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ABSTRACT
We present a model of tabbed browsing that represents a
hybrid between a Markov process capturing the graph of
hyperlinks, and a branching process capturing the birth and
death of tabs. We present a mathematical criterion to char-
acterize whether the process has a steady state indepen-
dent of initial conditions, and we show how to characterize
the limiting behavior in both cases. We perform a series
of experiments to compare our tabbed browsing model with
pagerank, and show that tabbed browsing is able to explain
15–25% of the deviation between actual measured browsing
behavior and the behavior predicted by the simple pagerank
model. We find this to be a surprising result, as the tabbed
browsing model does not make use of any notion of site pop-
ularity, but simply captures deviations in user likelihood to
open and close tabs from a particular node in the graph.

Categories and Subject Descriptors. H.3.m [Informa-
tion Storage and Retrieval]: Miscellaneous

General Terms. Algorithms, Experimentation, Theory
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process, stationary distribution, convergence

1. INTRODUCTION
The Opera web browser version 4, released in 2000, was

the first to popularize browsing with multiple tabs available
within a single window. This tabbed browsing paradigm be-
came popular among the technical community, and appeared
in Firefox by the following year, and in Safari by 2003. By
2006, all major browsers offered a tabbed browsing capabil-
ity. Today, as Meiss et al. [22] and Viermetz et al. [27] show,
it is increasingly unusual for an online user to access the web
through a single tab.

User models like pagerank [23] provide simple, well-known,
and mathematically well-understood approaches to thinking
about browsing with a single tab in a single window. How-
ever, the situation becomes more complex when multiple
tabs are introduced. The most salient distinction is that a
user no longer traces a single path through a graph, and so
may no longer be modeled accurately as a state in a Markov
chain corresponding to the underlying graph of web pages
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or hosts. Rather, the user’s browsing may be viewed as a
series of “pebbles” that move from node to node in a graph.
New pebbles may come into being, and existing ones may
split or die out. The operation of moving from one configu-
ration of pebbles to another is not naturally represented as
a stochastic matrix, and it is no longer obvious how to think
about the “steady state” of such a system.

In this paper, we present a model of tabbed browsing that
represents a hybrid between a Markov process capturing
the graph of web pages, and a branching process captur-
ing the creation, splitting, and dying of tabs. We present
a mathematical criterion to characterize whether the pro-
cess has a steady state independent of initial conditions,
and we show how to characterize the limiting behavior in
both cases. We perform a series of experiments to compare
our tabbed browsing model with pagerank, and show that
tabbed browsing is able to explain 15–25% of the deviation
between actual measured browsing behavior and the behav-
ior predicted by the simple pagerank model. We find this to
be a surprising result, as the tabbed browsing model does
not make use of any notion of site popularity, but simply
captures deviations in user likelihood to open and close tabs
from a particular node in the graph.

Models of stateful browsing. Browser developers are
actively engaged in providing users with new capabilities to
improve online navigation. Bookmarks, back buttons (and
the corresponding forward buttons), tabs, multiple windows,
toolbars, URL bars, auto-completion, search, and many other
mechanisms may be seen as offering users a way to move
through the web graph using more contextual and state-
ful information than a naive browsing model would assume.
Here we touch briefly on a few of these mechanisms.

Tabbed browsing has two primary manifestations. In the
first, a user visiting a page opens a link on the page in a
new tab. This is commonly accomplished by right-clicking
the link and selecting“Open in new tab,” or by holding down
the control key while clicking the link. We will refer to this
behavior as “control-clicking.” In the second manifestation,
a user explicitly requests a new tab without specifying the
contents, and this tab then opens to the user’s (possibly
empty) homepage. From there, the user may enter a URL,
perform a search through a toolbar or browser chrome search
box, and so forth. These two behaviors must be handled
differently, as the first depends on the current page and rep-
resents a form of transition, while the second is more akin
to a restart.

In addition to tabbed browsing, users may also click the
“back button” to revisit the previous page of the current



tab. Importantly, a second click on the back button does not
return the user to the original page, but instead continues
backwards to the page loaded before the old page. Hence,
implementing or modeling the back button is considerably
more complex than allowing a user to follow links backwards
in the graph — the process must maintain awareness of the
entire chain of links that brought the user to the current
page, as the user may choose to sequentially unwind the
chain arbitrarily far back.1 See [14] for a detailed analysis
of the process of browsing with back buttons.

The focus of this paper is tabbed browsing, so we do not
explicitly model any of the other stateful browsing mech-
anisms described above. However, the data we employ in
evaluating our models is based on anonymized and aggre-
gated browsing trails from Yahoo! toolbar logs, and makes
available for each page visited by a user the time of the visit,
and the source node (referrer) from which the user arrived
at the current page. This information does not allow us to
distinguish between a user who opens page A then control-
clicks on pages B and C, versus a user who opens A, clicks
to B, uses the back button to revisit A, and then clicks to
C. As we describe below, however, tabbed browsing is the
dominant mechanism by which users follow multiple links
from a page, and as new data becomes available, improved
estimates of our parameters can be incorporated without
changes to the model.

Overview of the model. We will describe how our model
captures the behavior of control-clicking to open a link in a
new tab. Given this, it is straightforward to incorporate the
behavior of opening a new empty tab.

In our model, each node i of the graph has a spawn proba-
bility si > 0 and a death probability di > 0. We assume that
a user begins by opening a browser, which contains a single
tab for a page chosen according to some initial distribution.
As the process proceeds, the user may open more tabs in
the browser, and the process ends when the user closes the
last tab, which may never happen.

During each round, the user will follow one edge in one
tab, and may optionally kill some tabs and spawn others.
The order in which this happens is important for the anal-
ysis. Each round contains three phases:

(1) In the first phase, the user must select a tab of interest.
She considers each tab in a round-robin fashion, and either
kills the tab with probability equal to the death probability
of the page in that tab, or selects the tab.

(2) In the second phase, the user control-clicks zero or
more edges. She repeatedly flips a coin whose bias is the
spawn probability of the given page. Once the coin comes
up tails, the phase ends. As long as the coin comes up heads,
she control-clicks on an outlink from the page, chosen from
the outdegree distribution, and the destination page opens
in a new tab.

(3) Finally, in the third page, the user picks a link from
the outdegree distribution of the current page and clicks it,
loading the destination into the current tab.

The steady-state measure is given by the expected fraction
of times, in the limit, a particular page is viewed (or more
accurately, loaded in a tab); we call this the tabrank of the
process. We observe first that if there are constants s and
d such that si = s and di = d for all i then the model may

1Browsers may place some limit on how much history is
accessible through the back button.

be reduced to a simple Markov process. In fact, if s = 0
then tabrank is exactly the steady state of the pagerank
process with restart probability equal to d and with reset
distribution equal to the initial distribution of the tabbed
browsing process.

If the si’s and di’s are different, then this is no longer
true and the steady state is more complicated. In fact, our
analysis shows that depending on the eigenvalue of a certain
matrix, the tabbing browsing process may eventually termi-
nate or with positive probability, run forever. In either case,
one can define a version of tabbed browsing with restart
(mimicking the scenario when the user restarts the browser
with a single tab). The steady-state measure remains well-
defined.

Organization. The remainder of the paper proceeds as
follows. Section 2 describes the related work. In Section 3
we describe our model formally, and in Section 4 we present
our theoretical results on the convergence conditions. Sec-
tion 5 contains our experimental analysis. Finally, Section 6
presents some concluding remarks.

2. RELATED WORK
The random surfer model, first popularized in the pager-

ank paper [10, 23], has been studied extensively. In this
model, there are two tunable parameters: the teleportation
probability and the restart distribution. There has been a
long line of research trying to understand the effect of these
parameters on the steady state [3, 7]; we refer to the surveys
on pagerank and other link-based analysis [6, 8, 19, 26].

The basic pagerank model has been extended in a variety
of ways. Haveliwala [18] proposed topic-sensitive pagerank
where the restart process happens from a topically-focused
subset of webpages. Lempel and Moran [20] proposed a
different random walk model and studied its robustness to
topic drift and spam. Pagerank-like methods have also been
to solve other problems arising in web search: estimating
trust of websites [17], combating spam [5], identifying web-
page decay [4], and many more.

There have been several attempts to make the browsing
model of pagerank more realistic and closer to the actual
user behavior, especially taking into accounts of the features
of the (ever-changing) web browser. The eventual goal of
many of these modifications is to obtain a query-independent
quality-based ordering of the web pages. Gonçalves et al.
[16] observe that the diversity of sites visited by individual
users is smaller and more broadly distributed than what is
predicted by the classical pagerank model. They introduce
the bookrank model, where a list of web pages ranked by the
number of previous visit (bookmarks), is the state of the
Markov chain. At each step, the user chooses a bookmark
according to some probability distribution and visits the
bookmark. With the remaining probability, the user nav-
igates locally or hits the browser back button. In principle,
their work can encapsulate tabbed browsing; however, they
only provide simulations and no formal analysis. Liu et al.
[21] proposed BrowseRank, where the user browsing graph
is used in conjunction with webpage dwell times in order
to estimate page importance. They employ continuous-time
Markov processes to incorporate the length of time spent
on a page. They do not address the tabbed browsing pro-
cess. Sydow [25] and Bouklit and Mathieu [9] considered
the effect of “back buttons” in the browser. They augment



the browsing activity with a bounded history stack — this
blows up the state space of the underlying chain.

On the theoretical front, Fagin et al. [14] analyzed stan-
dard random walks when there are “back buttons” available.
Their analysis does not seem easily extensible to the tabbed
browsing setting, which has a branching process component.
Alon et al. [1], Efremenko and Reingold [11], and Elsässer
and Sauerwald [12] considered parallel random walks. Par-
allel random walks can model simultaneously open tabs, but
do not capture the birth-death aspect of tabbed browsing.
Etessami and Yannakakis [13] formulated recursive Markov
chains that can invoke one another (called multi-type branch-
ing processes) and studied their dying probabilities and the
associated computational issues; while our model is a ex-
treme special case of theirs (each node can recursively in-
voke itself), the simplicity of our model makes it amenable
to a self-contained analysis of both the dying probability and
even the steady state. For a detailed account of branching
processes, see the book by Athreya and Ney [2].

3. THE TABBED BROWSING MODEL
Let P be an n-state Markov chain where Pi,j denotes

the transition probability from state i to state j. We have
∀i, j Pi,j ≥ 0 and ∀i,

Pn
j=1 Pi,j = 1. Here, the states corre-

spond to webpages and Pi,j denotes the probability of navi-
gating from webpage i to webpage j. We use i→ j to denote
the hyperlink from i to j.

Our goal is to study the effect of adding tabs to a ba-
sic browsing model such as the pagerank model [23]. As in
pagerank, we assume that P is ergodic (i.e., the graph un-
derlying the Markov chain is strongly connected and that P
is aperiodic).

Further, we assume that for each page i, there exists two
probabilities si, di ∈ (0, 1) that represent the tab spawn
probability and and the tab death probability respectively.
Denote Σ = (s1, . . . , sn) and ∆ = (d1, . . . , dn).

We now describe the stochastic process of tabbed browsing.
We assume that each user maintains a queue of open tabs
that she visits in order. The browser starts with a single tab
showing a webpage (chosen according to some distribution).
When looking at the current tab with page i, the user acts
as follows.

(1) She flips a coin with probability di. If it comes up tails,
she goes to the next step. If it comes up heads, she closes
the current tab, and starts all over again with the page on
the next tab in the queue, if it is non-empty. If the queue
becomes empty, she stops browsing.

(2) She flips a coin with probability si. If the coin comes
up heads, she control-clicks on a hyperlink i→ j on the page
i, chosen randomly according to Pi,∗; this is interpreted as
the user loading the page j in a new tab and adding it to
the end of the queue of open tabs. She then goes back to
the current step. If the coin comes up tails, she goes to the
next step.

(3) She choose a link i → j according to Pi,∗; this is
interpreted as the page in the current tab changing from i
to j. Then she starts all over again with page j.

4. ANALYSIS
The goal in this section is to analyze the stochastic pro-

cess proposed in Section 3. In particular, we are interested
in the steady-state characteristics of the process and its de-

pendence on the Markov chain and the tab spawn and tab
death probabilities.

We say that the random-tab process eventually ends (or
just ends) if, at some point, the user closes the last tab in
the queue. We consider the following question.

For which P,Σ, and ∆, does the process eventu-
ally end with probability 1?

We address this problem in a series of steps. First of all, let
Sf (j) be the random variable counting the number of visits
to page j by a random tab process starting with page f in the
initial tab. The first view of page f is counted and therefore
Sf (f) ≥ 1 with probability 1. Let ef = (0, . . . , 0, 1, 0, . . . , 0)
be the unit vector with a 1 in the fth coordinate (corre-
sponding to the page loaded in the initial tab of the process).
Then, we have the following system.

E[Sf ] = ef + df ·~0 + (1− df ) ·

 
∞X

`=0

(` · s`
f · (1− sf )

·
nX

j=1

(Pf,j · E[Sj ])) +

nX
j=1

(Pf,j · E[Sj ])

!

= ef + (1− df ) ·

 
1 +

∞X
`=0

“
` · s`

f · (1− sf )
”!

·
nX

j=1

(Pf,j · E[Sj ])

= ef +
1− df

1− sf
·

nX
j=1

(Pf,j · E[Sj ]) .

It is easy to see the following.

Lemma 1. A page is visited infinitely often in expecta-
tion if and only if all the pages are visited infinitely often
in expectation. That is, E[Sf (j)] = ∞ for some f, j iff
E[Sf ′(j′)] =∞ for all f ′, j′.

Proof. By our assumptions on P,Σ, and ∆, with posi-
tive probability, one can get from any page to any other page
in at most finitely many steps. The statement follows.

The following observation will be used by the main result
of the section, to distinguish between the cases where the
process eventually ends with probability 1 or survives with
positive probability.

Lemma 2. If the expected number of visits to some page
(and thus to all pages) is finite, then the process eventually
ends with probability 1.

Proof. Let ε > 0 be fixed. Indeed, by the Markov in-
equality, the probability that Sf (j) ≥ (n/ε) · E[Sf (j)] is at
most ε/n. By a union bound over the n pages, we have that
with probability at least 1− ε, the process will end after at
most (n/ε) ·

Pn
j=1 E[Sf (j)] steps.

Before continuing with the analysis, we note that a state-
ment such as “the process eventually ends if and only if the
expected number of visits to each page is finite” does not
hold in general.

Lemma 3. There are P,Σ,∆ such that the process will
eventually end with probability 1 even if the expected number
of visits to some page (and thus to all pages) is infinite.



Proof. Suppose that P is a Markov chain with a single
state and P1,1 = 1. Further, suppose that 0 < s1 = d1 < 1.
Then, E[S1(1)] = 1 + E[S1(1)], so E[S1(1)] = ∞. On the
other hand, the expected number of “children” per tab is 1.
Therefore, by the general branching process theorem [15],
the process ends with probability 1.

To state and prove our main result, we assign epochs to
each tab. The initial tab will have epoch 0. Given a tab x of
epoch t, all the tabs obtained by clicking, or control-clicking
on x will have epoch t+ 1 (they are the children of x). Let

k
(t)
i (1 ≤ i ≤ n) represent the number of tabs of epoch t

showing page i. We will have k
(0)
f = 1 and k

(0)
i = 0 for each

i 6= f .
Since the tabs are loaded in a queue-like manner, and

since each single tab will eventually die with probability 1,
we have that each opened tab (regardless of its epoch) will

be visited. Thus, Sf =
“P∞

t=0 k
(t)
1 , . . . ,

P∞
t=0 k

(t)
n

”
, where

Sf (as defined before) counts the number of times each page
will be loaded by our process, assuming to start from a single
tab with page f .

Observe that the expected number of tabs of epoch t+ 1
open on page j (1 ≤ j ≤ n) is equal to

E
h
k

(t+1)
j |

“
k

(t)
1 , . . . , k

(t)
n

”i
=

nX
i=1

„
Pi,j ·

1− di

1− si
· k(t)

i

«
.

By the linearity of expectation, we have

E
h
k

(t+1)
j

i
=

nX
i=1

„
Pi,j ·

1− di

1− si
· E
h
k

(t)
i

i«
.

Let

A =

0BB@
P1,1 · 1−d1

1−s1
· · · P1,n · 1−d1

1−s1
...

. . .
...

Pn,1 · 1−dn
1−sn

· · · Pn,n · 1−dn
1−sn

1CCA ,

and write“
E
h
k

(t+1)
1

i
, . . . , E

h
k

(t+1)
n

i”
=
“
E
h
k

(t)
1

i
, . . . , E

h
k

(t)
n

i”
·A.

By induction, we get“
E
h
k

(t)
1

i
, . . . , E

h
k

(t)
n

i”
= ef ·At for t ≥ 0.

Thus,

Lemma 4. E[Sf ] = ef ·
P

t≥0 A
t.

Let us now consider the matrix A. We know that, for each
i,
P

j Pi,j = 1, that for each i, j, Pi,j ≥ 0, and that for each
i, 0 < si, di < 1. Note that A is irreducible, aperiodic, and
non-negative, thanks to the irreducibility and aperiodicity
of P .

Our analysis will make use of the irreducible-aperiodic
Perron–Frobenius Theorem (see [24, Theorem 1.1]) for non-
negative2 matrices. In the following, we say that x is a non-
negative (resp., positive) vector if x(i) ≥ 0 (resp., x(i) > 0),
for each i. We say that x is a unit vector if

P
i x(i) = 1.

The null vector is the vector having 0 in each coordinate.

2Throughout the paper, we use the term “non-negative” to
mean “non-negative and real”.

Theorem 5 (Perron–Frobenius). Suppose M is a non-
negative, aperiodic, and irreducible n× n matrix. Then, (i)
M has a real eigenvalue ρ > 0 of multiplicity 1. The eigen-
value ρ is such that (ii) for each other eigenvalue λ 6= ρ of
M , we have |λ| < ρ. Further, (iii) the eigenvalue ρ admits
exactly one positive unit left eigenvector, and (iv) exactly
one positive unit right eigenvector.

We also use the following theorem from the theory of ma-
trix powers approximation (see [24, Theorem 1.2]).

Theorem 6. Suppose M is a non-negative, aperiodic, and
irreducible n×n matrix. Let ρ be its eigenvalue of maximum
norm, and Λ < ρ be the maximum norm of the other eigen-
values of M . Further, let x∗ be the positive unit left eigen-
vector of ρ. Then, if v is a non-null, non-negative vector,
there exists c > 0 such that

v ·M t =
`
c · ρt ±Ot

`
tn−1 · Λt´´ · x∗.

Let ρ be the spectral radius of A, i.e., ρ is the largest
eigenvalue of A. Let τ be the unique non-negative unit-
norm left eigenvector associated with ρ, i.e.,

P
i τ(i) = 1

and τA = ρτ . We say that ρ is the tabrate of the process,
and if ρ > 1, call τ to be its tabrank vector. We now state
and proving our main theorem.

Theorem 7 (Tabbed Browsing). If ρ < 1, then the
tabbed browsing process eventually ends with probability 1.
If ρ > 1, then with positive probability, the tabbed browsing
never ends.

Proof. We start with the case ρ < 1. Let f be the page
loaded on the original tab. Recall that the vector (indexed
by the pages) counting the expected number of epoch t tabs
is ef ·At. By Theorem 6, we can upper bound this expecta-
tion by `

ef ·At´ ≤ Ot(ρ
t) ·
X

i

x∗(i) = Ot(ρ
t).

Since E[Sf ] =
P∞

t=0 ef ·At, we have

E[Sf ] ≤

 
Ot

 
∞X

t=0

ρt

!
, . . . , Ot

 
∞X

t=0

ρt

!!
≤

≤
„
Ot

„
1

1− ρ

«
, . . . , Ot

„
1

1− ρ

««
.

Thus, E[Sf ] is finite coordinate-wise and therefore we can
apply Lemma 2 to conclude that the process eventually ends
with probability 1.

We now consider the case ρ > 1. Let τ be the left eigen-
vector with eigenvalue ρ, with

P
i τ(i) = 1.

We now describe what we will call phase 1. We start from
some page i∗ with one tab. Since 0 < si, di < 1, for each i, in
epoch 0 we will spawn N tabs from this initial tab with pos-
itive probability, for some large enough N to be fixed later.
Since the Markov chain P is irreducible and aperiodic, there
will exists some finite (albeit possibly exponential) epoch t0
such that with positive probability, (i) no dying/spawning
events happened in any of the epochs 1, . . . , t0 − 1 and (ii)
for each 1 ≤ i ≤ n, the fraction of epoch t0’s tabs in state
i is within a (1 ± ε) multiplicative factor of N · τ(i). We
condition on this event.

We now move to phase 2. Let Xi,t be the number of tabs
on state i at epoch t. Let X→i,t be the sum of the number of



tabs of epoch t that transitioned from state i to some other
state, and the number of the children they spawned in epoch
t. Let X→i,j,t be the number of tabs and of their children
transitioning from state i to state j at the end of epoch t.
Then, X→i,t =

Pn
j=1 X

→
i,j,t. Also, Xj,t+1 =

Pn
i=1 X

→
i,j,t.

Then,

E[X→i,j,t|Xi,t] = Pi,j ·
1− di

1− si
·Xi,t.

We want to get a bound on X→i,t. We do so in three steps.

Let X+
i,t be the number of tabs on state i at the beginning

of epoch t that do not die at epoch t. Then E[X+
i,t] =

(1− di) ·Xi,t. By the Chernoff bound,

Pr[X+
i,t < E[X+

i,t]−
p

3 ·Xi,t · lnXi,t] < e−4 ln Xi,t = (Xi,t)
−6.

For each of the surviving X+
i,t tabs, a geometric random

variable Y1−si (taking values in Z+) of stopping probability
1 − si (and thus mean (1 − si)

−1) is sampled; the corre-
sponding surviving tab will have Y1−si children (including
itself) in epoch t+ 1. We thus want to bound a sum of X+

i,t

independent geometric random variables Y1−si .
By the Chernoff bound, the probability of getting more

than (1 − si) · d +
√

2d ln d heads in d coin flips with head
probability 1 − si is less than d−6. Thus, the probability
of the sum of (1 − si) · d +

√
2d ln d independent geometric

random variables Y1−si is less than d is < d−6. Choosing
d = 1

1−si
· k −O(

√
k log k), we have

Pr

"
kX

i=1

Y1−si <
1

1− si
· k −O(

p
k log k)

#
< O

`
k−6´ .

Thus, by implicitly conditioning on X+
i,t ≥ (1 − di) ·Xi,t −p

3 ·Xi,t · lnXi,t, we have

Pr[X→i,t < E[X→i,t]−O(
p
Xi,t logXi,t)] < O(X−6

i,t ).

Thus, with probability at least 1−O(X−6
i,t ), we have X→i,t ≥

E[X→i,t]−O(
p
Xi,t logXi,t) = 1−di

1−si
·Xi,t−O(

p
Xi,t logXi,t).

Applying the Chernoff bound again, we get that the number
of tabs that actually transition to state j is such that

Pr[X→i,j,t < E[X→i,j,t]−O(
p
Xi,t logXi,t)] < O(X−6

i,t ).

That is, with probability at least 1−O(X−6
i,t ), we have that

X→i,j,t ≥ Pi,j · 1−di
1−si

·Xi,t −O(
p
Xi,t logXi,t).

Let Xt =
P

i Xi,t. By a union bound over all i, j’s, we
have that

Pr

"
∃j | Xj,t+1 <

X
i

„
Pi,j ·

1− di

1− si
·Xi,t

«
−

−O
„
n ·
qX

Xt

«–
< O(n2 ·min

i
X−6

i,t ).

If this bad event does not happen, we say that the corre-
sponding step of phase 2 was successful.

We will choose the N of phase 1 at the end of phase 2, to
guarantee that in each of the infinite steps t of phase 2, the
Xi,t’s will increase; this will ensure that the error term of
the previous probability inequality, and its error probability,
are both negligible.

We will prove by induction that, with positive probability,
the Xi,t’s, for each i and each t of phase 2, satisfy Xi,t ≥
(1− ε) · τ(i) ·Xt (recall that τ was the tabrank vector), if a

large enough N is chosen. This is true at the end of phase
1. Recall that τA = ρτ . Thus, if χt = (X1,t, . . . , Xn,t), and
if step t was successful, we have

χt+1 ≥ (1− ε)χtA ≥ Xt(1− ε)2τA = Xtρ(1− ε)2τ.

Choosing ε sufficiently small (and, consequently, N suffi-
ciently large) such that ρ(1−ε)2 > 1, gives us a lower bound
on χt+1 that is multiplicatively larger than the lower bound
we had on χt. Thus, we can reapply the analysis to step
t + 1. If step t + 1 happens to be successful we can do it
again, and so on. We upper bound the probability p of even-
tually ending, by upper bounding the probability that some
step will be unsuccessful. If t1 is the first step of phase 2,
by the union bound, the upper bound is

p ≤
∞X

t=t1

O
“
n2 ·min

i
X−6

i,t1

”
≤

∞X
t=t1

O

„
n2 ·

“
((1− ε)2 · ρ)t1 min

i
Xi,t1

”−6
«

≤ 1

1− ((1− ε)2 · ρ)−6
·O
“
n2 ·min

i
X−6

i,t1

”
≤ O

“
n2 ·min

i
X−6

i,t1

”
.

The latter happens to be o(1), if a large enough N is chosen
in phase 1.

Thus, with positive probability both phase 1 and phase 2
are successful, and the process never stops.

We observe that the previous proof only gives an exponen-
tial lower bound on the probability of not eventually ending,
even if ρ > 1. This is in fact unavoidable. Indeed, consider a
directed cycle on {1, . . . , n} as the underlying Markov chain
(the probability of transitioning from one node of the cycle
to the next will be 1). Let di = 1/2, for i = 1, . . . , n and let
si = 1/n for i = 1, . . . , n− 1 and sn = 1− exp(−n). Then,
an easy calculation shows that ρ > 1. But the probability
of not eventually ending will be 2−Ω(n).

Observe that τ is in general different from the limiting
distribution vector of P , unless di = d, si = s, for all i’s, in
which case τ is the limiting distribution vector of P .

4.1 Tabbed browsing with restart
By the tabbed browsing theorem (Theorem 7), if ρ <

1, then the tabbed browsing process eventually ends. To
force the process to never end, we add the following simple
modification to our tabbed browsing process: whenever the
user closes the last open tab, she opens a new tab (with
epoch one more than that of the last closed tab) on a page
chosen according to some probability distribution π. In this
way, the tabbing browsing process will never end. We now
proceed to analyze this process.

Let `
(t)
i be the random variable denoting the number of

times page i has been loaded in the first t epochs of our

process and let `(t) =
Pn

i=1 `
(t)
i .

Theorem 8. Suppose ρ > 1. Then, for each i = 1, . . . , n
we have

lim
t→∞

E[`
(t)
i ]

E[`(t)]
= τ(i).



Proof. Observe that, with probability 1, the number of
times the process is restarted will be finite (since each exe-
cution of our original process will go on forever with positive
probability, independently). The expected number of page
loads in the process executions that die is thus a constant
number (in the sense that it does not grow with t, bu t it
can still be exponential in n), between 0 and some c = c(P ).

Thus, we can restrict ourselves to look at the last (never-
ending) execution of the original tab process. An application
of Theorem 6, observing that the expected size of the epochs
grows exponentially, completes the proof.

Observe that the limiting theorem uses the index of the
epoch as the growing variable. If we were to use another
notion of “time”, say, the number of iterations of our process

(with the ¯̀(t)
i ’s, and ¯̀(t) defined accordingly), then we can

show with the same proof that there is an infinite subse-

quence3 of the
¯̀(t)
i

¯̀(t) sequence that has the limit τ(i).
We also notice that the reset distribution π does not play

a role in determining tabrank, if ρ > 1.
On the other hand, if ρ < 1, then the following holds.

Theorem 9. Suppose ρ < 1. Then, for each i = 1, . . . , n
we have

lim
t→∞

E[`
(t)
i ]

E[`(t)]
=

Pn
f=1 π(f) · E[Sf (i)]Pn

f=1 π(f) ·
Pn

j=1 E[Sf (j)]
.

The proof directly follows from the fact that each execu-
tion of the original non-restarting process ends with proba-
bility 1 after finitely many steps.

5. EXPERIMENTS

5.1 Data
The results in this section are based on the click-stream

data gathered from users of the Yahoo! toolbar. Data is in-
cluded only for those users who voluntarily “opt in” to hav-
ing their data collected for such purposes, and all personally
identifying information was removed from the data before
performing the experiments. The toolbar data contains for
each user, the list of hosts and the edges visited. We assume
that a URL with no referrer represents a tab restart event
and a URL that does not refer to any other URL represents
a tab death event.

We use toolbar data sampled from three time periods:
January 20, 2008, Mar 18–25, 2009, and July 18–25, 2009.
The latter period is the largest dataset, and contains ap-
proximately 5M nodes and 10M edges. We will refer to this
dataset below as the primary dataset.

We first analyze the data in order to estimate spawn,
death, and restart probabilities for each site. The analysis
operates as follows. For a host h, we define the following:

degree(h) = the number of times a user traversed a hy-
perlink originating from page h,

leaf(h) = the number of times a user loaded a page on h
but did not follow a link from the page, and

nonleaf(h) = the number of times a user loaded a page on
h from which the user followed at least one link.

3That is, the one containing all and only the time steps
corresponding to the last tab of an epoch.

Based on these values, we estimate the death and spawn
probabilities as follows:

dh =
leaf(h)

leaf(h) + nonleaf(h)
,

sh = 1− nonleaf(h)

degree(h)
.

We now give some justification for these estimates. Re-
call that in the tabbing browsing model, the user first de-
cides whether to close the tab by flipping a biased coin with
probability dh. If the user does not close the tab, then the
model stipulates that there will be exactly one transition
after zero or more spawn events. Thus, an unbiased estima-
tor is provided by measuring the probability that a page
load yields a transition from that page to another page:
leaf(h)/(leaf(h) + nonleaf(h)). The spawn probability may
then be estimated as follows. If the user does perform at
least one transition from a node, then the model stipulates
that all but one of the transitions will be spawn events. We
may therefore simply estimate the spawn probability that is
most likely to generate the observed number of spawn events
for each instance of a nonleaf page load.

5.2 Sensitivity analysis of smoothing
We adopt a simple scheme to smooth these estimates.

First, we take d̄ and s̄ to be the mean death and spawn prob-
abilities over all hosts. We then smooth the death estimates
by adding some smoothing parameter ∆ to the denominator
and d̄∆ to the numerator. Likewise, for spawn estimates, we
add ∆ to the denominator and s̄∆ to the numerator.

We perform an experiment on a small sample dataset to
determine the sensitivity of the algorithm to smoothing. We
compute pagerank and smoothed tabrank, then compare the
steady-state results of each to the actual steady-state, using
`1 distance. Let A be the actual distribution, PR be the
pagerank distribution, and TR be the tabrank distribution.
Figure 1 plots ||A−PR||1/||A−TR||1, so larger scores rep-
resent a better approximation of the steady state. Based on
these results, we set ∆ = 50 for all further experiments.
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Figure 1: Sensitivity to the smoothing parameter.

In addition to this smoothing, a further form of pre-processing
must be performed. For actual users, the browsing process
ultimately ends, as must all things in life. However, the mea-
sured spawn and death probabilities may lead to a process
that does not ultimately end. We check for certain degener-
ate cases in which a host’s self-loop may cause the process



to run forever. If Pi,i(1 − di)/(1 − si) > 0.95, we normal-
ize it to be 0.95 in order to keep these “factory” hosts from
generating infinite on-host transitions.

5.3 Birth–death probabilities for some sites
The top picture of Figure 5.3 shows the spawn, death, and

restart probabilities of the primary dataset. As the restart
probabilities drop off so quickly, they are shown in log-scale
on the right-hand axis. As the figure shows, most death
probabilities are around 0.7, and most spawn probabilities
are around 0.1. Restart probabilities cover a wide range,
but the vast majority of nodes are below 10−7, as we would
expect given the size of the graph.

The bottom picture shows a scatter plot of spawn and
death probabilities. Each host represents a host, and the
x-axis shows the spawn probability for the host, with the y-
axis showing the death probability. Scaling on the axes are
linear, and while most mass has lower spawn probabilities,
there is significant correlation between the two values.
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Figure 2: Basic properties of spawn and death prob-
abilities.

Table 1 gives examples of the hosts with particularly low
and high spawn and death probabilities. Most of the sites
with high death probabilities are spam sites from which users
are unlikely to initiate significant browsing activity. The
sites with the lowest death probability are compelling on-
line service providers like games, sports news, and social
networks that tend to generate long-term engagement.

The hosts with high spawn probabilities are those from
which it is common to open many links. Photo gallery
sites and photoblogs and well represented here. Hosts with
low spawn probabilities represent sites from which explor-
ing many paths from a page is not a common behavior,
either because the user is typically looking for a single re-

Host Spawn Death
apps.facebook.com 0.5245 0.468

facebook.com 0.6567 0.952
friendster.com 0.5237 0.773

google.com 0.2793 0.339
mail.yahoo.com 0.5271 0.918

search.yahoo.com 0.2851 0.326
tagged.com 0.6244 0.722

viewmorepics.myspace.com 0.4951 0.623
yahoo.com 0.5240 0.539

youtube.com 0.1393 0.318

Table 2: Spawn, death probabilities of top visited
sites.

source (dictionary.com, for example) or because the user
tends to engage heavily with a single page (games.msn.com
or cartoonetwork.com, for example).

Notice that there are many reasons why a host may have
extremal spawn and/or death probabilities. The model is
agnostic to the particulars, but will faithfully reproduce the
behavior.

Table 2 shows the spawn and death probabilities of ten
frequently-visited visited hosts from our sample, in alpha-
betical order. The social networking sites like Facebook,
Friendster, Tagged, and Myspace have higher spawn prob-
abilities than the others, partly because the prevalence of
photos, and partly because such sites offer users feeds con-
taining multiple pieces of interesting content. Youtube, on
the other hand, has a low spawn probability capturing the
intuition that users do not open multiple windows or tabs
with simultaneous videos, and prefer to consume a sequence
of videos, rather than using a single page as a “hub” from
which to explore.

The death probabilities are likewise interesting. The social
network sites tend to have higher death probabilities, as does
Yahoo! mail, which offers an inbox from which users can visit
messages and then click back to the inbox for more.

Note that a site with a high spawn and death probability
can be explained by sites that offer users “hub”-style pages
that link to destinations that are consumed in-place, such as
galleries, lists of products with links to product information
for each, and so forth. The upper right quadrant of the
scatter plot in Figure 5.3 shows hosts that offer the extreme
of this behavior.

5.4 Site-level and traffic distribution
Table 3 gives the aggregate performance numbers for pager-

ank and tabrank. Results on other time periods are similar.
The numbers in the table are the `1 distance between the
model and the actual steady-state distribution over either
nodes or edges.

The first finding is that tabrank performs similarly to
pagerank, and often slightly worse, when the distribution
over outlinks on a page is taken to be uniform. Tabrank is
6% better for uniform restart distribution over nodes, and
1-4% worse for the other cases.

The differences become more apparent in the models that
have greater fidelity. When comparing models that have the
correct reset distribution and the correct outlink distribu-
tion, tabrank is able to remove 1/3 of the error of pagerank
in estimating node steady states, and 70% of the error in
estimating edge steady states.



Lowest spawn probabilities Highest spawn probabilities Lowest death probabilities Highest death probabilities
169.70.240 ar.babel.com acesolitaire.com 149.244.124
169.70.241 atlpics.net asseenonpc.directtrack.com 168.102.254:1000
adv-adserver.com carpediemphoto.smugmug.com asycieniasy.pl 168.254.251:1000
bay.livefilestore.com chat.tchatche.com cartoonetwork.com 174.149.70
bearwww.com fazendopose.multiply.com cbs.sportsline.com 2.120.6
cartoonetwork.com fr.babel.com disneyxd.com 224.57.23
cr.naver.com inmoeciu.ro games.msn.com 3839dm.cn
dictionary.com looklet.com imediabiz.tv ads.freedomltd.biz
games.msn.com meiodomato.com.br instantcertonline.com alllikes.cn
goldresults.net my-gor.com lebestof.eu c5.zedo.com
imediabiz.tv nugaalmedia.com secure.myembarq.com heruholsvrshs03
jarmediatrack.com pctrailruns.com secure.studivz.net img2.zamunda.net
maxsun.biz photo.tiratron.com securebank.regions.com new.going.com
moreverde.com photos.essence.com submit-tools.com premiercardoffers.com
recs.richrelevance.com picasaweb.google.ro tmobile.com s.magentic.com
scraps.recadopop.com playdatephotos.smugmug.com ui.texasworkforce.org server2.mediajmp.com
serve.socialcash.com rallogotpicz.smugmug.com web.charter.net skyblueads.com
signup.live.com simnet.is ww.myspace.com thefutoncritic.com
surveys.surveynetwork.com sublime-stitching.blogspot.com wwww.myspace.com thexinxin.cn
te.kontera.com voyagehotel.com yourtube.ru web1699.cn
wzpo1.ask.com youtube.com.br

Table 1: Sample sites with the lowest spawn probability.

Uniform restart distribution Measured restart distribution
Outlinks uniform Outlinks measured Outlinks uniform Outlinks measured

PR TR PR TR PR TR PR TR
Nodes 1.785898 1.691266 1.702787 1.600571 1.339382 1.381173 0.584982 0.386610
Edges 1.334243 1.435901 1.239302 1.190221 1.535682 1.614064 0.956315 0.276970

Table 3: `1 distance between model steady state and empirical ground truth distribution for 2009/07/18.

Our first observation is that pagerank is more likely to
account correctly for node probabilities, as the reset distri-
bution is seeded from these directly. If each node visit re-
sulted in a single edge visit, then pagerank would be equally
accurate at modeling edge transition probabilities. How-
ever, as we have seen, users follow varying numbers of edges
out of a single node based on the types of behavior that
tabrank models. Thus, we expect that tabrank will show
better performance relative to pagerank in estimating edge
probabilities.

With non-uniform restart distribution, tabrank is about
7% more accurate than pagerank at representing both node
and edge distributions under non-uniform outlink distribu-
tions. This indicates that multiple outlinks have a small but
non-negligible contribution to error rates even in the highly
approximate uniform model.

Additionally, we revisit the same data over all three datasets.
Figure 3 shows the results for non-uniform restart distribu-
tions in all three time periods. The results can be seen to be
similar, although for earlier time periods the distinction be-
tween pagerank and tabrank is not as large. Again, without
outdegree distributions, we see pagerank and tabrank behav-
ing almost identically, with pagerank often slightly better.

Finally, we turn our attention to the nature of the distri-
bution of node and edge steady state probabilities.

Figures 4 and 5 show these distributions in the uniform
and non-uniform restart distribution cases respectively. The
figures show for the actual and modeled distributions the
probability of the xth most likely node under that distribu-
tion, on a log-log plot. It is possible that the forms of two
distributions could be identical but the ids of the high-mass
nodes could be entirely different; thus, these charts give a

visual impress on of areas of agreement but should be inter-
preted in light of the more reliable global metric of Table 3.
Figure 4 shows that employing a uniform restart distribu-
tion underestimates the head and overestimates the tail in
all models. Figure 5 shows that models with access to the
overall popularity of each host, as encoded in the restart dis-
tribution, are able to fit the actual data much more reliably
for both nodes and edges. Adding the outdegree distribu-
tions yields a much more accurate fit, especially for modeling
the probability assigned to each edge.

However, while the pagerank and tabrank curves for non-
uniform restart distributions both appear quite accurate, the
`1 distance between pagerank and the actual edge distribu-
tion is 3.45 times larger than that of tabrank, indicating that
multiple edge traversals are the key “low hanging fruit” in
providing a more accurate assessment of edge traversals in
a simple browsing model.

5.5 Spawn, death, and spam
Figure 6 follows up on the observation from Section 5.3

that high death probabilities, and to a lesser extent low
spawn probabilities, tend to correlate with spam sites. The
top figure shows the probability that hosts with a given
death rate are spam sites as determined by a spam clas-
sifier available at Yahoo! The expected correlation appears:
as the death probability transitions from 0.5 to 0.65, the
probability of spam increases dramatically.

The story for spawn probabilities is much less clear. If
anything, hosts with intermediate spawn scores are more
likely to be spam, but the relationship is weak.

This suggests that probability of death is a candidate fea-
ture for spam classification.
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Figure 4: Distribution of pagerank and tabrank, uniform reset distribution, nodes(left) and edges(right).
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Figure 5: Distribution of pagerank and tabrank, non-uniform reset distribution, nodes(left) and edges(right).

5.6 Non-uniform restart probabilities
The experiments regarding non-uniform restart probabili-

ties are compared against the actual measured distribution,
and this distribution is used to build the restart probabilities
in the first place. Thus, at least in the case of node steady
states probabilities, the correct answer has been“planted” in
the restart probabilities, and the naive algorithm that sim-
ply jumps with probability 1 to the restart distribution will
perfect match the target. In fact for these experiments we do
see that the distance from the target distribution increases
with the number of iterations.

The situation for edges, however, is quite different: the
restart distribution seeds the correct node steady states, but
under pagerank, these may be incompatible with the ob-
served edge transition probabilities. This disparity accounts
for the significant improvements given by tabrank in Table 3
for non-uniform restart distributions and non-uniform out-
link distributions.

6. CONCLUSIONS
We have developed a model for tabbed browsing, in which

users may have multiple tabs open simultaneously. We for-
malize this model as a stochastic process, and analyze the
conditions under which this process terminates. In both
the terminating and non-terminating conditions, we char-
acterize the steady state distribution of the process. If the
process terminates, this steady state depends on the initial
conditions; if the process fails to terminate with nonzero
probability then the steady state does not depend on the
initial conditions.

We then apply our algorithm and the pagerank algorithm
to a dataset derived from anonymized Yahoo! toolbar data.
We show that the tab process performs identically to a vari-
ant of pagerank (as predicted) if all hosts have the same
spawn and death probability. Otherwise, tabrank gives a
more accurate representation of the steady state as the pro-
cesses are given more information. In particular, if pagerank
and tabrank are given both non-uniform outlink distribu-
tions based on data, and a non-uniform restart distribution,
then the steady state node distribution under pagerank has
more than 1.5 times the error of tabrank, and the steady
state edge traversal distribution under pagerank has more
than 3.45 times the error of tabrank.
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