly many times.

CCS CONCEPTS
• Mathematics of computing → Stochastic processes; • Ap-
plied computing→ Law, social and behavioral sciences; • Infor-
mation systems→ Web mining.
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1 INTRODUCTION
In this paper we are concerned with a randomized process to pro-

duce sequences over a fixed alphabet {1, . . . ,T } of tokens. The

process begins with some finite initial history of tokens, and then

proceeds by randomly selecting a previous location in the history

to copy from, in order to produce the next output. The most re-

cent location has a preference weightw1, the second most recent

location has weightw2, and so forth; more recent locations are pre-

ferred. The location from i steps ago is copied-fromwith probability

proportional towi .

This simple process occurs in many settings:
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• For the case with all weights uniform,wi = 1, the process is

exactly the classical Pólya’s urn [11], with the initial contents

of the urns given by the counts of each token in the history.

• If new tokens are introduced with constant probability, but

the weights remain uniform, the process is exactly Simon’s

1955 copying model [12] used to explain word frequencies

in human language.

• If the tokens correspond to graph vertices, and new tokens

are again introduced with constant probability, the model is

an important special case of graph copying models [3, 8].

• If the sequence of weightswi in the model are learned, the

resulting model has been used to explain repeat consumption

behavior in multiple domains [1, 4, 9].

Perhaps the most fundamental question about this model is:

what happens when it runs? In this paper, we wish to understand

the limiting behaviors of sequences produced by models like this,

especially the following central questions:

(1) As the length of the generated sequence grows, does it reach

a limiting distribution under some definition?

(2) When the limiting distribution exists, does it have positive

support over the entire token set, or do certain tokens disap-

pear forever?

(3) What can be said about the relationship between the atten-

tion weights and the limiting distribution?

1.1 Our results
We assume that our model is given some fixed prefix or history

x1x2 . . . xh , and then repeatedly predicts xi given x1 . . . xi−1. For

i > h, every element xi copies directly or indirectly from some

position in the history. To study limiting distributions, we will fix

some arbitrary subset of positions of interest in the history, and

state our results in terms of the long-term occurrences of tokens

copied from these positions. First, some definitions:

For i > h, let Xi be an indicator that is 1 if xi is copied, directly
or indirectly, from a "position of interest" and 0 otherwise, and let

Zi =
1

i − h

i∑
j=h+1

X j .

Let Z ∗ = limi→∞ Zi . We want to know when Z ∗
exists, and what

are its properties.

The following two results are already known:

(1) Forwi = 1, Z ∗
exists and is beta-distributed (Pólya urn).

(2) Forwi = 2
−i
, Z ∗

exists and has support only on {0, 1} [1].

We show the following new results:

(1) Forwi = i
−α

with 0 < α < 1, Z ∗
exists.

(2) Forwi = i
−α

with α > 2, Z ∗
exists and has support only on

{0, 1}.

https://doi.org/10.1145/3366423.3380044
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To obtain such convergence results, it turns out that our assumption

that the weights follow a power law is, in a sense, important. We

show non-convergence results (omitted in this version) when the

weights may not obey a power law but satisfy weaker analytic

properties such as monotonicity or convexity.

2 RELATEDWORK
Urn processes have been studied by classical mathematicians for

hundreds of years, but the standard Pólya’s urn formulation was de-

veloped and analyzed by Eggenberger and Pólya in 1923 [5]. Since

then, a number of variations have been proposed, introducing com-

plex rules for modifying the state of balls in urns in response to each

draw. However, these processes are designed to be characterized by

the state of the urns, so the numerous extensions do not typically

consider rules that depend on the order of past draws.

Herbert Simon [12] introduced a sequential process to study

the emergence of power laws in language, in partial response to

work of Zipf [14] six years earlier. In Simon’s model, during each

timestep, the next token will be copied with some probability from

a uniformly-selected past location, and with remaining probability,

will be a previously-unseen character. The continued introduction

of neologisms into the vocabulary matches observations of natural

language text. The process is known to converge in the limit to

a distribution over token frequencies that matches a power law,

again corresponding to natural language text.

Related to Simon’s model, a number of authors [3, 8] developed

sequential models for the evolution of graphs, intended to repro-

duce the power law in-degree distribution observed for the web

graph [10]. These models also produced new links by selecting

existing links to copy from, using a uniform distribution.

Both Simon’s copying model and the models of graph evolution

relied on the introduction of new vocabulary as the model evolved,

and their analysis was fundamentally structured around a growing

set of tokens; hence, while the models are similar, the analytical

techniques are not applicable to our domain.

More recently, Anderson et al. [1] employed copying models in

the context of reconsumption of items: a user might listen to the

same song many times, or eat at the same restaurant, and these

decisions were shown to be well-modeled by a process that selects

an item to re-consume by copying a previous consumption from the

past. In their examples, and in follow-on work [4], the preference

weights for the ith previous item wi were learned through maxi-

mum likelihood estimation. In this domain as in natural language,

the particular form of the resulting weights is approximated well

by a power law.

Other than the Pólya’s urn, the only work of which we are aware

that studies the limiting behavior of processes of this form is the

work of Anderson et al.[1], who show that the weight sequence

wi = 2
−i

leads to a limiting distribution in which all tokens but one

eventually disappear, leaving a single "winner" who will then be

copied forever. In practice, we are not aware of real-world datasets

in which the weights decay exponentially, hence our interest in

extending this result to power law distributions, beyond α = 0 case

of Pólya’s urn.

3 BACKGROUND
Let 1 ≥ w1 ≥ w2 ≥ · · · ≥ wi ≥ · · · be the given list of weights. Let

T = {1, 2, . . . ,T } be a finite alphabet of tokens. LetWk =
∑k
i=1

wi
be the k-prefix sum.

Let x1,x2, . . . ,xh be a fixed history, where h > 0 and each xi ∈
[T ]. Given the weights and history, the model generates an infinite

sequence from T according to the following rule:

Pr[xi+1 = t] =

∑i
j=1

w j · [xi−j+1 = t]∑i
j=1

w j
,

for i ≥ h. Here [·] is the binary indicator function. The model thus

captures the process of extending the sequence by randomly choos-

ing a position from the past according to the weights and copying
the token in that position. Since the weights are monotonically

non-decreasing, tokens from more recent past have higher chance

of being copied than tokens from the distant past.

We say that h is the end of the history. Let i ≥ h. By definition

of the process, any position i will copy from a random position less

than i , according to the weights. In this case we use c(i) to denote

the position that i copies from, and c(j+1)(i) to denote c(c(j)(i)), with

c(1)(i) = c(i). We let

C0(i) = {i},

C1(i) = {i, c(i)},

C2(i) = {i, c(i), c(2)(i)},

and so on. If ℓ(i) is the smallest integer such that c(ℓ(i)) ≤ h, we let

C(i) = Cℓ(i)(i),

and

f (i) = c(ℓ(i)−1)(i).

In other words, if we treat the sequence of copies that ended in

position i as a chain, thenC(i) is the set of positions along this chain
and f (i) is the final token outside the history in the chain starting

from i . An equivalent interpretation is to consider a walk starting

at i that jumps to position c(i), then jumps to position c(2)(i), and
so on.

Definition 3.1 (Collision). We say that positions i, j , with h ≤ i <
j , collide if and only (C(i)∩C(j))\[h] is non-empty, i.e., equivalently

if and only if f (i) = f (j).

We use the following random variable to denote the collision

event:

ξi, j
∆
= “f (i) = f (j)”.

Wewill be using Chebyshev’s inequality and the Chernoff bound.

Theorem 3.2 (Chebyshev’s ineqality). Let X be a random
variable with finite expectation and variance. Then, for each c > 0

Pr

[
|X − E[X ]| ≤ c ·

√
Var[X ]

]
≤ c−2.

Theorem 3.3 (Chernoff bound). Let X1, . . . ,Xn be iid 0/1 ran-
dom variables. Let X =

∑
Xi . Then, for δ > 0,

Pr[X < (1 − δ )E[X ]] ≤ e−δ
2E[X ]/2.

Moreover,

Pr[X > (1 + δ )E[X ]] ≤ e−min(δ,δ 2)E[X ]/3.
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1 · · · · · · h · · · f (i) · · · c(2)(i) · · · c(i) · · · i

Figure 1: A walk from i. History is shown in red.

4 CONVERGENCE TO A LIMIT: α ∈ [0, 1)

In this section we show our main result: convergence to a limit. We

will show this in two steps: (i) ξi, j vanishes as h increases assuming

wi = i
−α

, for some 0 ≤ α < 1 and (ii) a delicate covariance analysis

that uses the vanishing collisions to establish convergence.

4.1 Vanishing collisions
In this section we show that ξi, j < oh (1), i.e., the collisions vanish
with history size. To simplify the exposition, we first introduce the

following notation. Let ξi be the event that the jump from i ends in
some position in {1, 2, . . . , ⌊i/2⌋}, i.e.,

ξi
∆
= “c(i) ∈ [⌊i/2⌋]”.

We prove something slightly more general.

Lemma 4.1. If α ∈ [0, 1), then Pr[ξi ] ≥ Ω(1).

Proof. Indeed, we have that

i∑
j=1

j−α = Θ
(
i1−α

)
,

and that,

i∑
j= ⌈i/2⌉

j−α = Θ
(
i1−α

)
.

Thus, Pr [ξi ] = Θ (1). □

We use this to prove that, if α < 1, then the number of steps

from a generic position j to a position less than h, i.e., the length
|C(i)| of the chain from i is at most O(log j) with high probability.

Theorem 4.2. Suppose that 0 < α < 1, and fix h ≥ 1. Then, there
exists a constant c = c(α), such that if we let nj = nj (i), j ≤ i , be the
number of positions in the range {h + 1,h + 2, . . . , j} in the chain
starting in i , we have that

Pr[∃j ∈ {h + 1, . . . , i} | nj (i) ≥ c · ln(j + 1)] ≤ O(h−10).

Proof. In each position j, the probability that the event ξ j hap-
pens is at least p = p(α) = Θ(1). Therefore, by the Chernoff bound,

the probability that the event does not happen at least lg j times in

200
1

p ln j trials is at most j−11
. Therefore, the probability that the

chain does not reach some position before h after having visited

200
1

p ln j positions is at most j−11
. By the union bound, we get that

the probability that there exists some j ≥ h + 1 that does not reach

the history after 200
1

p ln j steps is at most∑
j≥h+1

j−11 ≤ O(h−10). □

Using these, we obtain the desired result on vanishing collisions.

Theorem 4.3. Let α ∈ [0, 1) and h < i < i ′ be given. Then,
Pr[ξi,i′] ≤ oh (1).

Proof. By Theorem 4.2, with probability 1 − oh (1), for each
j ≥ h, the walk from i (called i-walk) will visit at most O(ln(j + 1))

positions in the range {h + 1, . . . , j}. Now, consider the walk from

i ′ (called i ′-walk) and let j > h be a generic position visited by the

i ′-walk. Assuming that j has not also been visited by the i-walk,
we ask: what is the probability q that the position that the i ′-walk
jumps from j has not been visited by the i-walk? Observe that, with
probability 1 − o(1), the i-walk will have visited at mostO(ln(j + 1)

positions in the range {1, . . . , j − 1}. Then, under the conditioning,

the probability that j jumps on some position visited by the i-walk
is at most

O(ln(j + 1)) · 1
−α∑j−1

ℓ=1
ℓ−α

≤ O(jα−1 · ln(j + 1)).

Since, by Theorem 4.2, with probability 1 − oh (1), the i
′
-walk will

visit at mostO(ln(j + 1)) positions in the range {j, . . . , 2j}, we have

Pr[ξi,i′] ≤ 2 · oh (1) +
ln i′∑
r=lgh

O((2r )α−1 · ln(2r + 1)2)

≤ oh (1). □

4.2 Convergence via bounded covariance
In this section we establish the convergence to the limit forwi =

i−α , for α ∈ [0, 1).1

Fix arbitrarily a set H ⊆ [h]. For k ∈ {h + 1,h + 2, . . . , t}, let
Xk be 1 if position k ultimately copies from some position in H ,

and 0 if position k ultimately copies from some position in [h] \ H .

Later we will choose H to be the set of positions in the history that

contain a given token.

The idea behind the analysis is to bound the variance of the

sum of Xi ’s. This is not immediate since the Xi ’s are not pairwise
independent. To handle this, we focus on the correlation betweenXi
andX j and show that the covariance is vanishing. Once we establish

this, the variance bound is relatively easy and the convergence

result follows by appealing to the Chebyshev’s inequality.

First we analyze the covariance of Xi and X j .

Lemma 4.4. If h < i < j, it holds Cov[Xi ,X j ] < oh (1).

1
We point out that the result in this section does not require the weights to follow a

power law — it only requires the vanishing collisions property of the chosen weights.

We have proved this property forwi = i−α , α < 1, in the previous section.
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Proof. We have that Cov[Xi ,X j ] = E[XiX j ] − E[Xi ]E[X j ]. We

aim to split the probability space into ξ ⊕ ξ , where ξ = ξi, j is the
event “f (i) = f (j)”. We apply the law of total covariance, to get

Cov[Xi ,X j ] =
(
E[XiX j | ξ ] − E[Xi | ξ ] · E[X j | ξ ]

)
· Pr [ξ ]+

+
(
E[XiX j | ξ ] − E[Xi | ¯ξ ] · E[X j | ξ ]

)
· Pr[ξ ]

≤ Pr [ξ ] +
(
E[XiX j | ξ ] − E[Xi | ¯ξ ] · E[X j | ξ ]

)
≤ oh (1) +

(
E[XiX j | ξ ] − E[Xi | ¯ξ ] · E[X j | ξ ]

)
,

where the first inequality follows from 0 ≤ Xi ,X j , Pr[ξ ] ≤ 1, while

the second inequality follows fromTheorem 4.3. It remains to bound

the second term.

Observe that, if ξ happens, i.e., if f (i) , f (j), then the walks from
i and from j will not meet in any position larger than h. Therefore,

E[XiX j | ξ ] − E[Xi | ¯ξ ] · E[X j | ξ ]

=

i∑
i′=h+1

j∑
j′=h+1

j′,i′

(
Pr[f (i) = i ′ and f (j) = j ′ | ξ ]

·

(
E[XiX j | ξ , f (i) = i ′, f (j) = j ′]

−E[Xi | ξ , f (i) = i ′, f (j) = j ′]

· E[X j | ξ , f (i) = i ′, f (j) = j ′]
))

=

i∑
i′=h+1

j∑
j′=h+1

j′,i′

(
Pr[f (i) = i ′ and f (j) = j ′ | ξ ]

·
(
E[XiX j | f (i) = i ′, f (j) = j ′]

−E[Xi | f (i) = i ′, f (j) = j ′]

· E[X j | f (i) = i ′, f (j) = j ′]
) )
.

Now, under the conditioning f (i) = i ′ and f (j) = j ′ (with i ′ , j ′),
we first claim that Xi and X j are independent. Indeed, under that

conditioning, Xi is 1 if and only if c(f (i)) ∈ H , and X j is 1 if and

only if c(f (j)) ∈ H . Since f (i) , f (j), the random position that f (i)
copies from (i.e., c(f (i))) is independent of the random position that

f (j) copies from (i.e., c(f (j))); this showsXi andX j are independent.

It follows that

E[XiX j | f (i) = i ′, f (j) = j ′] =

E[Xi | f (i) = i ′, f (j) = j ′] · E[X j | f (i) = i ′, f (j) = j ′].

Thus,

E[XiX j | ξ ] − E[Xi | ¯ξ ] · E[X j | ξ ]

=

i∑
i′=h+1

j∑
j′=h+1

j′,i′

(
Pr[f (i) = i ′ ∧ f (j) = j ′ | ξ ] · 0

)
= 0.

This establishes Cov[Xi ,X j ] ≤ oh (1). □

For i > h, let

Yi =
i∑

k=h+1

Xk ,

be the number of positions in the range h + 1, . . . , i that ultimately

copy from some position in H . We now bound the variance of this

random variable using the bound on the covariance that we just

established.

Lemma 4.5. For i > h, it holds Var[Yi ] < oh (i
2).

Proof. Let P = {h + 1,h + 2, . . . , i}. By linearity of expectation,

we have that E[Yi ] =
∑
k ∈P Xk . Moreover,

Var[Yi ] = Var

[∑
k ∈P

Xk

]
=

∑
k ∈P

Var[Xk ]+2

∑
{k,k ′ }∈(P

2
)

Cov[Xk ,Xk ′].

Since 0 ≤ Xk ≤ 1, we have Var[Xk ] ≤
1

4
. Then,

Var[Yi ] ≤
|P |

4

+ 2

∑
{k,k ′ }∈(P

2
)

Cov[Xk ,Xk ′]

≤
|P |

4

+ |P |2oh (1)

≤
i

4

+ oh (i
2)

≤
i2

4h
+ oh (i

2)

= oh (i
2). □

With a bound on the variance, we apply Chebyshev’s inequality

to get the convergence result.

Theorem 4.6. It holds that

Pr [|Yi − E[Yi ]| > oh (i)] ≤ oh (1).

Analogously, if we let Zi = Yi/i , it holds that

Pr [|Zi − E[Zi ]| > oh (1)] ≤ oh (1).

For a large enough h, we can then apply the union bound on

each (of the constantly many) tokens, to get the following.

Corollary 4.7. Suppose that there are T tokens (with T = O(1)).
Condition on the sequence of the history to be some σ ∈ [T ]h , and
let Z i = (Zi (1),Zi (2), . . . ,Zi (T )) be the vector containing in its t th
position the fraction of occurrences of token t at time i > h. Then,
|Zi |1 = 1, and Zi converges to E [Zi | σ ], i.e.,

Pr [|Zi − E [Zi | σ ]|∞ > oh (1) | σ ] < oh (1).

That is, after having run the process for h steps, the vector of

occurrences at any later step will be concentrated around its expec-

tation.

4.3 Simulations
We run the process up until a position h, making up the history.

Then, keeping the resulting history fixed, we repeatedly, and in-

dependently, run the process from that history up until time 10h,
keeping track of the final fraction of occurrences of a given token.

In Figure 2, we plot the empirical distribution of the fraction of

occurrences of that token, for h = 100, 1000. While the expectation

is random (it strongly depends on what happens in the h steps of

history), once we condition on the firsth steps, the final distribution

is more concentrated as h becomes larger.
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History length h = 1000, with 536 token occurrences

Figure 2: The empirical distributions (averaged over 10K runs) of the fraction of occurrences of a token, starting from a fixed
random history of length h ∈ {100, 1000} (first and second row), and continuing until time 10h, with α ∈ {0.5, 0.75} (first and
second column). As the length of the history increases, the distribution becomes more concentrated around its expectation.

Moreover, in Figure 3, we plot the empirical probabilities of

reaching a specific position in a history of length h = 100, for

various α ’s, and from various starting points.

5 SINGLE WINNER: α > 2

In this section we show that if the weightswi follow a power law

with exponent greater than 2, then with probability 1 the process

will converge to a “single-winner” limit.

Theorem 5.1. If wi = i−α , for i ≥ 1, α > 2, then the limit Z ∗

exists and is supported on {0, 1} with probability 1.

Proof. As in [1], we study the probability that, starting from a

given position i + 1, all positions copy from some position greater

than or equal i . If this happens, then all the positions greater than

i will end up copying from position i , and therefore all positions

greater than or equal i will end up containing the same token.

We use the same approach in [1], but generalized to wi = i−α ,
as follows:

(i) Let the process go on for some number of steps i .

(ii) Fix j ≥ 1. Then, the probability that the position i + j copies
from some position in {i, i + 1, . . . , i + j − 1} is at least

pj =

∑j
k=1

k−α

ζ (α)
≥

ζ (α) · (1 −O(j1−α ))

ζ (α)
= 1 −O(j1−α ) > 0,

where ζ (·) is the Riemann zeta function.

(iii) Therefore, the probability that for all j ≥ 1, position i + j
copies from some position in {i, . . . , i + j − 1} is at least

qj ≥

∞∏
j=1

(1 −O(j1−α )) =
d∏
j=1

(1 −O(j1−α )) −
∞∑

j=d+1

O(j1−α )

≥

d∏
j=1

(1 −O(j1−α )) −O(d2−α ),

where d can be chosen arbitrarily. In fact one can show that, for

each α > 2, it is possible to choose d so that the probability qj is at
least a constant c(α) > 0.

In other words, with constant probability (bounded away from 0

and 1), all positions greater than i will end up with the same token

that is in position i .
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Figure 3: The empirical distributions (averaged over 1M runs) of reaching a specific position in a history of length h = 100,
starting from positions i ∈ {1000, 10000}, with α ∈ {0.5, 0.75}. The distributions have a strong dependence on α , and a weak
dependence on i.

Now, consider the following process. Begin a phase at the generic

position i:
(i) Let j = 1

(ii) While true

• Flip an independent coin with head probability at least pj
• If it is heads, let j = j + 1; otherwise, break.

Observe that once a phase begins, it has constant probability

of never ending. Moreover, there is a simple coupling from this

process to the original one: we try to begin a streak at i when a

phase begins; if the jth coin is heads, then position i + j copies from
some position in {i, i + 1, . . . , i + j − 1}. Therefore, if all coins in a

phase are heads (i.e., with constant probability), our process will

have converged. If not, our process might have converged on the

token at i or not. In any case, we run another phase on i ′, where
the process will converge on the token on i ′ with at least constant

probability. Since each phase converges with constant probability,

our process will finally converge to a single-winning token with

probability 1. □

6 FUTURE DIRECTIONS
There are a number of open questions about our model as stated:

(1) Can our results be extended for α ∈ [1, 2]?

(2) Does Z ∗
always exist for any vector of weights ®w?

(3) What can be said about the support ofZ ∗
? In what situations

is it supported over [0, 1] or just at {0, 1}?

Additionally, there are a set of models with more complex dy-

namics that show some connections to our simpler model:

• Modern sequence models based on attention [2] incorporate

more features of the input, and more interactions among

tokens of the history; the model we study represents a very

special case of an attention-weighted ML sequence model.

• There are also models that directly capture the copying of

tokens from the input to the output, such as Copynet [7] and

Neural Turing Machines [6].

These more complex models differ from ours in multiple respects,

raising a number of questions:

(1) Can our results cover settings in which attention weights

are only indirectly coupled to final probabilities of tokens?

Such models may be fundamentally different, as a token may

support the appearance of a different token.

(2) Can our results extend to introduce weights that are depen-

dent on item embeddings?

(3) Can our results cover softmax normalization, rather than the

normalization we use? It is easy to see that the results would

be different, even for the classical Pólya case (i.e., uniform

weights). With softmax and uniform weights, there seems

to be a single winner with non-zero probability, which is in

contrast with the classical case.

(4) Can our results extend to multiple attention heads [13]?

(5) Can our results extend to learned attention weights that are

dependent on additional elements such as the context and

the features of a particular attention position?
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