
Discrete Choice, Permutations, and Reconstruction

Flavio Chierichetti∗

Sapienza University of Rome
Rome, Italy

flavio@di.uniroma1.it

Ravi Kumar
Google

Mountain View, CA
ravi.k53@gmail.com

Andrew Tomkins
Google

Mountain View, CA
atomkins@gmail.com

Abstract

In this paper we study the well-known family of Random
Utility Models, developed over 50 years ago to codify
rational user behavior in choosing one item from a finite
set of options. In this setting each user draws i.i.d.
from some distribution a utility function mapping each
item in the universe to a real-valued utility. The user
is then offered a subset of the items, and selects the
one of maximum utility. A Max-Dist oracle for this
choice model takes any subset of items and returns the
probability (over the distribution of utility functions)
that each will be selected. A discrete choice algorithm,
given access to a Max-Dist oracle, must return a
function that approximates the oracle.

We show three primary results. First, we show
that any algorithm exactly reproducing the oracle must
make exponentially many queries. Second, we show an
equivalent representation of the distribution over utility
functions, based on permutations, and show that if this
distribution has support size k, then it is possible to
approximate the oracle using O(nk) queries. Finally,
we consider settings in which the subset of items is
always small. We give an algorithm that makes less than
n(1−ε/2)K queries, each to sets of size at most (1−ε/2)K,
in order to approximate the Max-Dist oracle on every
set of size |T | ≤ K with statistical error at most ε. In
contrast, we show that any algorithm that queries for
subsets of size 2O(

√
logn) must make maximal statistical

error on some large sets.

1 Introduction

In this paper we study the problem of discrete choice,
in which a user must select exactly one element from
a discrete set of alternatives. Discrete choice models
are widely used in marketing (choice of a brand), urban
planning (choice of transportation), politics (choice of
a leader in an election), finance (choice of investments),

∗Work done in part while visiting Google. Supported in part

by a Google Focused Research Award, by the ERC Starting Grant
DMAP 680153, and by the SIR Grant RBSI14Q743.

and many other fields. Nonetheless, little is know about
the availability of algorithms with provable guarantees,
or the hardness of answering or approximating basic
questions such as the likelihood of a particular choice.

We begin with a brief introduction to the classical
setting, and then give an overview of our results. Let
[n] be the universe of items and ∅ 6= T ⊆ [n] be the
choice set of options available to a decision maker (also
for brevity called a user). A discrete choice model is a
function f mapping from a choice set T to a distribution
over the elements of T indicating the probability that
each element will be chosen. In general, for subsets
S, T ⊆ [n], the distributions f(S) and f(T) need have
no connection, even if S and T are highly overlapping.
Information on f(T) for all subsets T 6= S will give
no information about f(S). In real-life applications,
however, there are typically exploitable connections
between a user’s behavior when faced with a choice set
T versus a highly overlapping choice set T ′.

Random utility models. There is a large and
highly-studied subclass of discrete choice models called
Random Utility Models, or RUMs, that impose some
lightweight consistency constraints on overlapping
choice sets. In these models, each successive choice is
undertaken by a new user, drawn i.i.d. from a distri-
bution of users. The user is represented by a vector
~u ∈ Rn representing the utility this user will accrue by
selecting each item of the universe. For a choice set T ,
the user behaves rationally by selecting arg maxt∈T u[t].
For each successive choice, a new utility vector is drawn
i.i.d. from the joint distribution, a new choice set is pre-
sented, and a new decision is registered. This model
dates back to work of Marschak in 1960 [10], and is well
studied in the behavioral sciences community.

Two overlapping subsets T and T ′ = T ∪ {i} may
be presented to users with different utility functions,
yielding very different choice patterns, but the fact that
utility functions are drawn independently from the same
distribution suggests that the distributions for T and
T ′ are now connected in some way. For example, by
construction, it is clear that for any element j ∈ T ,

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

we must have Pr[j | T] ≥ Pr[j | T ′]. Similarly, Pr[j |
T] − Pr[j | T ′] ≤ Pr[i | T ′]. Such observations suggest
that RUMs are much more constrained than general
discrete choice models, and hence raise the question of
learning a RUM from queries.

(For readers familiar with discrete choice, we should
provide one paragraph of additional context. Classi-
cally, the utility u[t] is usually broken into two com-
ponents: u[t] = vt + εt. vt is based on factors known
to the algorithm, while εt is a random noise variable
representing the error in the algorithm’s knowledge. vt
is sometimes taken to be a linear combination of known
features of the current context, or is sometimes taken to
be a constant underlying quality of item t, fixed across
all the choices we observe. We adopt this latter view,
which justifies our decision to treat the vector of utili-
ties ~u as a random variable drawn i.i.d. for each choice
from a joint utility distribution.)

As the user is rational, two utility vectors that or-
der the elements of [n] identically will yield the same
decisions for every choice set. Thus, any RUM may
be presented as a distribution over the set of permuta-
tions of [n], rather than over the continuous space Rn;
we adopt the former more manageable representation
henceforth. Our goal is to study whether it is possi-
ble, given access to one of several possible oracles for
a particular RUM, to return a function mapping choice
sets to distributions of the probability each item will be
selected.

1.1 Our contributions In this paper we make the
following contributions. First we show that Ω(2n)
queries are required to exactly reconstruct a RUM.
Next, we show that RUMs representable using only k
permutations may be learned in O(nk) queries. We
then show that queries to choice sets of bounded size
yield maximally bad approximations in total variation
distance on large sets. However, with knowledge of the
distribution for all choice sets of size k, an algorithm
may approximate distributions for choice sets of size
up to K with total variation distance at most 1− k/K.
Finally, we show that any RUM may be approximated to
any constant total variation distance by another RUM
with O(n2) permutations; we discuss below why this
does not contradict our first two contributions above.
We now give a brief overview of these results.

Exact reconstruction lower bound. We begin in
Section 3 with a general lower bound showing that, for
an arbitrary RUM, exponentially many choice sets must
be observed in order to reconstruct for every choice set
the distribution of each item being selected within a
total variation distance of o(2−(3/2)n). This negative
result implies that it is not possible to develop a general

exact algorithm for determining choice probabilities in
RUMs.

Algorithm for bounded support. Our main posi-
tive result gives an algorithm (Section 4) to learn RUMs
with support over only polynomially many permuta-
tions. The result is as follows: given a RUM that is ex-
pressible as a distribution over k permutations, there is
an algorithm that makes O(nk) queries to an oracle pro-
viding the exact likelihood that each element of a choice
set will be chosen, and returns a function that will pro-
vide the exact choice distribution for every choice set.
This algorithm does not directly represent the permuta-
tions; in fact, we show that there exist RUMs that can
be represented using any of two disjoint distributions
over permutations.

Small subsets bounds. In common practical settings,
users are offered choice sets T that are small relative
to the entire universe [n], e.g., a video recommender
system that may offer 100 movies to the user from
a database of millions. In this context, we give an
algorithm (Section 5.2) such that, for any K and any
ε ∈ [0, 1], with less than n(1−ε)K queries, each to sets
of size at most (1 − ε)K, we can determine the choice
distribution of every |T | ≤ K with total variation error
ε. In contrast, we show (Section 5.1) that based on
arbitrarily many examples of choices over sets T with
|T | ≤ lg n, any algorithm must make maximal total
variation error on some (large) sets.

Concise representations. We show in Section 6
that any RUM may be approximated with total vari-
ation ε for any ε > 0 by another RUM supported
on only O(n2/ε2) permutations. Using this coreset-
type result, we show that polynomial-size mixed logit
models may approximate any RUM, which improves
over the exponential-size upper bound of McFadden and
Train [11].

The coreset result seemingly suggests an algorithm
to learn general RUMs by learning its small-support
representation instead using our algorithm in Section 4.
Unfortunately we show that this approach does not
work: using our algorithm to learn the small-support
RUM in this fashion would require sampling directly
from the small-support RUM. As we may only sample
from the large-support RUM at total variation distance
ε, the small errors in approximation would cascade.

Our work may be viewed as a very preliminary
step towards establishing a clean theoretical footing for
discrete choice algorithms. There remain large gaps
between the upper bounds and lower bounds we show,
suggesting there is much more to be done in resolving
the complexity of discrete choice problems.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

1.2 Related work For a small but crucial subclass
of RUMs, there is a well-known efficient algorithm
that is in common use, called the multinomial logit,
or MNL. To describe the model, we revisit our earlier
observation that the utility u[t] of selecting item t
may be decomposed as u[t] = vt + εt. In MNL, the
probability that an element t is selected from a choice
set is proportional to vt:

Pr[decision maker selects t ∈ T] =
vt∑
s∈T vs

.(1.1)

For two items s and t, (1.1) implies that Pr[u[s] >
u[t]] = Pr[vs + εs > vt + εt] = Pr[εs − εt > vt − vs] =
vs/(vs + vt). This condition on the difference of two
random variables holds if and only if the noise term εt
is drawn i.i.d. from a Gumbel distribution with CDF
F (x) = e−e

(−x)
; see [13] for a proof.

If we believe that our estimate of utility has error
with this doubly-exponential CDF (a belief that may be
verified by a number of statistical tests), then MNL may
be employed to learn the base utilities vt by an efficient
convex optimization. However, the special structure
imposes many restrictions. For example, as observed by
Luce in 1959 [8], the inclusion of an additional element
in the choice set T must from (1.1) reduce the likelihood
of all other elements by the same fraction. In many
settings this is unlikely. Consider for example a user
choosing between a Vegan restaurant and a Steak house.
If another, better quality Steak house is added to the
choice set, users who would originally have chosen Steak
will probably switch, while users who would originally
have chosen Vegan will probably not switch; thus the
new Steak house would “cannibalize” probability more
heavily from the original Steak house, and multinomial
logit would not be appropriate.

As the restrictions on multinomial logit are so
strong, the discrete choice community has for the last
five decades introduced a wide range of additional
models within the RUM framework. Other than MNL,
almost all such models are non-convex, do not have
algorithms with any guarantees, and are typically solved
using simulation. See [13] for a survey.

It is known [11] that so-called mixed logit mod-
els, which are linear combinations of multiple MNL
models, may ε-approximate any RUM. However, less
is known about provably learning these models and ex-
isting heuristics typically require expensive techniques
based on simulation for a mixture of small constant
number of MNLs,1 while the best-known approxima-

1For full disclosure, as we describe below, we have another
submission at this conference with a result showing that mixed

logit models of exactly two MNL components may be learned
exactly in polynomial time.

tion required exponentially many mixture components.
As a direct corollary of our results, we show that mixed
logits with polynomially many MNLs are sufficient to
ε-approximate any RUM, but the practical difficulty of
learning mixed logits of this size remains.

We show that exact learning of general RUMs is im-
possible with sub-exponential oracle queries. Our main
algorithm however is incomparable with the algorithms
for MNL, as MNL RUMs in general have exponential
support when represented as permutations, while RUMs
with polynomial support are not in general MNLs. Like-
wise, our bounds in Section 6 show that results from sets
of one size may be parlayed into results for sets that are
a constant factor larger, with some loss in accuracy, but
that sets that are significantly larger may have arbitrar-
ily large error.

As discussed before, there has been little work on
algorithmic questions in discrete choice. Learning the
structure of a nested logit model was studied in [2]. For
the problem of learning MNL mixtures, there has been
some attempts at algorithms with provable guarantees:
the setting of low-dimensional structure was considered
in [7], the case when each MNL is “geometric” was
solved in [1], and using pairwise comparisons to learn
was studied in [12]. Blanchett et al. [3] proposed a choice
model based on Markov chains and obtain some algo-
rithmic results for learning in this model; see also [6].
Farias et al. [5] study the problem of learning the “spars-
est” RUM, in the sense of fewest permutations, which
is consistent with a set of observations. However, none
of these is directly related to the questions we address.

2 Preliminaries

2.1 Notation Let [n] = {1, . . . , n} and let Sn be
the set of permutations of the set [n]. For a given
permutation π ∈ Sn and for i ∈ [n], we let π(i) ∈ [n]
be the position (or rank) of element i in π. E.g., if
π = (3, 1, 4, 2), then π(3) = 1, π(1) = 2, π(4) = 3 and
π(2) = 4. We use 2[n] to denote the powerset of [n] and(

[n]
k

)
to denote the set of subsets of [n] of size k.

Given a permutation π ∈ Sn and T ⊆ [n], let

π∗(T) = arg max
i∈T

π(i),

i.e., the maximum element in the subset T according to
π.

Let supp(D) denote the support of a distribution
D. We use x ∼ D to denote that x ∈ supp(D) is sam-
pled according to D. The total variation distance be-
tween discrete distributions D and D′ with supp(D) =
supp(D′) is equal to |D−D′|tv = 1

2

∑
x∈supp(D) |D(x)−

D′(x)| = 1
2 |D −D

′|1.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

2.2 Query models Let D be a distribution over Sn.
Given a set ∅ ⊂ T ⊆ [n], we use DT to denote the
distribution of the random variable π∗(T) for π ∼ D.
Note that supp(DT) ⊆ T . A Max-Sample oracle for D
is a random function 2[n] 7→ [n] that on an input subset
∅ ⊂ T ⊆ [n], returns x ∼ DT , i.e., a random element
x ∈ T according to DT . A Max-Dist oracle for D is
a function 2[n] 7→ Rn that on an input ∅ ⊂ T ⊆ [n],
returns the entire distribution DT .

It is clear that the Max-Sample oracle is prac-
tically more meaningful but strictly weaker than the
Max-Dist oracle. However, it is easy to see that we
can use the Max-Sample oracle to approximate the
output of the Max-Dist oracle. Indeed, consider the
following definition: an (ε, δ)-approx-Max-Dist oracle
for D is a function that on an input ∅ ⊂ T ⊆ [n], re-
turns a distribution2 D̃T such that:

• Pr
[
|D̃T −DT |tv ≤ ε

]
≥ 1− δ, and

• supp(D̃T) ⊆ supp(DT).
Using sampling and standard tail bounds, the following
is immediate.

Observation 2.1. A sample of an (ε, δ)-approx-Max-
Dist oracle for D, for a given set T , can be obtained

with O(ε−2|T | log |T |δ) independent calls to a Max-
Sample oracle for D, with T as its input.

Recall the goal in this work. We are given access to a
Max-Sample oracle (or to a Max-Dist oracle, or to an
approx-Max-Dist oracle). Our goal to approximately
reconstruct DT for each T ⊆ [n] or for each T ⊆ [n] of
a certain size. The computational question then is how
to do this with as few oracle accesses as possible, i.e.,
can we somehow use the values of DT for several T ’s to
reconstruct DS for an arbitrary S? As indicated in the
Introduction, motivated by practical considerations, we
also study settings when we place certain restrictions on
the type of oracle accesses—bounds on the size of the
input subset to the oracle.

2.3 Relationship to RUMs We make the follow-
ing observation, which we already stated in the Intro-
duction, explicit here. Recall the definition of RUMs:
each choice is associated with a vector of utilities drawn
from some joint utility distribution and for a choice set,
the decision maker behaves rationally by selecting the
element in the choice set with the maximum utility.

Observation 2.2. For each RUM there exists a distri-
bution on Sn inducing the same DT , for each ∅ ⊂ T ⊆
[n].

2Observe that the distribution D̃(T) is a random variable itself.

Proof. Suppose that a random sample from the RUM
produces the utilities ~u and given a subset T , outputs
the element x ∈ T such that u[x] is maximum. The
utilities ~u induce a natural total preorder on [n] and
let π be a uniform permutation between its linear
extensions. Then an equivalent permutation oracle can
return π∗(T). �

3 A general lower bound

We first show that, even with the powerful Max-Dist
oracle, one needs to query Ω(2n) sets to be able to
exactly reconstruct all distributions DT for all T ⊆ [n],
with constant probability. Obtaining a similar lower
bound in the less powerful Max-Sample oracle case is
much easier; we omit the details in this version.

Our proof proceeds by showing that there exist
RUMs that induce the uniform distribution over all
subsets except for a special planted subset S of size
k, for which a specific element has probability that
is slightly larger (by 1/βn,k, defined below) than its
neighbors. We start with a technical lemma giving the
construction. For a non-empty set T , let UT be the
uniform distribution on set T . Let

βn,k =

(
n

n− k, bk−1
2 c, d

k−1
2 e, 1

)
,

denote the multinomial coefficient. If k = cn, it holds
that 1/βn,k = Θ

(
2−(c+H(c))·n).

Lemma 3.1. Let k ≥ 2, n ≥ k, S ∈
(

[n]
k

)
and s ∈ S

be given. Then, there exists a probability distribution
D = D(s,S,n) over Sn such that:
• for each ∅ (T ⊆ [n], T 6= S, DT = UT ,
• DS(s) = 1

|S| + 1
βn,k

,

and hence |DS − US |tv ≥ |DS − US |∞ ≥ 1/βn,k.

Proof. By relabeling, without loss of generality, we
assume S = [k] and s = 1. Given a permutation π,
we write π to denote the set of the k bottom elements
of π. Let

ci = 1− (−1)i ·
(
k−1
i−1

)(k−1
b k−1

2 c
) .

If C =
∑k
i=1 ci, then note that

C =

k∑
i=1

ci = k − 1(
k−1
i−1

) · k∑
i=1

(
(−1)i ·

(
k − 1

i− 1

))
= k,(3.2)

using
∑k
i=1(−1)i ·

(
k−1
i−1

)
= 0.

We first define D explicitly:

D(π) =

{
1/n! π 6= [k],

cπ(1)/n! otherwise.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Observe that

P ′ =
∑
π∈Sn
π 6=[k]

D(π) = (n!− (n− k)! · k!) · 1

n!

= 1−
(
n

k

)−1

,(3.3)

and using (3.2),

P ′′ =
∑
π∈Sn
π=[k]

D(π) =

k∑
i=1

ci
n!
· (k − 1)! · (n− k)!

=
(k − 1)! · (n− k)!

n!
·
k∑
i=1

ci =

(
n

k

)−1

.(3.4)

(3.3) + (3.4) shows that D is indeed a probability
distribution.

Next, by symmetry, we have that if 1 6∈ T , then
the projection of a random permutation π ∼ D on T is
going to be uniform at random. It follows that for any
∅ ⊂ T ⊆ [n], Pr[π∗(T) = i] = Pr[π∗(T) = j] for each

{i, j} ∈
(
T\{1}

2

)
.

Thus, there only remain to be shown that: (i)
Pr[π∗([k]) = 1] = 1

k + 1
βn,k

and (ii) Pr[π∗(T) = 1] = 1
|T |

for each T such that T 6= [k] and 1 ∈ T .
To prove (i), observe that

Pr[π∗([k]) = 1] =
1

k
· P ′ + ck

C
· P ′′

=
1

k

(
1−

(
n

k

)−1
)

+
1

k

(
1 +

(
k − 1

bk−1
2 c

)−1
)(

n

k

)−1

=
1

k
+

1

k
·
bk−1

2 c! · d
k−1

2 e! · k! · (n− k)!

(k − 1)! · n!

=
1

k
+

1

βn,k
.

We move on to (ii). Suppose that t = |T |, ` =
|T ∩ ([k] \ {1})| and u = t − 1 − `. Now, if u ≥ 1,
we have that no permutation π such that π = [k]
satisfies π∗(T) = 1, since there will always exists some
element in T that π ranks higher than all the elements
in [k]. Therefore, the sum making up Pr[π∗(T) = 1]
is composed only of permutations π such that π 6= [k].
But, each of those permutations has probability 1/n!
and hence Pr[π∗(T) = 1] = 1/|T |.

Last, we address the case u = 0. In that case, we
have {1} ⊂ T ⊂ [k], thus 0 ≤ ` ≤ k − 2. Then,

Pr[π∗(T) = 1] =
1

`+ 1
· P ′ +

∑k
i=`+1

(
ci ·
(
i−1
`

))
C ·
(
k−1
`

) · P ′′.

We begin by solving the sum in the expression:

k∑
i=`+1

(
ci ·
(
i− 1

`

))

=

k∑
i=`+1

1− (−1)i ·
(
k−1
i−1

)(k−1
b k−1

2 c
)
 · (i− 1

`

)
=

k∑
i=`+1

(
i− 1

`

)
+

(
k − 1

bk−1
2 c

)−1

·
k∑

i=`+1

(
(−1)i ·

(
k − 1

i− 1

)
·
(
i− 1

`

))

=

(
k

`+ 1

)
+

(
k − 1

bk−1
2 c

)−1

·
k∑

i=`+1

(
(−1)i ·

(
k − 1

`

)
·
(
k − `− 1

i− `− 1

))

=

(
k

`+ 1

)
+

(
k − 1

bk−1
2 c

)−1

·
(
k − 1

`

)

·
k−`−1∑
i=0

(
(−1)i+`+1 ·

(
k − `− 1

i

))
=

(
k

`+ 1

)
,

since
∑k−`−1
i=0

(
(−1)i+`+1 ·

(
k−`−1

i

))
= 0. Using this,

we finally get

Pr[π∗(T) = 1] =
1

`+ 1
· P ′ +

(
k
`+1

)
k ·
(
k−1
`

) · P ′′
=

1

`+ 1
· P ′ +

k
`+1 ·

(
k−1
`

)
k ·
(
k−1
`

) · P ′′ =
1

`+ 1
=

1

|T |
. �

Observe that, as long as k ≤ n
2 , we have 1

βn,k
≥

Ω
(
2−3n/2

)
. Moreover, for any fixed constant k ≥ 2,

we have 1
βn,k

= Θ(n−k).

Corollary 3.1. At least Ω(2n) calls to Max-Dist
oracle are necessary in order to reconstruct, for all
∅ ⊂ T ⊆ [n], DT to within a total variation error (or
`∞-error) of o

(
2−3n/2

)
.

Proof. Suppose that D is chosen as follows: let S be
a uniform at random subset of cardinality in the range
[bn/2c] \ {1} and let s ∈ S be a uniform at random
element of S. Let D = D(s,S,n) of Lemma 3.1. Then, an
algorithm has to obtain the distributions of a constant
fraction of the subsets of [n] to get, with probability
Ω(1), a maximum `∞-error (and hence total variation

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

error) of o
(
2−3n/2

)
for the distribution of each subset,

in particular, for the distribution DS of the unknown
set S. �

An analogous proof (omitted) can be used to show that,
for each constant k ≥ 2, Ω(nk) queries are needed to get
within a total variation (or `∞-) error of o(n−k) from
each true set distribution.

4 Algorithms for bounded support

Given the strong lower bound in Section 3, we turn to
what is algorithmically possible with some reasonable
assumptions. To this end, in this section we assume that
the unknown distribution D has support on at most k
permutations. For this important special case, we will
give two algorithms that can be used together to solve
the problem. Since the representation of a RUM as per-
mutations need not be unique, so we do not seek to
learn the permutations exactly. Instead, the first algo-
rithm (Lemma 4.1) learns some properties of the permu-
tations. Specifically, it inductively finds subsets that lie
(in arbitrary order) at the head of at least one permuta-
tion, followed immediately by a specific element. There
are only polynomially many such (set, element) pairs,
and they can all be reconstructed in O(nk) Max-Dist
oracle accesses. The second algorithm (Theorem 4.1)
then uses these probabilities to compute DT for any T .
In fact we will also show how one can use (ε−1nk)O(1)

Max-Sample oracle queries to get an arbitrarily good
approximations of DT .

Lemma 4.1. Suppose |supp(D)| = k. Then, using
O(nk) calls to the Max-Dist oracle we can compute
for each set S ⊆ [n], and for each s 6∈ S, the probability
PS,s that the returned permutation (i) has the elements
of S (in an arbitrary order) in its first |S| positions and
(ii) has element s in its (|S|+ 1)st position.

Proof. Observe that, for any c = 0, . . . , n− 1, there are
at most k pairs (S, s) such that |S| = c and PS,s > 0.
Indeed, if otherwise, |supp(D)| > k.

We will prove the claim by induction on c = |S|; we
will show that, given PT,t for each |T | ≤ c− 1, by using
at most k Max-Dist oracle queries, we can compute
PS,s for each s 6∈ S such that c = |S|.

For the base case c = 0 (i.e., S = ∅), the claim is
trivial. A a single Max-Dist oracle query on the full
set will give us P∅,t for each t ∈ [n].

Now, suppose that the claim is true for c − 1 ≥ 0.
For each pair (T, t), such that |T | = c− 1 and PT,t > 0,
we perform a Max-Dist oracle query on the set [n] \ S
for S = T ∪ {t}. Let M[n]\S,x be the probability that x
wins in the set [n] \ S. Now, observe that:
• If there exists no pair (T, t) such that S = T ∪ {t}

and such that PT,t > 0, then PS,s = 0.

• Instead, if there exists some pair (T, t) such that
S = T ∪ {t}, then we have:

(4.5) PS,s = M[n]\S,s −
∑
T⊂S

PT,s.

Indeed, the probability that the elements of S are in
the first |S| positions and that s is in the (|S|+1)st
position is equal to the probability that s is the first
element in the subset [n] \S, minus the probability
that s ends up in some of the first |S| positions.

Thus, we make O(k) Max-Dist oracle queries for each
c = 0, . . . , n − 1. The total number of queries is then
O(nk). �

Corollary 4.1. Using O(nk) calls to an
(ε/nk, (nk)−2)-approx-Max-Dist oracle we can,
with probability 1 − o(1), compute for each s 6∈ S, ap-
proximations P̂S,s of PS,s such that |P̂S,s−PS,s| = O(ε).

Proof. Define P̂S,s = M̂[n]\S,s −
∑
T⊂S P̂T,s, where

M̂[n]\S,s is obtained from an (ε/nk, (nk)−2)-approx-
Max-Dist oracle. Now, if we unwind the recursive
expression of P̂S,s in (4.5), stating it only in terms of the

M̂S,s’s, we obtain the following. (i) Each M̂S,s will have
a coefficient bounded between [−1,−1]; (ii) MS,s = 0

implies M̂S,s = 0; (iii) the number of non-zero MS,s can

be upper bounded by O(nk), and (iv) |M̂S,s −MS,s| ≤
ε/nk. Thus, we have |P̂S,s − PS,s| ≤ O(ε). �

Lemma 4.1 and Corollary 4.1 immediately yield the
following.

Theorem 4.1. Suppose |supp(D)| = k. Using O(nk)
Max-Dist oracle queries, we can compute DT for
any set T ⊆ [n]. Using O(ε−2n5k2 log(kn)) Max-
Sample oracle queries, we can compute with probability
1 − o(1), for any T ⊆ [n], a distribution D̃T such that
|D̃T −DT |tv ≤ O(ε).

Proof. Using O(nk) Max-Dist oracle queries, we com-
pute PS,s, for all S ⊆ [n] and for all t ∈ [n] \ S. Now,
let ∅ 6= T ⊆ [n] be a subset and let t ∈ T . We have:

Pr[π∗(T) = t] =
∑

S⊆[n]\T\{t}

PS,t.

As in the proof of Corollary 4.1, we note that∑
S⊆[n]\T\{t} P̂S,t is composed of at most O(nk) non-

zero M̂S,s’s. Thus, an (ε/(n2k), (nk)−2)-approx-Max-
Dist oracle would give us an approximation error of ε/n
for Pr[π∗(T) = t], since |T | ≤ n. Claim 2.1 guarantees
that an (ε/(n2k), (nk)−2)-approx-Max-Dist oracle can
be realized with O(ε−2n5k2 log(nk)) queries to a Max-
Sample oracle. �

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

4.1 On learning the rank of an element Having
established our algorithm for RUMs with support on
at most k permutations, one may ask whether the
proof techniques employed here generalize to larger
support. We offer some negative evidence regarding
such extensions.

Recall that PS,s, for S ⊂ [n] and s ∈ [n] \ S, is the
probability that a random permutation has the elements
of S in its first |S| positions in any order, and that it
has element s in its (|S|+ 1)st position. In the proof of
Lemma 4.1 we have demonstrated an observation that
we now make explicit.

Observation 4.1. PS,s = D[n]\S(s)−
∑
T⊂S PT,s.

With this observation, we could learn, given sufficiently
many queries, the distribution of the rank of an element
in the random permutation. Indeed, the probability
that element s ends up in position k + 1 is then equal
to
∑
S∈([n]\{s}

k) PS,s.

In contrast, we now show that learning the distri-
bution of the rank of a specific element s in the random
permutation requires Ω(2n) Max-Dist oracle queries.

Theorem 4.2. An (adaptive) algorithm needs Ω(2n)
Max-Dist oracle queries to distinguish whether an ele-
ment appears with probability 1 in odd-ranked positions
or appears with probability 1 in even-ranked positions.

Proof. For simplicity, let s = 1. Consider the following
two processes to generate different distributions over
permutations:
• In process E , (i) select a subset S ⊆ {2, . . . , n} u.a.r

of even cardinality; (ii) permute S u.a.r. obtaining
a permutation πh; (iii) permute {2, . . . , n} \ S
u.a.r. obtaining permutation πt; (iv) return the
permutation πh · (1) · πt.
• In process O, (i) select a subset S ⊆ {2, . . . , n} of

odd cardinality; and follow (ii)–(iv) as in process E .
By symmetry, in both processes E and O, the max
distribution of any set S will give the same probability
to each element of S \ {s}. Moreover, if s ∈ S and S
contains exactly c other elements (so that |S| = c+ 1),
then (i) if c < n − 1, then both E and O will give
probability 2−c to s and (ii) if c = n−1 (so that S = [n]),
then E will choose element s with probability 0, while
O will choose element s with probability 22−n.

The algorithm, to distinguish between E and O,
then has to perform Ω(2n) Max-Dist oracle queries
on the slate [n]. Moreover, since the supports of the
distributions of the rank of s in E and O are disjoint,
the algorithm requires Ω(2n) Max-Dist oracle queries
to learn anything about the distribution of s to within
a total variation error smaller than 1. �

5 Queries with bounded subset sizes

We now turn to the situation in which oracle queries are
possible only for subsets of bounded size. This situation
arises naturally when it is not reasonable to offer the
user an enormous slate of options. We first show in
Section 5.1 that even super-polylogarithmic bounds on
subset size are limiting enough to force any algorithm to
make worst-case statistical error on some sets. On the
flip side, we then show in Section 5.2 that if the queried
subsets are of a certain size, then one can reasonably
approximate DS for subsets S of slightly larger size.

5.1 High-distance lower bounds We first show
that if the queried subsets have size at most lg n (im-

proved later to 2Θ(
√

logn)), one cannot avoid making the
maximum possible statistical error while reconstructing
DT for some T . We use an intriguing connection: these
lower bounds are based on the lower bounds of [4,9] for
the k-deck reconstruction problem.

We begin by stating our first lower bound.

Theorem 5.1. Let n = 2i for i ∈ Z+. Then, there are
two distributions D,D′ over Sn such that:
• for each set Q ⊆ [n], with |Q| ≤ lg n, it holds
DQ = D′Q and

• supp
(
D[n]

)
∩ supp

(
D′[n]

)
= ∅ and thus∣∣∣D[n] −D′[n]

∣∣∣
tv

= 1.

The distributions D and D′ that we are going to use
are based on the Prouet–Thue–Morse (PTM) sequence
{si}∞i=0. Let s0 = (1), and si+1 = si·(−si), where · is the
concatenation operator, and −x is the complement of x
(i.e., if x = (x1, . . . , xn) then −x = (−x1, . . . ,−xn)).
For example, the first four terms of the PTM sequence
are: s0 = (1), s1 = (1,−1), s2 = (1,−1,−1, 1) and
s3 = (1,−1,−1, 1,−1, 1, 1,−1).

Given a sequence (or a string) s, the k-deck of s is
the multiset of k-subsequences of s. Thus, the k-deck of
s has cardinality

(|s|
k

)
. We use the following result.

Theorem 5.2. (Manvel et al. [9]) For each i ≥ 0,
and for each 0 ≤ k ≤ i, the k-deck of si equals the k-deck
of −si.

We can now prove Theorem 5.1:

Proof. We will use the following two distributions D
and D′. For D, supp(D) will be equal to the set of
permutations of [n] that have the elements of [n/2] in
the positions where si has value 1. Likewise, for D′,
supp(D′) will be equal to the set of permutations of [n]
that have the elements of [n/2] in the positions where si
has value −1. Both D and D′ will choose u.a.r. in their
supports. (For example, if i = 2, D will choose u.a.r.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

in {(1, 3, 4, 2), (2, 3, 4, 1), (1, 4, 3, 2), (2, 4, 3, 1)} and D′

will choose u.a.r. in {(3, 1, 2, 4), (3, 2, 1, 4), (4, 1, 2, 3),
(4, 2, 1, 3)}.)

First, observe that by construction, supp
(
D[n]

)
=

[n/2] and supp
(
D′[n]

)
= [n] \ [n/2], and hence the

supports of D[n] and D′[n] are disjoint.

Next, consider any set Q ⊆ [n] such that |Q| ≤
lg n. We give a bijection f between supp(D) and
supp(D′) that guarantees that the relative ordering
of the elements of Q remains equal in π and f(π).
This directly implies that the probability that the
distribution of the maximum element of Q does not
change from D to D′.

By Theorem 5.2, there exists a bijection b between
the |Q|-tuples of indices of si and the |Q|-tuples of
indices of −si that preserves ordering and values.

Now, consider some π ∈ supp(D). Let x be the
tuple containing the |Q| indices of the elements of Q
in π. The permutation f(π) will have the elements
of Q, in the same order of π, in the indices b(x).
Assign the elements of [n/2] \Q, in sorted order, to the
unoccupied positions of f(π) whose corresponding value
in si is 1, and assign the elements of ([n] \ [n/2]) \ Q,
in sorted order, to the unoccupied positions of f(π)
whose corresponding value in si is −1. Observe: (i)
f(π) ∈ supp(D′); (ii) f−1(f(π)) = π; and (iii) π and
f(π), when restricted to Q, are equal.

Since |supp(D)| = |supp(D′)| and since D and D′

choose uniformly at random in their respective supports,
we have that DQ = D′Q. �

Finally, we show the following stronger lower bound,
built in a manner equivalent to the one above, but using
the stronger k-deck reconstruction lower bound of Dud́ık
and Schulman [4]; we omit the proof in this version.

Theorem 5.3. For each n in an increasing infinite
sequence, there exists two probability distributions D
and D′ over permutations of [n], such that:

• for each set Q ⊆ [n], with |Q| ≤ 2Θ(
√

logn), it holds
DQ = D′Q;

• supp
(
D[n]

)
∩supp

(
D′[n]

)
= ∅,

∣∣∣D[n] −D′[n]

∣∣∣
tv

= 1.

5.2 Approximating large subsets with small
subset queries We now show that, if one has access
to DT for T ’s of a certain size, one can get reasonable
approximations to DS for S’s that are not much larger.

Theorem 5.4. For any K > k, if we are given DT for
all |T | = k then for any set S, |S| = K, we can find D̃S

such that |D̃S −DS |tv ≤ 1− k
K .

Proof. Let DT (i) be the probability of i in DT . The
algorithm we will employ is simple: for a given set S,

with |S| = K, return the distribution

A
(k)
S =

(
K

k

)−1 ∑
T∈(Sk)

DT .

We have,

DS(i)−A(k)
S (i)

=
∑
π

(
D(π) ·

(
[π∗(S) = i]−

∑
T∈(Sk)

[π∗(T) = i](
K
k

)))

=
∑

π|π∗(S)=i

(
D(π) ·

(
1−

∑
T∈(Sk)

[π∗(T) = i](
K
k

)))

−
∑

π|π∗(S)6=i

(
D(π) ·

∑
T∈(Sk)

[π∗(T) = i](
K
k

))

=
∑

π|π∗(S)=i

(
D(π) ·

(
1−

(
K−1
k−1

)(
K
k

)))

−
∑

π|π∗(S)6=i

(
D(π) ·

∑
T∈(Sk)

[π∗(T) = i](
K
k

))

=

(
1−

(
K−1
k−1

)(
K
k

)) · Pr [π∗(S) = i]

−
∑

π|π∗(S)6=i

(
D(π) ·

∑
T∈(Sk)

[π∗(T) = i](
K
k

))

=

(
1− k

K

)
· Pr [π∗(S) = i]

−
∑

π|π∗(S)6=i

(
D(π) ·

∑
T∈(Sk)

[π∗(T) = i](
K
k

))

≤
(

1− k

K

)
· Pr [π∗(S) = i] .

Thus,∑
i∈S

max
(

0, DS(i)−A(k)
S (i)

)
≤

∑
i∈S

((
1− k

K

)
· Pr [π∗(S) = i]

)
= 1− k

K
.

Since both DS and A
(k)
S are probability distributions,

we have∑
i

max
(

0, DS(i)−A(k)
S (i)

)
=

∑
i

max
(

0, A
(k)
S (i)−DS(i)

)
= |A(k)

S −DS |tv.

The proof for an (ε, n−2K)-approx-Max-Dist oracle is
analogous and is omitted. �

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Thus, we have the following.

Corollary 5.1. For any constant c and for any K, by
using DT for |T | ≤ K − c, we can find D′S for |S| ≤ K
such that |D′S − DS |tv ≤ c/K. In particular, for any
0 ≤ ε ≤ 1, with less than n(1−ε)K Max-Dist oracle
queries (to all sets of size at most (1− ε)K), we can get
approximate distributions for all sets of size at most K,
each within total variation distance ε.

It is easy to show (proof omitted) that, if one queries
an (ε, n−2K)-approx-Max-Dist oracle on all subsets of
size k then, for each set subset S of size K, one can
return a distribution that is at total variation distance
1− k

K +O(ε) from DS with probability at least 1−n−2K .
The algorithm for this task is the same one as in the
proof of Theorem 5.4. We recall that one can query a
(ε, n−2K)-approx-Max-Dist oracle on each set of size
k with O

(
ε−2 · k ·K · log n

)
calls to a Max-Sample

oracle.
Finally, we show that our analysis is tight.

Lemma 5.1. Let D be the distribution that places all its
mass on the identity permutation of [K]. Then, for each

k < K, it holds that
∣∣∣D[K] −A

(k)
[K]

∣∣∣
tv

= 1− k
K .

Proof. Observe that D[K](1) = 1, and D[K](i) = 0 for

each i ≥ 2. On the other hand, we have that A
(k)
[K](i) = 0

for each i ≥ K − k + 2, and

A
(k)
[K](i) =

(
K−i
k−1

)(
K
k

) = k · (K − i)!(K − k)!

K!(K − i− k + 1)!
,

for each i ≤ K − k + 1, in particular, A
(k)
[K](1) = k/K.

Therefore, we have that∣∣∣D[K] −A
(k)
[K]

∣∣∣
1

=

(
1− k

K

)
+ k

K−k+1∑
i=2

(K − i)!(K − k)!

K!(K − i− k + 1)!

= 2

(
1− k

K

)
. �

6 Representability

In this section we consider alternate and compact rep-
resentations for distributions on permutations, with re-
spect to our setting. We start by proving a coreset-
type result: any distribution D on permutations can be
transformed into a small-support distribution D′ such
that for all subsets T , DT and D′T are close in total
variation distance. We assume that we have access to
D.

Theorem 6.1. Let 0 < ε < 1. There exists a poly-
nomial time algorithm that, given any distribution D
on Sn, is able to construct a distribution D′ on Sn
with supp(D′) = O(n2ε−2) such that, with probability
1−o(1), for each ∅ 6= S ⊆ [n] it holds |DS −D′S |tv ≤ ε.

Proof. Since we have access to D, we can take
T = 3n2ε−2 independent samples (i.e., permutations)
π1, . . . , πT from D, and we let D′ be the uniform dis-
tribution on the multiset of these samples, i.e., D′ will
choose i ∈ [T] uniformly at random, and will return πi.

Consider any set ∅ 6= S ⊆ [n], and let s ∈
S. Observe that D′S(s), which is the probability that
s ∈ S is the maximum element in the subset S with
distribution D′, is then a random variable. Clearly,
E [D′S(s)] = DS(s). Suppose that DS(s) ≥ 1

n . Then,

Pr [|D′S(s)−DS(s)| ≥ εDS(s)] ≤ 2e−
ε2

3 (T ·E[D′S(s)])

= 2e−
ε2

3 (3n2ε−2DS(s)) ≤ 2e−n

Now, if DS(s) = 0, then necessarily D′S(s) = 0. We can
then assume 0 < DS(s) ≤ 1

n . Then,

Pr
[
|D′S(s)−DS(s)| ≥ ε

n

]
= Pr

[
|D′S(s)−DS(s)| ≥ ε

n ·DS(s)
·DS(s)

]
∆
= p?.

Now, if ε
n ≤ DS(s) ≤ 1

n , we can apply a standard
Chernoff bound (if X1, . . . , Xm are iid binary variables,
and X =

∑m
i=1Xi, then Pr [|X − E[X]| ≥ δE[X]] ≤

2e−
δ2

3 E[X], for each 0 < δ ≤ 1), to bound

p? ≤ 2e
− ε2

3n2DS(s)2
·(T ·DS(s))

= 2e
− ε2

3n2DS(s)
·T

= 2e
− 1
DS(s) ≤ 2e−n.

If, instead, DS(s) ≤ ε
n , we can apply a large-gap

Chernoff bound (if X1, . . . , Xm are iid binary variables,
and X =

∑m
i=1Xi, then Pr [|X − E[X]| ≥ δE[X]] ≤

2e−
δ
3E[X], for each δ ≥ 1), to bound

p? ≤ 2e
− ε

3nDS(s)
·(T ·DS(s))

= 2e−
ε
3n ·T = 2e−n/ε ≤ 2e−n.

Thus, for any given ∅ 6= S ⊆ [n], and any s ∈ S, we
have that

Pr

[
|D′S(s)−DS(s)| ≥ ε ·max

(
1

n
,DS(s)

)]
≤ 2e−n.

Applying a union bound over all ∅ 6= S ⊆ [n], and
s ∈ S, we get that

Pr

[
∃s, S : |D′S(s)−DS(s)| ≥ ε ·max

(
1

n
,DS(s)

)]
≤ 2e−n · n2n = o(1).

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

Thus, with probability 1 − o(1), we have that for all
∅ ⊂ S ⊆ [n],

|DS−D′S |1 ≤
ε

n
|S|+ε

∑
s∈S

DS(s) ≤ ε

n
·n+ε ·1 = 2ε. �

We next show that distribution on permutations
can be approximated by distribution over depth-1 trees.
Recall the choice process for depth-1 trees. Let T be a
distribution over depth-1 trees t1, t2, ..., where the tree
ti is a star on [n] leaves and the weight of the edge from
the root to the jth leaf is wij . The choice process first
chooses a tree ti according to T , and then chooses an
element j with probability wij/

∑
j′∈[n] wij′ .

Theorem 6.2. For any distribution D on permuta-
tions, there exists a distribution T over depth-1 trees
such that for each ∅ 6= S ⊆ [n], we have |DS−TS |tv ≤ ε.

Proof. For each permutation π ∈ Sn we create a depth-
1 tree tπ and give it weight T (tπ) = D(π) in the trees.
The tree tπ will be a star with n leaves, one for each
element in [n]. For each i ∈ [n], the weight of the edge
that connects the root of tπ to the leaf corresponding to
the element i is ε−π(i).

Now, for any ∅ ⊂ S ⊆ [n], tπ(S) will be a
distribution giving weight ε−π(i) to element i ∈ S. It
follows that the element of S having maximum index in
π will have, in tπ(S), a probability that is larger, by a
factor of at least Ω

(
ε−1
)
, than the sum of probabilities

of the other elements in S. Thus, the probability that
tπ(S) will return the element of largest index in π is at
least 1− ε. The proof is complete. �

6.1 Impossibility of learning the distribution
over permutations Note that the above two compact
representation reductions require an explicit access to
the distribution D on permutations. One might wonder
if a powerful oracle such as the Max-Dist oracle might
allow us to construct the distribution D. However, the
answer turns out to be negative: we show that it is im-
possible to construct the distribution over permutations
based only on the Max-Dist oracle.

Lemma 6.1. For each n ≥ 4, there exists two distribu-
tion D,D′ over Sn such that:
• for each ∅ (S ⊆ [n], it holds DS = D′S
• |D −D′|tv = 1.

Moreover, |supp(D)| = |supp(D′)| = 2.

Proof. Let n ≥ 4 be given; we will create two distri-
butions D and D′ with disjoint supports and such that
each permutation in the support of D or of D′ will con-
tain the elements of {1, 2, 3, 4} in some order in its top-
most 4 positions, and the remaining elements naturally

ordered in the remaining positions. The distributions
are defined as follows:
• D assigns probability 1/2 to the permutation

(1,2,3,4, 5, 6, . . . , n − 1, n) and probability 1/2 to
the permutation (2,1,4,3, 5, 6, . . . , n− 1, n);

• D′ assigns probability 1/2 to the permutation
(2,1,3,4, 5, 6, . . . , n − 1, n) and probability 1/2 to
the permutation (1,2,4,3, 5, 6, . . . , n− 1, n).

Since the supports of D and D′ are disjoint, we have
|D − D′|tv = 1. We will show below that, for each set
∅ (S ⊆ [n], it holds DS = D′S . This will imply that
it is impossible to reconstruct the unknown distribution
over permutations by only using the Max-Dist oracle.

Indeed, let ∅ ⊆ S ⊆ [n] be any set. If {1, 2} ⊆
S, then both DS and D′S are uniform on {1, 2}; if,
instead, |{1, 2}∩S| = 1 then both D(S) and D′(S) give
probability 1 to the one element in {1, 2} ∩ S. We can
then assume that {1, 2}∩S = ∅; we proceed to consider
sets S that intersect {3, 4}. Again, if {3, 4} ⊆ S, then
bothDS andD′S are uniform on {3, 4}; if |{3, 4}∩S| = 1,
then both DS and D′S give probability 1 to the one
element in {3, 4} ∩ S. Finally, we can assume that
{1, 2, 3, 4} ∩ S = ∅. In this case, both DS and D′S
give probability 1 to mini∈S i. �

7 Conclusions

In this paper we studied a version of the permutation
reconstruction problem, motivated by algorithmic ques-
tions in discrete choice theory. We believe that this topic
has of untapped research potential and immense practi-
cal value. Our work, while providing a conceptual start-
ing point, barely scratches the surface in terms of what
could be studied computationally. The power and limi-
tations of the Max-Sample oracle and the Max-Dist
oracle still need to be fully understood. For instance,
the following obvious question stands out: how much
can adaptivity help in approximate reconstruction?

References

[1] A. Ammar, S. Oh, D. Shah, and L. F. Voloch. What’s
your choice?: Learning the mixed multi-nomial. SIG-
METRICS Perform. Eval. Rev., 42(1):565–566, 2014.

[2] A. R. Benson, R. Kumar, and A. Tomkins. On the
relevance of irrelevant alternatives. In WWW, pages
963–973, 2016.

[3] J. Blanchet, G. Gallego, and V. Goyal. A Markov chain
approximation to choice modeling. In EC, pages 103–
104, 2013.

[4] M. Dud́ık and L. J. Schulman. Reconstruction from
subsequences. Journal of Combinatorial Theory, Se-
ries A, 103(2):337–348, 2003.

[5] V. F. Farias, S. Jagabathula, and D. Shah. A data-

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

driven approach to modeling choice. In NIPS, pages
504–512, 2009.

[6] A. Gupta and D. Hsu. Parameter identification
in Markov chain choice models. Technical Report
1706.00729, arXiv, 2017.

[7] N. Kallus and M. Udell. Revealed preference at
scale: Learning personalized preferences from assort-
ment choices. In EC, pages 821–837, 2016.

[8] R. D. Luce. On the possible psychophysical laws.
Psychological Review, 66(2):81, 1959.

[9] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and
P. Stockmeyer. Reconstruction of sequences. Discrete
Mathematics, 94(3):209–219, 1991.

[10] J. Marschak. Binary choice constraints on random

utility indications. In K. Arrow, editor, Stanford
Symposium on Mathematical Methods in the Social
Sciences, pages 312–329. Stanford University Press,
Stanford, CA, 1960.

[11] D. McFadden and K. Train. Mixed MNL models of
discrete response. Journal of Applied Econometrics,
15:447–470, 2000.

[12] S. Oh and D. Shah. Learning mixed multinomial logit
model from ordinal data. In NIPS, pages 595–603,
2014.

[13] K. E. Train. Discrete Choice Methods with Simulation.
Cambridge University Press, 2009.

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited

