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ABSTRACT
The NP-hard Max-k-Cover problem requires selecting k
sets from a collection so as to maximize the size of the union.
This classic problem occurs commonly in many settings in
web search and advertising. For moderately-sized instances,
a greedy algorithm gives an approximation of (1 − 1/e).
However, the greedy algorithm requires updating scores of
arbitrary elements after each step, and hence becomes in-
tractable for large datasets.

We give the first max cover algorithm designed for today’s
large-scale commodity clusters. Our algorithm has provably
almost the same approximation as greedy, but runs much
faster. Furthermore, it can be easily expressed in the Map-
Reduce programming paradigm, and requires only polylog-
arithmically many passes over the data. Our experiments
on five large problem instances show that our algorithm is
practical and can achieve good speedups compared to the
sequential greedy algorithm.

Categories and Subject Descriptors. H.3.m [Informa-
tion Storage and Retrieval]: Miscellaneous

General Terms. Algorithms, Experimentation, Theory

Keywords. Maximum cover, greedy algorithm, map-reduce

1. INTRODUCTION
Say a search engine wishes to focus its attention on one

thousand queries such that as many users as possible will see
one of them. Selecting these queries is a maximum coverage
(or max cover) problem. These problems arise whenever we
seek the “best” collection of items, but the items may par-
tially overlap in the value they provide, and should not be
double-counted. All of the following are instances of max
cover problems: how should one select 100 movie stars that
reach as many people on the planet as possible? If a web
search engine has resources to change the appearance of re-
sults from 500 websites, how should the websites be chosen
to touch as many queries as possible? What collection of
five vitamins wards off the most ailments? Where should
a set of charity dropboxes be placed to be available to as
many people as possible?
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In fact, all these examples are instances of the canonical
problem of this type, Max-k-Cover, which asks to select
k sets from a family of subsets of a universe so that their
union is as large as possible. The problem is NP-hard, but
can be approximated by a simple greedy algorithm (called
Greedy) to within a factor of (1−1/e) of the best possible.
However, after selecting the best remaining set, Greedy
must remove all elements of that set from other sets. The
number of sets that must be touched to perform this update
could be enormous, and the operation must be repeated for
each set to be output. For disk-resident datasets, Greedy
is not a scalable approach.

Nonetheless, max cover problems arise frequently at large
scale. Dasgupta et al. [8], for instance, employ this formula-
tion in pursuit of discovering fresh content for web crawler
scheduling policies: finding as much new content as possible
by crawling at most k webpages. Saha and Getoor [34] used
the max cover formulation for a multi-topic blog-watch ap-
plication: finding at most k blogs to read interesting articles
on a list of topics.

Our motivation for studying max cover problems arose
in one of the examples described above: we wished to find
a large but bounded number of web hosts that appeared
within the top-three results for as many web queries as pos-
sible. As the analysis was to take place over weeks or months
of data, the scale of the problem quickly reached tens of bil-
lions of queries, making the performance of Greedy unac-
ceptable. Thus, we began to pursue a version of this classical
algorithm that could be implemented on the massively par-
allel large-scale data processing clusters based on the Map-
Reduce paradigm [9] that are increasingly available today.
These clusters are characterized by a focus on sequential
data processing, another challenge in the context of the ex-
isting algorithm.

Max cover problems arise frequently in the context of web
search and advertising, and when they do, they are often
at daunting data scales. In addition to the host analysis
problem described above, consider an advertiser interested
in placing banner ads at various points of the Yahoo! net-
work. The advertiser pays a fixed amount for each impres-
sion, independent of the location, and wishes to reach as
many users as possible. Or consider an experiment in which
we wish to deploy a manually-generated result in response
to a small set of queries that will reach users from as many
US zip codes as possible. Algorithmic tools for these natural
questions are not generally available using the programming
paradigms at our disposal.



Our contributions. In this paper we develop a Map-
Reduce-based algorithm for Max-k-Cover. Specifically,
our algorithm obtains a (1 − 1/e − ε)-approximation and
can be implemented to run in O(poly(ε) log3(nm)) Map-
Reduce steps over the input instance, where n is the num-
ber of elements and m is the number of sets. Thus, we end
up in the best of two worlds: nearly matching the perfor-
mance of Greedy, while obtaining an algorithm that can be
implemented in the scalable Map-Reduce framework. This
is one of the few instances of a non-trivial Map-Reduce re-
alization of a classical algorithm with provable guarantees
of performance (more on this point in Section 3).

The main idea behind our algorithm, which we call Mr-
Greedy, is to simultaneously choose many sets to include in
the solution. This objective cannot be met at every step —
identifying when to perform the parallel choice is the crux of
our algorithm. In this regard, we derive inspiration from the
parallel algorithm of Berger, Rompel, and Shor [2] for Set-
Cover. Our problem, however, requires new ideas to carry
out the analysis; see Section 4. To this end, we consider
a weaker sequential version of Greedy, called MrGreedy,
and show that its approximation ratio is essentially equal to
that of Greedy. Then, we show that MrGreedy (whose
parallel running time we can bound to be polylogarithmic)
has an approximation ratio at least as good as the weaker
sequential algorithm. In addition, MrGreedy has a strong
output guarantee that we call prefix-optimality : for each k,
the prefix of length k in the ordering output by MrGreedy
is a (1− 1/e− ε)-approximation to the corresponding Max-
k-Cover.

We then show how to implement our algorithm in the
Map-Reduce setting, where the parallel running time trans-
lates to the number of Map-Reduce steps over the input.
A crucial feature of MrGreedy is that it does not rely on
main memory to store the elements of a set or the sets to
which an element belongs. (Making such assumptions can
be unrealistic — a common website may appear in the top
results for tens of millions of queries.) We conduct exper-
iments on five large real-world instances. Our experiments
show that it is feasible to implement MrGreedy in practice,
and obtain reasonable speedup over Greedy. Moreover, the
approximation performance of MrGreedy is virtually indis-
tinguishable from that of Greedy.

Since the set system can be alternatively viewed as a bi-
partite graph (elements and sets on each side and element–
set membership determines the edges), the number of ele-
ments coverable with k sets can be viewed as a purely struc-
tural property of bipartite graphs. In this aspect, our work
paves the way for the development of better understanding
of bipartite graphs such as how much duplication exists in
the covering of elements by sets; this is along the lines of
[23].

Organization of the paper. The rest of the paper is
organized as follows. Section 2 contains the necessary back-
ground material on Max-k-Cover, Greedy, and Map-Reduce.
Section 3 discusses related work on both Max-k-Cover and
Map-Reduce. Section 4 presents our main result: Mr-
Greedy, a parallel algorithm for Max-k-Cover, and its
Map-Reduce realization. Section 5 discusses the prelimi-
nary experimental results on the implementation of this al-
gorithm. Section 6 contains the concluding thoughts and
directions for future work.

2. PRELIMINARIES
In this section we set up the basic notation and provide

the necessary background for the problem and the compu-
tational model.

2.1 The Max-k-Cover problem
Let X = {1, . . . , n} be a universe of n elements. Let
S, |S| = m be a family of non-empty subsets of X.

Given S ′ ⊆ S, the coverage cov(S ′) of S ′ is simply

cov(S′) = ∪S∈S′S.

Without loss of generality, we can assume that cov(S) = X.

Definition 1 (Max k-cover). Given an integer k >
0, S∗ ⊆ S is a max k-cover if |S∗| = k and the coverage of
S∗ is maximized over all subsets of S of size k.

Since the Max-k-Cover problem is known to be NP-hard,
we will focus on provably good approximation algorithms.

Definition 2 (α-approximate k-cover). For α > 0,
a set S ′ ⊆ S, |S ′| ≤ k, is an α-approximate max k-cover if
for any max k-cover S∗, cov(S ′) ≥ α · cov(S∗).

A polynomial-time algorithm producing an α-approximate
max k-cover for every instance of Max-k-Cover is said to
be an α-approximation algorithm for the problem.

We define the degree deg(x) of an element x ∈ X to be the
number of sets containing x, i.e., deg(x) = |{S ∈ S | S 3 x}|.
We define the maximum degree ∆ of an instance as ∆ =
maxx∈X deg(x). We also define the degree of an element
x ∈ X with respect to a subfamily S ′ ⊆ S as degS′(x) =
|{S ∈ S ′ | S 3 x}|.

Weighted, budgeted versions. In the weighted version of
the problem, the universe is equipped with a weight function
w : X → R+. For X ′ ⊆ X, let w(X ′) =

P
x∈X′ w(x). For

S ′ ⊆ S, let

w(S ′) = w(∪S∈S′S) =
X

x∈
S

S∈S′ S

w(x).

The goal is find S∗ ⊆ S such that |S∗| = k and has maximum
weight w(S∗).

In the budgeted version, each set S ∈ S is equipped with
a cost c : S → R+. The cost of S ′ ⊆ S is given by c(S ′) =P
S∈S′ c(S). Given a budget B, the goal now is to output

S∗ ⊆ S whose cost is at most B and the weight of the
elements it covers is maximized.

2.2 The Map-Reduce model
We focus on the Map-Reduce model of computation [9].

In the Map-Reduce model, computations are distributed
across several processors, split as a sequence of map and re-
duce steps. The map step consumes a stream of key–value
tuples and outputs a set of (possibly different or amended)
key–value tuples. In the reduce step, all tuples with same
key are brought and processed together. For example, trans-
posing an adjacency list — a crucial component in our al-
gorithm — can be done effortlessly in Map-Reduce: given
tuples of the form 〈i;S1, . . . , Ski〉, meaning that the element
i (key) is present in sets S1, . . . , Ski , the transpose operation
will produce an output of the form 〈S; i1, . . . , i`S 〉, where



i1, . . . , i`S are the elements of the set S (key). Realizing this
in Map-Reduce is easy: the map step outputs tuples of
the form 〈S; i〉 while the reduce step groups together all the
elements that belong to the set S, the key.

Map-Reduce is a powerful computational model that
has proved successful in enabling large-scale web data min-
ing. For example, many matrix-based algorithms, such as
PageRank computation [31], have been implemented suc-
cessfully in the Map-Reduce model and used to process
gargantuan snapshots of the web graph. While the general
Map-Reduce model allows for greater flexibility, to make
our algorithms practical and truly scalable, we list three re-
quirements on their efficiency.

• Many Map-Reduce algorithms can be iterative; PageR-
ank for instance is such an algorithm. In most scenar-
ios, the number of iterations can be a pre-determined
constant, albeit large. In our case, we require that the
number of iterations is at most polylogarithmic in the
input size.

• While in principle the output of the map or reduce
step can be much bigger than the input, in our case,
we require that it still remain linear in the input size.
Also, we require the map and reduce steps to run in
time linear in their input sizes.

• We require that the map/reduce steps use constant or
logarithmic amount of memory. In particular, we do
not assume that it is possible to store the elements
of a set or all the sets to which an element belongs, in
memory. In other words, we look for an algorithm that
works in a truly streaming fashion, without relying on
the main memory.

2.3 The classical Greedy algorithm
A classical greedy algorithm achieves a constant-factor ap-

proximation to Max-k-Cover. The factor of approximation
is 1− 1/e ≈ .63. We first recall this algorithm.

Algorithm 1 The Greedy algorithm.

Require: S1, . . . , Sm, and an integer k
1: while k > 0 do
2: Let S be a set of maximum cardinality
3: Output S
4: Remove S and all elements of S from other remaining

sets
5: k = k − 1

Note that this algorithm is blatantly sequential: after a
set is picked to be included in the solution, bookkeeping is
necessary to keep the remaining sets and elements up-to-
date. This may not be expensive if the data structures to
maintain the element–set memberships can be held in mem-
ory and if k passes over the data is acceptable; however,
neither of these is feasible with massive data. As we will
see, MrGreedy also has an overall greedy and an iterative
flavor, but if an opportunity permits, it will try to pick many
sets in parallel to be included in the solution. Doing this,
while simultaneously preserving the approximation guaran-
tee is the balance our algorithm will strive to achieve. Since
our algorithm is iterative, it does not need to keep the data
structures in main memory. We rely on the Map-Reduce

framework and the transpose operation in order to keep the
element–set memberships up-to-date.

Note also that the Greedy algorithm can be easily ex-
tended to output a total ordering of the input sets S1, . . . , Sm,
with the guarantee that the prefix of length k, for each k, of
this ordering will be a (1− 1/e)-approximation to the corre-
sponding Max-k-Cover; we call this the prefix-optimality
property. In fact, our algorithm will also enjoy this prefix-
optimality property.

3. RELATED WORK
There are two principal lines of work that we need to

address. The first is the extensive literature on the Max-
k-Cover and related combinatorial optimization problems
in sequential and parallel settings. The second is the bur-
geoning body of work on Map-Reduce-based algorithms for
large web mining problems.

The complexity of Max-k-Cover. The study of Max-
k-Cover and the related Set-Cover problem is classical.
As we mentioned earlier, Max-k-Cover is NP-hard [15].
Hochbaum and Pathria [17] (see also [16]) present an elegant
analysis of the Greedy algorithm for Max-k-Cover, prov-
ing its (1 − 1/e)-approximation guarantee. Khuller, Moss,
and Naor [21] extended the Greedy algorithm to the bud-
geted case, maintaining the same approximation guarantee.
Gandhi, Khuller, and Srinivasan [14] consider the related
problem of choosing the minimum number of sets to cover
at least k elements, which is harder to approximate than
Set-Cover and therefore Max-k-Cover. It is also known
that Max-k-Cover cannot be approximated to 1− 1/e− ε,
unless NP ⊆ DTIME(nO(log logn)) [12, 21]. Thus the sequen-
tial complexity of Max-k-Cover is understood well. To the
best of our knowledge, the parallel or distributed complexity
of Max-k-Cover has not been examined yet.

The related Set-Cover problem has been studied in a
parallel setting. Berger, Rompel, and Shor [2] give an NC
algorithm that approximates Set-Cover to O(logn), which
is optimal [1, 12]. The algorithm of Berger et al. uses a
number of processors linear in the number of sets, and runs
in O(polylog(nm)) rounds. Even though our Max-k-Cover
algorithm is inspired by theirs, our analysis needs new ideas
since our setting is different from theirs.

Max-k-Cover-based framework has been used a lot in
many data mining applications; earliest ones include identi-
fying the most influential users in social networks, under a
model of influence propagation [20, 24, 5].

Algorithms in the Map-Reduce model. With an in-
creasing demand to mine large amounts of web-originated
data, the Map-Reduce paradigm of computation [9] and
Map-Reduce-based algorithms have come to the rescue.
For example, PageRank, and in fact most matrix-vector
based iterative algorithms, have efficient Map-Reduce im-
plementations as long as the matrix is reasonably sparse.
Map-Reduce-based realizations of existing algorithms have
been extensively developed in machine learning, including
algorithms for regression, naive Bayes, k-means clustering,
principal and independent component analysis, EM, and
SVM [6]; see also [22, 10]. Likewise, in text and natural lan-
guage processing, Map-Reduce-based algorithms are con-
stantly being developed. For example, algorithms have been



developed for pair-wise document similarity [11], word co-
occurrences [27], language modeling [3], and indexing [28];
for more details, see the essay [25], the recent tutorial [26],
and the website http://cluster-fork.info. There have
been some attempts to abstractly model Map-Reduce com-
putations; see [13, 19].

There has been some work on developed Map-Reduce-
based algorithms and heuristics for large scale graph min-
ing problems. Tsourakakis et al. [18] propose heuristics
for diameter estimation of large graphs. The problem of
triangle-counting was considered by Tsourakakis [35] and
Tsourakakis et al. [36]. Papadimitriou and Sun [32] develop
algorithms for co-clustering. Rao and Yarowsky [33] obtain
simple algorithms for ranking and semi-supervised classifica-
tion on graphs. Very recently, Karloff, Suri, and Vassilvitskii
[19] obtain an algorithm for finding the minimum spanning
tree. The application of Map-Reduce model to graph algo-
rithms has been somewhat limited (and to a certain extent,
disappointing) so far. See the wishful thinking article by
Cohen [7] and the inspiration and frustration expressed by
Muthukrishnan [30].

There is a large and growing body of work on obtaining
graph algorithms in the streaming and semi-streaming mod-
els; we refer to [29] for an overview.

4. THE MrGreedy ALGORITHM
In this section we develop the MrGreedy algorithm that

tries to emulate the sequential Greedy algorithm for Max-
k-Cover, without making k sequential choices. As men-
tioned earlier, the main idea is to add multiple sets to the
solution in parallel, as long as it is appropriate. We will
prove that MrGreedy in fact outputs a total ordering of
the sets with the prefix-optimality property, i.e., for any
k′ ≤ k, the first k′ sets are an approximate solution to the
Max-k′-Cover instance. For simplicity, we focus on the
unweighted, unbudgeted version of the problem.

The MrGreedy algorithm is inspired by the Set-Cover
algorithm of Berger, Rompel, and Shor [2]. Unfortunately,
their algorithm and analysis cannot be used “as is” for two
main reasons. First, they are tailored for Set-Cover and
not Max-k-Cover. Second, their algorithm does not re-
turn a total ordering of the sets and hence does not enjoy
the prefix-optimality property. Therefore, we need to mod-
ify their algorithm to work for Max-k-Cover, return an
ordering on the sets, and require the ordering to be prefix-
optimal.

To do these, we incorporate two main ideas. First, we
show that it suffices to work with a version of Greedy
that guarantees something weaker than the usual Greedy.
Next, we show that a modification of the algorithm of [2] can
mimic the weaker Greedy. We also incorporate the prefix-
optimality requirement in this modification by imposing an
ordering of the sets. At the end, we will prove that the cho-
sen ordering is good enough for the algorithm to return the
stated approximation for each k.

Suppose we fix a prefix of the first i − 1 sets chosen by
some approximate greedy algorithm A and Greedy. Now,
let αi be the ratio of the new elements covered by A to those
covered by Greedy with their respective choice of the ith
set. Let αi be the average of α1, . . . , αi: αi = (1/i)

Pi
j=1 αj .

We show a simple fact about the αi’s.

Algorithm 2 The MrGreedy algorithm.

Require: A ground set X, a set system S ⊆ 2X .
1: Let C be an empty list
2: for i = dlog1+ε2 |X|e downto 1 do

3: Let Sw = {S | S ∈ S ∧ |S| ≥ (1 + ε2)i−1}
4: for j = dlog1+ε2 ∆e downto 1 do

5: Let X ′ = {x | x ∈ X ∧ degSw
(x) ≥ (1 + ε2)j−1}

6: while X ′ 6= ∅ do

7: if there exists S ∈ Sw such that |S ∩X ′| ≥ ε6

1+ε2
·

|X ′| then
8: Append S to the end of C
9: else

10: Let Sp be a random subset of Sw chosen by
including each set in Sw independently with
probability p = ε

(1+ε2)j

11: if
˛̨̨S

S∈Sp
S
˛̨̨
≥ |Sp| · (1 + ε2)i · (1− 8ε2) then

12: We say that an element x is bad if it is con-
tained in more than one set of Sp

13: A set S ∈ Sp is bad if it contains bad ele-
ments of total weight more than 4ε · (1 + ε2)i

14: Append all the sets of Sp that are not bad
to the end of C in any order

15: Append the bad sets of Sp to the end of C in
any order

16: Remove all the sets in C from S
17: Remove all the elements in

S
S∈C S from X and

from the sets in S
18: Let Sw = {S | S ∈ S ∧ |S| ≥ (1 + ε2)i−1}
19: Let X ′ = {x | x ∈ X ∧ degSw

(x) ≥ (1 + ε2)j−1}
20: Return the list C

Lemma 3. For each i = 1, . . . , k − 1, we have„
1− αi

k

«i
·
“

1− αi+1

k

”
≤
„

1− αi+1

k

«i+1

.

Proof. By the AM–GM inequality we have„
1− αi

k

«i
·
“

1− αi+1

k

”
≤

 
i ·
`
1− αi

k

´
+
`
1− αi+1

k

´
i+ 1

!i+1

=

„
1− i · αi + αi+1

(i+ 1) · k

«i+1

=

„
1− αi+1

k

«i+1

.

The following lemma lower bounds the approximation ra-
tio of A in terms of its αi’s.

Lemma 4. For each k ≥ 1 it holds that the first k sets
in the list C produced by A is a 1 − exp(−αk) approximate
solution of the Max-k-Cover problem.

Proof. Fix some k ≥ 1 as the length of the prefix. We
will mimic the well-known proof for sequential max cover,
changing the inductive step proof, since our algorithm has
a weaker guarantee than the usual sequential greedy for its
selection step. Let S′(1), . . . , S

′
(k) be the first k sets picked by



A, S ′ = {S′(1), . . . , S′(k)}, and let S∗1 , . . . , S
∗
k be the k sets in

the optimal solution (sorted arbitrarily), S∗ = {S∗1 , . . . , S∗k}.
Let ωi be the number of elements that (i) are covered

by set S′(i) and (ii) are not covered by sets S′(1), . . . , S
′
(i−1).

Then the coverage of the algorithm solution S′(1), . . . , S
′
(k) is

cov(S ′) =
Pk
i=1 ωi. We want to lower bound cov(S ′)/cov(S∗).

Fix i ≥ 1, and consider the first i − 1 sets chosen by
the algorithm; the total number of elements covered by S∗,
that are not covered by the sets S′(1), . . . , S

′
(i−1), is at least

cov(S∗)−
Pi−1
j=1 ωj . This implies that there must exist some

set S∗ in the optimal solution, different from S′(1), . . . , S
′
(i−1),

that covers a subset of those elements having cardinality at
least (1/k)(cov(S∗)−

Pi−1
j=1 ωj). Suppose that the algorithm

will choose as the ith set an αi approximation of the “best”
set, i.e.,

ωi ≥ αi ·max
S∈S

w

 
S \

i−1[
j=1

S(j)

!
. (1)

Lower bounding the max in (1) with its value at S∗, we
obtain

ωi ≥ αi ·
cov(S∗)−

Pi−1
j=1 ωj

k
.

We show by induction that

iX
j=1

ωj ≥

 
1−

„
1− αi

k

«i!
· cov(S∗),

for each i = 1, . . . , k. This directly implies the main state-
ment since (1− x/k)k ≤ exp(−x), for any k ≥ 1, x ≥ 0.

The base case is trivial, since

ω1 ≥ α1 ·
cov(S∗)

k
= α1 ·

cov(S∗)
k

.

Now, suppose the property holds for i ≥ 1, then

i+1X
j=1

ωj =

iX
j=1

ωj + ωi+1

≥
iX

j=1

ωj + αi+1 ·
cov(S∗)−

Pi
j=1 ωj

k

=
“

1− αi+1

k

” iX
j=1

ωj + αi+1 ·
cov(S∗)

k

≥
“

1− αi+1

k

”
·

 
1−

„
1− αi

k

«i!
· cov(S∗)

+ αi+1 ·
cov(S∗)

k

≥
“

1− αi+1

k

”
· cov(S∗)−

„
1− αi+1

k

«i+1

· cov(S∗)

+ αi+1 ·
cov(S∗)

k

=

 
1−

„
1− αi+1

k

«i+1
!
· cov(S∗),

where the first inequality follows from (1), the second in-
equality follows from the induction hypothesis, and the third
inequality follows from Lemma 3.

The proof is complete.

Now that we have determined the approximation ratio of
A in terms of its αi’s, we turn to analyze MrGreedy. We
start by showing that the number of bad sets in line 13 is
small — this property will be crucial in our main approxi-
mation theorem.

Lemma 5. At line 13, the number of bad sets is at most
4ε · |Sp|.

Proof. Observe that, at any execution of line 12, each
set in Sw has weight upper bounded by (1 + ε2)i. Indeed,
this is trivially true when i = dlog1+ε2 |X|e, since in this case
the upper bound is greater than the size of the ground set,
(1 + ε2)i ≥ |X|. Now, observe that for i to be decreased, the
loop on j must be exhausted. Further, when j = 1, the only
way of exiting the loop at line 6, i.e., the only way of letting
X ′ = ∅ is to remove all sets of weight at least (1 + ε2)i−1

(lines 18, 19). Thus, whenever we execute line 3 and line 12,
no set of weight more than (1 + ε2)i exists.

Now, at any execution of line 11, we have Sp ⊆ Sw, and
thus ∀S ∈ Sp we have (1 + ε2)i−1 ≤ |S| < (1 + ε2)i. Then,P
S∈Sp

|S| ≤ |Sp| · (1+ ε2)i. If the test at line 11 is negative,

we just cycle all the way through line 10 without changing
the state of the algorithm. When we do get to line 12,

we have
˛̨̨S

S∈Sp
S
˛̨̨
≥ |Sp| · (1 + ε2)i · (1 − 8ε2). For each

element that occurs in more than one set in Sp, mark all the
occurrences of that element. Observe that the bad elements
of line 12 are exactly those whose occurrences are marked.
The total number of the marked occurrences is

T ≤ 2 ·

0@X
S∈Sp

|S| −

˛̨̨̨
˛̨ [
S∈Sp

S

˛̨̨̨
˛̨
1A ≤ |Sp| · (1 + ε2)i · 16ε2.

Observe that no more than 4ε · |Sp| sets in Sp can contain
more than 4ε · (1 + ε)i marked elements, since otherwise
we would have a contradiction with the upper bound on T .
That is, no more than 4ε · |Sp| sets can be bad.

To fill the final missing step, we now prove a lower bound
on αk’s of MrGreedy.

Lemma 6. For each k ≥ 1, it holds that αk ≥ 1−O(ε).

Proof. Fix an arbitrary 1 ≤ t ≤ k. If we add the tth set
to C via line 8, we will have αt ≥ 1

1+ε2
≥ 1− O(ε). Indeed,

at the beginning of the loop at line 6, the largest uncovered
weight of the remaining sets will be ≤ (1+ε2)i, and each set
in Sw, thus in particular the one being added to C via line 8,
has uncovered weight at least (1+ε2)i−1; thus αt ≥ 1−O(ε).

On the other hand, whenever we add two batches of sets
via lines 14, 15, the following will happen. The first batch
(line 14) will be composed of sets each containing a number
of unique elements at least (1 + ε2)i−1 − 4ε · (1 + ε2)i =
(1−O(ε))·(1+ε2)i−1. Since the largest number of uncovered
elements of a yet-to-be-taken set is at most (1 + ε2)i, no
matter how we sort the sets in the first batch, each of them

will have an αt ≥ 1−O(ε)

1+ε2
= 1 − O(ε). As for the second

batch, we lower bound the αt’s of its sets with 0.
Applying Lemma 5, we can upper bound the number of

sets in the second batch by at most 4ε · |Sp| so that there
are at least |Sp| · (1− 4ε) = (1−O(ε)) · |Sp| sets in the first
batch.

Thus, if lines 14 and 15 add sets starting from position
t0 of C, we have αt0 , . . . , αt0+(1−O(ε))·|Sp|−1 ≥ 1−O(ε), and



αt0+(1−O(ε))·|Sp|, . . . , αt0+|Sp|−1 ≥ 0. It is easy to see that

a lower bound on the average of the αt’s in any prefix of
αt0 , . . . , αt0+|Sp|−1 is

(1−O(ε)) · |Sp| · (1−O(ε))

|Sp|
= 1−O(ε).

Since (i) we can cut C into the sequences added by line 8,
or by lines 14–15, and (ii) each sequence contains sets whose
average αt’s are at least 1−O(ε), and (iii) the lower bound
on the average αt of a part holds even if we cut that part
to any of its prefix, the lemma is proved: for each k, αk ≥
1−O(ε).

Combining Lemmas 4 and 6, with A set to MrGreedy,
gives us the main result.

Theorem 7. The approximation guarantee of MrGreedy
is 1− 1/e−O(ε).

Let us now comment on the number of Map-Reduce
passes of MrGreedy.

Lemma 8. The number of times lines 7–15 is executed is
O(ε−10 · log2 n · log ∆), with high probability.

Proof. To prove this, we first need a fact about the sam-
pling step of MrGreedy.

Lemma 9 ([2]). With probability at least 1/8 (over the
random sampling), (i) the test at line 11 succeeds and (ii)

the elements covered by
˛̨̨S

S∈Sp
S
˛̨̨
≥ |Sp| contain at least a

ε2/2 fraction of X ′.

(In the algorithm of [2], there are two independent parame-
ters ε and δ. For simplicity, we set ε = δ since the approx-
imation guarantee will be maximized when they are equal.
Further, we set our ε to be the square root of the ε = δ in
[2].)

From Lemma 9, independent of the result of the test at
line 7, with probability Ω(1), an Ω(ε6) fraction of X ′ will be
removed from consideration. Since at the beginning |X ′| ≤
n, by a Chernoff bound, with high probability the loop at
line 6 will end after O(ε−6 logn) iterations. Observing that
the loop at line 4 iterates for O(ε−2 log ∆) times, and that
the loop at line 2 iterates for O(ε−2 logn) times, gives the
stated upper bound on the number of executions of lines 7–
15.

4.1 Realization in Map-Reduce

In this section we comment on the implementation of Mr-
Greedy in Map-Reduce. Recall the transpose operation
we discussed earlier, which lets us switch between element–
set and set–element representations using Map-Reduce.

The steps involving the selection of Sw and X ′ in the al-
gorithm (lines 3 and 5) can be realized by a combination of
map, transpose, and a reduce operation. Line 7 can be real-
ized by computing the size of an intersection, which can be
done with a map and a reduce. The random selection in line
10 is a simple map operation and the test in line 11 is equiv-
alent to computing the size of a union, which is once again
a transpose, map, followed by a transpose. Lines 13–15 that
determine the goodness of sets and elements can be deter-
mined using a transpose and a map operation. Finally, the
updates in lines 16-17 are once again easy in Map-Reduce
using a transpose, map, and reduce.

4.2 Weighted, budgeted versions
We observe how the weighted case can be easily reduced to

the unweighted one. For instance, assuming integer weights,
we could, for each element x, replace x (in all the sets that
contain it) with w(x) unweighted copies of x. Then, for
each class S ′ ⊆ S of sets, the weight of S ′ in the original
instance will equal the total coverage of S ′ in its unweighted
counterpart. This reduction has two downsides: it is not
strongly polynomial and it requires each element weight to
be integral.

It is possible to overcome these hindrances using another
reduction. First of all, observe that multiplying all the
weights by the same positive number only scales the value
of each solution by that same number. Further, if W =
maxx∈X w(x), then one can easily check that removing all
elements of weight less than (ε · W )/n from X and from
the sets that contain them in S changes the value of each
solution of value with a constant factor of the optimum by
a 1 ± O(ε) factor. Finally, rounding each weight w(x) to

dw(x)
ε
e changes the value of each solution by a (1 ± O(ε))

factor. So, suppose we rescale all weights so that the max-
imum weight becomes ε−2 · n. Then, we delete all elements
having new weight less than ε−1, and we round each remain-
ing weight w to dw

ε
e, losing only a (1±O(ε)) approximation

factor. Observe that the new weights are all integers. Sub-
stituting an element x of integral weight w ∈ N with w new
elements each of weight 1 and each contained in all the sets
that contained x, does not change the value of any solution.
The reduction is complete. The downside of this reduction
is that the number of elements gets squared, which may not
be desirable in practice.

Now we comment on the budgeted version of Max-k-
Cover. Khuller et al. [21] show how a budgeted version
of Greedy, along with a simple external check, gives a
(1−1/

√
e)-approximation to the budgeted, weighted, Max-

k-Cover problem (in fact, this approximation is obtained
if one returns the best of the solution produced by the algo-
rithm, and the set of maximum weight among those having
cost less than or equal to the budget). Using an argument
similar to the one we gave for the unbudgeted case, we can
show that the budgeted greedy algorithm of Khuller et al.
can be parallelized like the unbudgeted one. The approxima-
tion guarantee is (1−1/

√
e−O(ε)) and the parallel running

time remains polylogarithmic. We omit the details.

4.3 Discussions
In this section we comment on other possible approaches

for obtaining a parallel approximation algorithm for Max-
k-Cover. Suppose one could strengthen our weak version
of greedy algorithm to return a set covering a number of new
elements within a factor of 1− ε of the maximum. Then, a
result of Hochbaum and Patria [16, Chapter 3, Theorem 3.9]
could directly be applied to obtain a 1− e−1+ε = 1− e−1 −
O(ε) approximation to the Max-k-Cover problem. It is in
fact unclear if such an algorithm can exist in the parallel
setting. For instance, the algorithm of [2] can choose some
bad sets (i.e., sets having large intersection with the other
chosen sets). Our contribution is to show that (i) such sets
are few and (ii) can be positioned in the total ordering in
such a way that the approximation guarantee is changed by
just a 1−O(ε) factor.

We observe how a partially different approach could have
been taken if we did not insist on prefix-optimality. For in-



stance, we could have randomly permuted each equivalence
class of sets returned by the algorithm of [2]; this would have
ensured that with some Ω(1) probability few bad sets would
have ended in the k-prefix of the ordering — we could have
then ignored those few bad sets and considered only the oth-
ers. This approach would have still required to prove that
the number of bad sets is small, and that, being few, they
could not have caused havoc.

5. EXPERIMENTS
In this section we detail an experimental study of our new

algorithm. For purposes of the experiments, we use five
large, real-world instances of set systems. For each of these
instances, we ran the standard Greedy algorithm and our
MrGreedy algorithm. The goal of the experiments is to
demonstrate three things. First, it is feasible to implement
MrGreedy in practice. Second, the performance of Mr-
Greedy is almost indistinguishable from Greedy, both for
various values of k and for instances with various character-
istics. Third, our algorithm exploits and achieves parallelism
in practice.

5.1 Data description
We use the following five data sets in our experiments.
(1) User–hosts. This instance consists of users (elements)

and hosts (sets). Here, the set for a given host consists of
all the users who visited some web page on the host during
browsing. This data is derived from the Yahoo! toolbar
logs; the users are anonymized and the hosts hashed. The
instance is a subset of the toolbar data during the week of
July 18-25, 2009. The coverage problem is to determine the
hosts that are visited by as many users as possible.

(2) Query–hosts. Our second instance consists of queries
(elements) and hosts (sets). The set for a given host contains
all queries for which the host appeared in the top ten search
results. These queries were sub-sampled from Yahoo! query
logs on July 1, 2009. We may study both weighted and
unweighted versions by introducing a weight to each query
corresponding to the number of times it occurs. We work
here with the unweighted instance, so we seek the hosts that
together cover as many unique queries as possible.

(3) Photos–tags. Our third graph is derived from the
Flickr data set. Here, the elements are photographs up-
loaded to the Flickr web service, and the sets are tags. The
set for a given tag contains the photos to which that tag has
been applied. The coverage problem is to find those tags
that together cover as many photos as possible.

(4) Page–ads. Our fourth instance is derived from Ya-
hoo!’s content match advertising system, which allows ar-
bitrary internet content publishers to place textual ads on
their pages. The elements are web pages, and the sets are
the ads shown on those pages. The coverage problem is to
determine a collection of ads that covers as many pages as
possible.

(5) User–queries. Our fifth graph is derived once again
from the web search query logs in Yahoo! We consider
query logs over a 75-day period in which each query is an-
notated with an anonymized userid. The elements are the
anonymized ids, and the sets are queries. The set for a
particular query contains all the anonymized userids that
issued the query in our sample. The coverage problem is to
determine the queries that cover as many users as possible.

Table 1 shows the overall statistics of the data including
the number of sets (m), number of elements (n), the number
of element–set memberships (E), the maximum degree of an
element (∆), and the maximum cardinality of a set (w∗(S)).
From the table it is clear that the five instances are widely
varying in terms of their characteristics. Unless otherwise
specified, we use the large User–hosts instance to illustrate
our experiments.

Data set m n E ∆ w∗(S)
User–hosts 5.64M 2.96M 72.8M 2,115 1.19M

Query–hosts 625K 239K 2.8M 10 164K
Photo–tags 89K 704K 2.7M 145 54.3K
Page–ads 321K 357K 9.1M 24,825 164K

User–queries 14.2M 100K 72M 5,369 21.4K

Table 1: Details of the data sets.

5.2 Approximation performance
First, we wish to show that the approximation guarantee

of MrGreedy is almost on par with Greedy. For the pur-
poses of this experiment, we choose ε = .75. (In theory, this
is a non-sensical choice since ε has to be at most 1−1/e; but
as we will see, this choice does not impact the algorithm.)
We also illustrate the performance of the naive algorithm
(Naive) that sorts the sets by sizes and takes the prefix as
a solution.

We plot the value of the solution returned by the various
algorithms on the instances. We choose varying values of k
for each instance. In Figure 1, we show the approximations
on the User–hosts instance. The x-axis specifies k and the
y-axis gives the fraction of elements in the universe that are
covered by a prefix of length k in the solution. It is clear
that MrGreedy is almost indistinguishable from Greedy
for all values of k.
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Figure 1: Performance of MrGreedy, Greedy, and
Naive on User–hosts.

To visualize the plot better, in Figure 2, we show the rel-
ative performances, where we compare the approximation
of Greedy and Naive against MrGreedy. The relative
performances on the other three instances are shown in Fig-
ure 3. The top line shows the performance of Naive against
MrGreedy whereas the bottom line shows the performance
of Greedy against MrGreedy. As we see, the bottom line
is nearly horizontal and very close to y = 1, indicating that



the performance of Greedy and MrGreedy are almost in-
distinguishable.

The reader might wonder why some of the plots in Fig-
ure 2 and Figure 3 have a“saw tooth”pattern. This is caused
due to the parallel nature of MrGreedy and each “spike”
corresponds to the beginning of a book-keeping phases. Mr-
Greedy arbitrarily sorts the sets output during a book-
keeping phase to increase parallelism at the cost of preci-
sion, i.e., if a prefix that cuts a phase in two parts is cho-
sen, the algorithm incurs a small loss in the quality of the
cover returned. Both Greedy and Naive return the sets
in a total order instead, i.e., each prefix is correctly sorted.
Thus, the relative performances of MrGreedy, compared to
both Greedy and Naive, decreases between book-keeping
phases.
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Figure 2: Relative performance on User–hosts.

The performance of the Naive algorithm varies widely. In
some instances, such as the Query–hosts dataset, the per-
formance of Naive is within a few percent of the other al-
gorithms, which may be acceptable for some settings. In
other settings, such as the Photos–tags dataset, the approx-
imation performance of Naive is quite poor and worsens
as the result size increases. Naive in general will perform
poorly when there are many high-coverage sets with signif-
icant overlap, which is a common occurrence in max cover
problems; hence, algorithms that take overlaps into account
are usually necessary.

Comparing the performance of MrGreedy with Greedy,
we see that MrGreedy performs comparably over all in-
stances and all ranges of k. So, in terms of approxima-
tion guarantees, we conclude that MrGreedy performs on
par with Greedy, despite our setting of ε = 0.75. Even if
choosing such a large ε does not give us, theoretically, any
approximation guarantee (see Theorem 7 and Lemma 5), it
produces very good results in practice. In the next section,
we further study the role of ε in the experimental evaluation
of MrGreedy.

5.3 Effect of ε
In this section we study the effect of choosing the value of

ε. We examine two parameters: the coverage obtained and
the running time. Figure 4 shows the relative coverage (base
is when ε = 0.75) for two smaller values of ε, namely, 0.1 and
0.01, on the User–hosts instance. From the curves, we see
how a smaller value of ε achieves only a 1–2% improvement,
even for moderate values of k. On the other hand, a smaller

value of ε means a higher running time. Clearly, the ben-
efit of using a lower value of ε is unnoticeable in practice.
In other words, even though the performance of our algo-
rithm is 1− 1/e−O(ε), the effect of a large value of ε seems
negligible in practice.
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Figure 4: Effect of ε: relative deviation when using
ε = 0.75 and running times for different ε on Query–
hosts.

5.4 Exploiting the parallelism
In this section we study the running time of MrGreedy

compared to Greedy. Specifically, we study two aspects:
the wall-clock time and the number of parallel executions
made possible by our algorithm (as a function of k). Figure
5 shows the running time of MrGreedy vs Greedy on the
User–hosts graph. It is clear that MrGreedy vastly out-
performs Greedy in terms of the running time. Observe the
“horizontal steps” in the running of MrGreedy. These are
precisely the points where a “batch” addition to the current
solution is performed: lines 14–15 of MrGreedy.

To study this further, we count the number of parallel
steps enabled by MrGreedy; in particular, we study the
number of times lines 14–15 were invoked for the User–hosts
instance. In all, these were invoked about 90 times and more
than 2,400 sets were added in that step. Note that each of
these 90 additions is a “batch” update, i.e., the element–set
memberships have to be updated only 90 times (as opposed
to each time in Greedy). Figure 6 shows these updates
over time. It is clear that as the algorithm progresses, on
average, it is able to add more and more sets to the solution
in a single batch.
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6. CONCLUSIONS
We developed a Map-Reduce-based algorithm for Max-

k-Cover. Our algorithm obtains a nearly 0.63-approximation
and can be implemented with polylogarithmic many Map-
Reduce steps over the input instance. Thus, we match the
performance of Greedy, while obtaining an algorithm that
can be implemented in the scalable and widely-used Map-
Reduce framework. This is one of the few instances of a
non-trivial Map-Reduce realization of a classical algorithm
with provable guarantees of performance. Our experiments
on five large-scale real-world instances show that it is feasible
to implement MrGreedy in practice and obtain reasonable
speedup over Greedy. Moreover, the approximation per-
formance of MrGreedy is virtually indistinguishable from
that of Greedy.
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Figure 6: Number of “batch” additions over time for
MrGreedy on User–hosts.

As we stated in Section 3, there has been very little work
on Map-Reduce-versions of classical graph algorithms. With
the growth of graph mining in web contexts, it becomes in-
evitable to focus on developing Map-Reduce-friendly ver-
sions of those graph algorithms that have an inherently se-
quential flavor, with provable performance and running time
guarantees. A viable and promising candidate in this aspect
is the sequential greedy algorithm to find the densest sub-
graph [4]: a Map-Reduce version of this algorithm will be
of immense interest to practitioners who are interested in
finding dense communities in massive graphs.
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