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Minimizing wirelength in zero and bounded skew clock trees 

Moses Charikar* Jon Kleinbergt Ravi Kumati Sridhar Rajagopalan’ Amit Sahais 

Andrew Tomkins~ 

Abstract 
An important problem in VLSI design is distributing a clock signal 
to svnchronous elements in a VLSI circuit so that the signal arrives 
at ail elements simultaneously. The signai is distributed 6y means of 
a clock routing tree rooted at a global clock source. The difference 
in length between the longest and shortest root-leaf path is called 
the skav of the tree. The problem is to construct a clock tree 
with zero skew (to achieve synchronicity) and minimal sum of 
edge lengths (so that circuit area and clock tree capacitance are 
minimized). 

We give the first constant-factor approximation algorithms 
for this problem and its variants that arise in the VLSI context. 
For the zero skew problem in genera1 metric spaces, we give an 
approximation algorithm with a performance guarantee of 2e. For 
the L1 version on the plane, we give an (8/ In 2)-approximation 
algorithm. 

1 Introduction. 
A fundamental problem in VLSI design is clock routing, 
i.e., distributing a clock signal to synchronous elements in 
a VLSI circuit so that the signal arrives at all elements 
simultaneously. The signal is distributed by means of a clock 
routing tree rooted at a global clock source. The difference 
in length between the longest and shortest root-leaf path is 
called the skew of the tree. To achieve synchronicity, the 
skew should be zero. This is a significant issue in VLSI 
design, as non-zero clock skew has been estimated to account 
for over 10% of overall system cycle time in some high- 
performance systems [4]. Though it is easy to produce zero 
skew clock routing trees (see e.g., [5]), naive algoritbms may 
produce trees that are expensive in terms of total WireIength 
(i.e., sum of the edge-lengths in the tree), thereby increasing 
circuit area and clock tree capacitance. Thus, the ideal clock 
tree routing algorithm w&d produce a zero skew clock tree 
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with minimal total wirelength. 
This problem, well studied in the VLSI communiq 

[15, 8, 10, 9, 24, 18, 25, 6, 16, 21, 71, is precisely the 
following variant of the classical Steiner tree problem: 

Find a Steiner tree, with a distinguished root, so 
that the lengths of all the root-leaf paths are the 
same and the sum of the length of edges in the tree 
is minimized. 

While there are many proposed heuristics for attacking this 
problem and its variants (see, for instance, the papers cited 
above), there are no algoritbms with non-trivial worst-case 
performance guarantees known. In this paper we give 
the first (constant-factor) approximation algorithms for con- 
structing clock trees with zero skew (or a skew of at most a 
fixed bound), and wirelength as small as possible. 

1.1 Clock routing problems. We focus on the following 
three versions of the (zero or bounded skew) clock routing 
problem. 

1. 

2. 

3. 

(L1 clock routing) A clock signal must be distributed 
using horizontal and vertical wires on the plane from 
a source to a set of terminal points. The most com- 
mon model of delay along a wire is the linear model, in 
which delay corresponds to length. Therefore the dis- 
tance between points is exactly the L1 distance. This is 
the standard formulation of the problem. 

(Planar ~51 clock routing) In general, the embeddiug 
of a clock tree may have intersecting wires since the 
terminals are usually placed first, and then two layers 
of metal are available for the horizontal and vertical 
wires of the clock tree. This crossing of wires, how- 
ever, may necessitate the introduction of many vias, OT 
connections between layers, which causes both addi- 
tional unmodeled delay and attenuation of the clock sig- 
nal. Therefore one requires a planar-embeddable clock 
tree [ 151. We therefore consider a second version of the 
routing problem (under the L1 metric on the plane) with 
the requirement that the resulting clock tree be a planar 
embedding. 

(General Metric Space clock routing) The above two 
versions model the clock routing problem for standard- 
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cell or gate-array design methodologies, which have 
many small functional modules. In contrast to this, 
building-block design methodologies use larger func- 
tional blocks. These blocks are treated as obstacles and 
routing must be done in the spaces between blocks. The 
routing problem is formulated with respect to a graph, 
called the channel intersection graph (CIG) that repre- 
sents the available routing area. In this model we can 
think of the terminals V as embedded in a metic space 
induced by the topolo,v of the CIG. Therefore the third 
variant of the problem we study is routing a clock tree 
in an arbitrary metric space. 

1.2 Preliminaries. We are given a metric space M with 
distance function d, and a set V of points in M that are 
designated as terminals. As is standard, we define a Steiner 
tree for V to be a tree in M that contains each terminal in 
V as a node. (The nodes of the tree other than the terminals 
are referred to as Steiner points.) We say that a clock tree 
T for V is a Steiner tree with a distinguished vertex T called 
the root, such that every terminal v E V occurs as a leaf 
of T. The tree has an associated length function dT that 
assigns a length to every edge in T, subject to the restriction 
that dT(u, V) 2 d(u, V) (i.e. the tree is allowed to stretch 
distances). If the metric space is the LI plane, for instance, 
the length of an edge (u, V) in T is at least the LI distance 
between u and 21. The cost of the tree T is the sum of the 
lengths of all the edges of T. For v E V, let the length of 
the path from the root to v be &, = dT(T, v). The skay of 
T is maq,w I& -.!?,I. IfThasskew= 0,wecallita 
zero skew (clock) tree @ST) and if T has skew at most s, we 
call it an s-skao free. (Note that, if necessary, this definition 
can be modified to allow terminals to be internal nodes of the 
tree; in the plane, we can instead slightly displace the internal 
node from the terminal. For general possibly discrete metric 
spaces, we allow multiple points in the tree to correspond to 
the same point of the metric space.) 

Formally, the zero (resp. bounded) skav clock tree 
problem is stated as follows. 

Given a set V of terminals in a metric space M, 
find the minimum cost zero skew tree (resp. tree 
with skew at most s for a given bound s) for V. 

When M is the L1 plane, we refer to the & variants of these 
problems. As discussed earlier, intersecting wires in the 
embedding might cause additional umnodeled delays. This 
motivates the planar variants of the above problem, where 
the tree T must be planar-embeddable (i.e. have no crossing 
edges). 

Existing algorithms for clock routing in the LI plane 
make use of snaking, or wiggling an edge in order to 
lengthen it. Our definition of clock tree incorporates snaking 
by allowing dT(U, v) > d(u, v). Without this extension, 

no zero skew tree may exist. In our model feasibility is no 
longer a concern - any tree whose leaves are exactly the 
terminals can be “snaked” to a higher-cost zero skew tree.’ 

The bounded skew clock tree problem is easily seen to 
be NP-complete by setting the skew to infinity so that the 
problem becomes the classical Steiner tree problem. The 
same reduction implies that the problem has no approxima- 
tion scheme in general metics unless P = NP. The zero 
skew problem is also NP-complete for general metric spaces. 
To our best knowledge, the hardness question of the planar 
zero skew problem is yet unsolved. 

We will also refer to these problems as the zero or 
bounded skew clock routing problems. 

1.3 Our results. For the ZST problem in general met- 
ric spaces, we give an approximation algorithm with a per- 
formance guarantee of 2e. We then give a constant-factor 
approximation algorithm for the bounded skew clock rout- 
ing problem in general metric spaces. Finally we give an 
(8/ In 2)-approximation algorithm for the planar ZST prob- 
lem and a constant factor approximation algorithm for the 
planar embeddable bounded skew clock routing problem. 

1.4 Organization. Section 2 discusses some related work 
in clock routing. Section 3 presents a general lower bound 
for the optimal solution to the problem. This is used to ob- 
tain approximation guarantees for our algorithms. Section 4 
(resp. Section 5) give the approximation algorithms for the 
zero (resp. bounded) skew clock routing problems. Section 
6 presents an approximation algorithm for the planar ZST 
problem and Section 7 presents an approximation algorithm 
for the planar embeddable bounded skew clock routing prob- 
lems. Section 8 discusses the hardness of the ZST problem. 

2 Related work. 
Algorithms for clock tree consiructions come in two flavors 
-those that guarantee zero skew and the others that attempt 
to minimize the skew. Notice however that the aim is 
typically to minimize total wirelength. 

The book by Kahng and Robins [ 151 contains a detailed 
account of many of the algorithms for clock tree construc- 
tions and several experimental results. The main emphasis 
on many of the algorithms, however, is to obtain practical so- 
lutions (which perform well on standard benchmarks, which 
in turn may or may not represent the average-case problem 
instance) rather than obtain solutions which have worst-case 
performance guarantees. We overview the most relevant al- 
gorithms below. 

2.1 Minimizing clock skew. In [21], given a floor plan of 
modules, a scheme to identify an entry point is presented. 
The optimal layout of the clock lines from the source to 
the entry points is determined by an exhaustive search (of 
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course, with some pruning). No theoretical guarantees on 
the performance of the algorithm are given. 

In [8], the authors obtain a clock routing scheme consist- 
ing of Manhattan segments with constraints (like blockages) 
on the routing layers. They obtain a divide-and-conquer 
algorithm which produces total wirelength of 1.56 for n 
points distributed randomly on a uniform grid. Contrasting 
this with the largest possible wirelength of ,/?i + 1 for a rec- 
tilinear Steiner tree for the same distribution, they conclude 
that, on average, their algorithm is a 3/2-approximation al- 
gorithm when compared to the minimum rectilinear Steiner 
tree. 

Another algorithm for minimizing skew and wirelength 
based on matching is given in [6, 161. They construct a 
binary tree using geometric matching and show that for cell- 
based designs, the total wirelength of their routing tree is 
on average, within a constant factor of the wirelength in an 
optimal Steiner tree. Their experiments suggest that the skew 
is near-zero on average. 

2.2 Zero clock skew. An exact zero-skew clock routing 
algorithm using the Elmore delay model is presented in [22, 
231. The zero skew is obtained by a bottom-up hierarchical 
approach via a zero-skew merging of the recursive solutions. 
The main emphasis is on experimental results. 

A two-step approach to obtaining zero-skew while si- 
multaneously minimizing wirelength is pioneered in [5]. 
In this, the authors present the Defered Merge Embed- 
ding (DME) algorithm, which embeds any given connection 
topology to create a zero-skew clock tree. The wirelength 
is optimal for linear delay. The connection topology is gen- 
erated by a top-down balanced bipartition (BB) approach. 
Though the DME algorithm can be shown to produce the 
optimal tree for a given topology, the BB approach is essen- 
tially a heuristic and has no performance guarantees. 

3 A lower bound. 
We first demonstrate a lower bound on the cost of the s-skew 
tree in any metric space. Let T be any rooted s-skew tree on 
the set V of terminals, with radius R’. Since T has skew at 
most s, the length of every roo&afpath is at least R’ - s. 

We define the level of a point p E T to be its distance 
from the root (so the root is at level 0). Consider some level 
x E [0, R’ - s]. If there are m points at level z in T then 
the m spheres of radius R’ - x centered at these points must 
cover all the vertices of V. This observation can be converted 
into a lower bound as follows. Let nv (R) be the minimum 
number of spheres of radius R needed to cover the vertices 
V. When the set is apparent from context, we suppress the 
subscript V . 

Let A be the diameter of the set of vertices V, and Let 
R’ be the minimum value of z such that n(x) = 1 (thus 
R’ > A/2.) Note that R’ 2 R’. Then the cost of the 

minimum cost s-skew tree must be at least: 

J 

R’-5 R’ R’ 
n(R’ - x)dz = n(R)dR < n(R)dR. 

0 J .s J s 

This lower bound, and the special case for s = 0, will be 
essential to analyzing our algorithms. 

We note that the ratio between this lower bound for ZST 
and the naive lower bound given by the cost of the MST ma) 
be R (log n), as in the case of n equally-spaced points on the 
line. One can show that this bound is always within a factor 
of O(log n) of the cost of the MST. 

4 An approximation algorithm for general metric 
spaces. 

In this section, we present a Se-approximation algorithm for 
the ZST problem in general arbitrary metric spaces (assum- 
ing that snaking is valid). The algorithm is randomized but 
can be derandomized easily. We place Steiner points on top 
of vertices from V. For ease of language, when we talk of 
using a vertex as an internal point in the tree, we mean to 
place a Steiner point at that vertex and use the Steiner point 
as the internal point in the tree. 

Our algorithm repeatedly partitions the set of vertices 
to construct the tree. The partitioning proceeds by greedill 
placing balls of a certain radius 2R and grouping all vertices 
in the same ball together. To obtain more and more refmed 
partitions, the process repeats with balls of smaller radii. We 
denote by T the factor by which the radii of balls decrease in 
each successive refinement of the partitioning process. We 
will describe our algorithm for any value of T and choose a 
specific (optimal) value for T at the end. 

Algorithm Connect-Centers. Let A be the diameter of 
V. The algorithm first picks an arbitrary vertex s to be 
the root of the tree, and then chooses an initial partitioning 
radius 2& as follows. Let t be chosen uniformly at random 
from [0, 11, and set Rc, = (A/2) - exp(--t logr). The 
algorithm then proceeds as in Figure 1. At each point in 
the constnxtion, we take an existing partition of the vertices 
0 and refme it to c’. (e is not necessarily a strict refinement 
of 0.) Each set Gi E G has a distinguished member gi with 
the property that every v E Gi has d(v, gi) 5 2R. Similar13 
each Vi E 0 has a member ui such that every v E Vi has 
d(v, Ui) 5 2R,ld = 2rR. The tree we construct is denoted 
by T. 

Remark. The algorithm as presented in Figure 1 is only 
weakly polynomial. But, by constraining R to be 5 i&/n*, 
we can obtain a strongly polynomial algorithm at the expense 
of 0(1/n) additive factor in the performance ratio. In 
fact, we can also modify the algorithm without requiring an 
additive factor. We omit the details in this version. 

Analysis. It is immediate from the description of the algo- 
rithm that it will return a ZST, since each veRex is reached 
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Algorithm COIVECt-Centers: 
Initialize: R := &; 2~0 := s; L’CJ := V; c := {Uo}; c := 0; T := 0; i :=z 0; Rold := A/2. 
rey>tVunti; i= IV/ 

;a= . 
repeat until S=0 

pick gi arbitrarily from S. 
let Gi be all vertices in S within distance 2R from gi. 
let S:=S\Gi;i:=i+l. 

for j=O to i-l do 
let k be such that gj E 0-k. 
add an edge from gj to ?& of cost exactly 2Rold to T. 

R Old := R; R := R/T; u := c’; e := 0. 
output T. 

I 

Figure 1: Algorithm Connect-Centers. 

after the same number of levels, and the edges in each level Thus, the integral above is 
are of identical cost. To analyze the cost of the tree produced 
by this algorithm, we observe: J A’2 2T 

- . n(R)dR. 
0 In(T) LEMMA 4.1. Each time a new partition G is created the 

number of sets returned in the partition is at most nv (R). 

Prooj: Let G = {Go,... ,Gmsl}. We induct on m. If 
m = 1, there is nothing to prove. Otherwise, consider the 
n = nv(R) sets&,&,... ,S,ofradiusRthatcoverall 
the vertices V. Let Sj be the set that contains go. Since 
GO contains all vertices within radius 2R from gc, it must 
contain all Of Sj. Let V’ = V \ Go. Now, certainly, 
nv (R) 2 1 + nvj (R). But by induction, since the sets 
G,Gz,-.- , G,,l are the result of a valid execution of 
the partitioning algorithm on V’, it follows that m - 1 5 
nv# (R), and so the claim follows. Note that the claim also 
follows from the standard analysis for the p-center problem 
[12, 13, 141. 

Thus, the total cost of connecting each gi to some Uj is 
at most ~R,J . n(R) 5 2rR. n(R). The expected cost of the 
tree, therefore, can be seen as bounded by the integral: 

J 2rR. n(R)dp 

Here, p is the probability measure of the algorithm using 
balls of radius 2 R. Now, recall that once the initial value Rc 
for R is chosen we know that all balls used in the algorithm 
will have radius 2&/ri for some integer i. Note that the 
probability that RQ lies in a small range [x, x + dx] is 

Wx+h) -w> = W+Wx) _ 
In(T) In(T) 

dx - 
Xh(T) 

By our lower bound, the algorithm produces a tree that is at 
most 2r/ ln(~) times the optimal cost. A simple calculation 
shows that this is minimized when T = e, and hence we have 

THEOREM 4.1. The above algotithm achieves an expected 
approximation ratio of 2e. 

The basic randomization technique we employed in 
the algorithm for choosing R,J has been used previously in 
[ll, 191. 

5 Bounded skew clock routing. 
We now present a constant factor approximation algorithm 
for the bounded skew clock routing problem. The algorithm 
proceeds in two phases. First, we construct a Steiner tree 
spanning V which we fragment into subtrees. Second, we 
connect these subtrees using a modification of Algorithm 
Connect-Centers. 

We first construct a Steiner tree T’ spaxming V. To 
do this, we use the currently best known approximation 
algorithm for Steiner trees in general metric spaces due 
to Priimel and Steger [20]. In case the points are in the 
plane, we can use a PTAS for Steiner trees [ 1, 21, with an 
approximation ratio of 1 + E for any E > 0. Let W s V be a 
maximal subset of terminals such that the distance between 
any two of them in T’ is at least s. W can be chosen by a 
greedy algorithm. 
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LEMMA 5.1. 
IWj 5 2cost(T’)/s. 

Proof: For r~ E W, let B, be a ball of radius s/2 about v, 
distances being computed in the metric induced by the tree 
T’. Then, for u, v E W, B, n B, = 0. Now, the Steiner tree 
T’ has a path P, of length s/2 within each ball B,,. (Here, 
P, could include a fractional part of an edge.) The sum of 
the lengths of the paths P, is at most cost(T’). Hence, the 
number of paths (and therefore, the number of vertices in W) 
is at most 2cost(T’)/s. 

from v to Ui,. It is easy to see that the tree so constructed 
has skew at most s. 

Now, we shall analyze the cost of the tree we obtain. Let 
Cl be the cost of the tree that the algorithm constructs until 
R < s for the first time. Let C2 be the total cost of all the 
edges from vertices v E W to zci,. Let Cs be the total cost 
of the trees T, for v E W. 

Then, by the previous analysis, 

%I I g I 
A/2 

n(R)dR. 
s 

For each v E W, we construct a tree T, rooted at v, 
such that the distance from v to every vertex in T, is at most 
s. To do this, we order the vertices in W arbitrarily, say 
w = {Vl,... , Vk } . Now, we assign every vertex in V to the 
closest vertex in W, breaking ties in favor of vertices with 
smaller indices. Here distances are computed in T’. Note 
that every vertex in V is within a distance of at most s from 

Also, 

c3 5 cost(T’) 

Now, rs 
2 E[2rRf] = J ‘c-ix 

s lnr 
some vertex in W (by the maximal@ of W.) For v E V, 
let c(v) denote the vertex in W that it is assigned to; let P, 

2(r - 1)s = 
lnr ’ 

denote the path in T’ from v to c(v). The length of P, is at 
most s. Hence, 

LEMMA 5.2. For 01 # ~2, ifc(q) # C(Q), thepaths Pv, E[C21 = IWI . EkRfl 

and Pvz are edge disjoint. = ,w,2(rl-r1)s 

< 4(r - 1) 
- rcost(T’). 

Proof Suppose P,,, and Pv2 share an edge. An easy case 
analysis shows that this contradicts the choice of either c(vr ) 
or c(v2). 

For vertex v E W, let S(v) denote the set of vertices 
assigned to it. Let T, be the subtree of T’ that spans S(v); 
in other words, T, = u uES(v) P,. Then Lemma 5.2 implies 
that the subtrees T, are disjoint. Clearly, we also have: 

Let OPTS= be the cost of the optimal Steiner tree on the 
set of terminals. Since the Steiner tree T’ is constructed us- 
ing the algorithm of Promel and Steger [20], this guarantees 
that 

LEMMA 5.3. 
cost(T’) < iOPTs=. 

Let OPT be the cost of the optimal clock tree with skew at 
most s. Then, we have two lower bounds for OPT. First, 
the lower bound given in Section 3 can easily be seen to 
generalize to the case of bounded skew as follows: 

c cost(T,) 2 cost(T’). 
VEW 

Also, the distance from v to every vertex in T, is at most 
S. 

Now we describe how to modify Algorithm 
Connect-Centers using the subtrees T, constructed 
above to produce the final tree with skew at most s. We 
execute Algorithm Connect-Centers, but stop the process 
of construction of the tree at the last step when R < s for 
the first time (i.e., we stop before a value for R smaller than 
s is used to create a partition). Let Rf be the final value 
of R (so Rf < s). At this time, 0 is a partition of V such 
that every vertex in Vi is at a distance at most 2rRf from 
ui. Let T be the partial tree constructed by the algorithm so 
far. We will connect each of the subtrees T, to the tree T in 
the following way: For v E W, let i, be such that v E Vi,,. 
Connect T, to the tree T by adding an edge of weight 2rRf 

J 
A/2 

OPT 2 n(R)dR. 
s 

OPT 2 OPTsT. 

Now, we can bound the expected cost of the tree we 
obtain in terms of OPT as follows: 

E[G + ‘5’2 + c3] I ($+;(,+p))OPT 

The approximation ratio is optimized by choosing r = 
1.753, which gives an approximation ratio of 5 16.86. 
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Figure 2: The first few levels of an H-tree. 

6 Planar zero skew clock routing. 
We now present a constant factor approximation algorithm 
for the planar ZST problem. 

Let R’ be the smallest radius of an Lr ball that encloses 
all the points. We first find a center point r such that every 
terminal is within an Lr distance of R’ from T. We now 
construct a square S of side 26 centered at T. The value l& 
is chosen by selecting t uniformly and at random from [0, l] 
and setting & = R’ . 2t. The square S is then subdivided 
into four equal sized squares 4, SZ, S3, &. The squares Si 
are called the children of S and S is called theparent of each 
Si. The center of S is connected to the centers of each Si by 
an H-shaped structure. We proceed recursively in each Si, 
dividing each into 4 equal squares and so on, so long as there 
is at least one point in the square. This produces a tree that 
we refer to as an H-tree (see Figure 2.) 

This tree spans all the terminals. In fact, we only con- 
struct the subtree of the H-tree that spans ah the terminals. To 
do this, we ensure that the tree construction proceeds only in- 
side squares that contain at least one terminal. At any point in 
the execution of the algorithm, consider a square S produced 
by the algorithm and subdivided into Sr , S3, S3, S, . Then 
the center of S is comected to the center of Si and the tree 
construction proceeds recursively in Si only if Si contains 
a terminal. Also, we stop the recursive subdivision when 
the squares that the algorithm constructs have side lengths 
smaller than R’ /n2. At this stage, we connect the centers of 
all squares to the terminals inside them by edges of length 
R* fn2. 

In order to analyze the cost of the tree returned by the 
algorithm, we associate, with each square S constructed by 

the algorithm, the cost of the connection from the center of S 
to the center of the parent of S. Thus, the charge to a square 
of side 2x is 22. Note that when the algorithm terminates, 
the cost of connecting the n ,terminals to the centers of their 
corresponding squares is n . .R”/n2 = R’/n. Since the cost 
of the optimal ZST is at least 2R*, this is at most l/,n times 
the optimal cost. We ignore this cost in our calculations, and 
in fact, the algorithm can be modified so that this cost is not 
incurred. We omit the details in this version. 

Let n(x) be the minimum number of Lr balls of radius 
x required to cover the terminals. Let n’(y) be the number 
of squares of radius y produced by the algorithm. 

LEMMA 6.1. 

n'(2x) _< 4n(x). 

Proof. Consider a grid with the center point T as the origin 
produced by equispaced horizontal and vertical lines such 
that the distance between consecutive lines is 2x. The 
squares of side 2x produced by the algorithm are precisely 
the squares in this grid that contain at least one terminal. 
Consider the optimal partitioning of the terminals into n(z) 
LI balls of radius z. Each LI ball in the partition intersects at 
most 4 squares in the grid. Thus there can be at most 4n(x) 
squares in the grid that contain at least one terminal. 

Since the algorithm constructs squares of side lengths in 
the range [0,2R*], the expected cost of the tree is bounded 
by 

J 
2R’ 

n’(y)-Y-G. 
0 

Here, dp is the probability that the algorithm constructs 
squares with side length in the range [y, y + dy]. Hence 
dp = dy / (y ln 2). The expected cost is thus bounded by 

J 0 

J 

R' 
5 -L(x)dx. 

0 ln2 

Hence, the expected cost of the tree produced by the algo- 
rithmisatmost8/ln2z 11.54 times the optimal cost. 

THEOREM 6.1. The above aigotithm achieves an erpected 
approximation ratio of 8/ In 2. 

The algorithm can be derandomized easily by choosing a 
set of O(n2) values of Ro in the range [R’, 2R’], running 
the algorithm for each of them and returning the best tree 
produced. 
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7 Planar embeddable bounded skew clock routing 

We now give a constant factor approximation algorithm for 
creating planar-embedded s-skew trees. We apply the lower 
bound of section 3, namely, OPT > s,“’ n(R)dR. 

Our strategy will be similar to the bounded skew case 
for general metrics. We construct the zero skew tree as in 
the previous section but stop when the sides of the squares 
become smaller than s/2. We will then connect the points 
in each square to the center using a tree whose cost is 
comparable to the MST for the point set and has radius 
at most s. We will separately bound the cost of both the 
truncated zero skew tree and the trees within each square to 
within a constant factor of OPT. 

We present a deterministic version of the algorithm here. 
Let & be the unique value in [I?*, 2R*) of the form 2ts, 
where t is integral. Let & = 2t-is. Enclose the point set 
in a box of side 2%. We iteratively divide the square as 
before into four squares, but we stop after t + 1 iterations, 
when the side of the resulting square has size s/2. We then 
build a zero-skew H-tree terminating at the centers of every 
populated square of size s/2. We will now connect the points 
within each square to the center. 

We first construct au MST connecting all the points in 
the point set. We divide this MST into pieces using the ZST 
built above. Recall that the ZST include a single edge into 
the center of each square. We cut each edge in the MST 
at points where it intersects existing edges in the ZST, or 
boundaries of the squares df side s/2. We augment the 
MST edges within each square to produce a connected planar 
graph, by adding the new edges shown in Figure 3. This 
results in a connected graph within each square of side s/2, 
from which we take any spanning subtree. 

We apply the following result (see [3, 171). 

LEMMA 7.1. Given any E > 0 and point set in the plane 
with radius r, and spanning tree T with cost c rooted at p. 
there exists a polynomiaI time algon’thm to find a spanning 
tree T’ with radius T’ 5 (1 + E)T andcost c’ 5 (1 + I/E)c 

We run this algorithm for E = 1 on each square of side 
s/2, and attach the resulting spanning tree to the ZST at the 
center of the square. 

183 

Now, notice that the cost of the resulting structure has 
two components, each of which we bound separately. First, 
the edges of the ZST and the additional edges of Fi,gure 3 
are bounded by five times the cost of the ZST. We can bound 
the cost of the ZST using techniques similar to the previous 
section, with the caveat that rather than bounding n’(s) in 
terms of n(z/2), we instead bound it in terms of n(4z). The 
details are omitted. 

8 Hardness of zero skew clock routing. 

THEOREM 8.1. The zero skew clock routing problem fog 
generaI mem’c spaces is NP-hard. 

Proof. The reduction is from set cover. Let [n] = 
o,f&.. . , n}. A set cover instance consists of an integer 
k, and m sets 4,. . . , S,,, such that each Si is a subset 
of [n]. We are required to determine if there exist k sets 
Si,,... , Si, such that [n] E ufl Sij. Given an instance 
I of set cover, we define an instance of the zero skew clock 
routing problem as follows. We first construct a weighted 
graph G from the instance I: G has a vertex s, vertices 
Zl,..* 7&n (one corresponding to each set), and vertices 
Yl,..- , yn (one corresponding to each element of [n]) and 
~II edge from xi to yj iff j E Si; such an edge has length 
1. Also, every xi is connected to s by an edge of length 
l/n. Consider the zero skew clock routing problem for the 

distances in G. If i; ; $+F~n~spac set of terminals { y1 

instance I required to cover [n], it is easy to show that the 
optimal solution to the zero skew clock routing problem is 
n + k’fn. 

9 Open questions. 

The complexity of the planar ZST problem is still open. We 
do not know if the problem is NP-hard. 

Since our algorithm can be thought of yielding a clock 
tree topology, it will be interesting to see how it performs in 
practice, especially when combined with the Deferred Merge 
Embedding technique. 
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