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by entering query terms and receiving a list of Web pages that contain the given terms.Experienced users can make e�ective use of such search engines for tasks that can be solvedby searching for tightly constrained keywords and phrases; however, these search engines arenot suited for a wide range of equally important tasks. In particular, a topic of any breadthwill typically contain several thousand or several million relevant Web pages; at the sametime, a user will be willing to look at an extremely small number of these pages. How, fromthis sea of pages, should a search engine select the \correct" ones?Our work begins from two central observations. First, in order to distill a large searchtopic on the WWW down to a size that will make sense to a human user, we need a meansof identifying the most \de�nitive," or \authoritative," Web pages on the topic. This notionof authority adds a crucial second dimension to the notion of relevance: we wish not only tolocate a set of relevant pages, but rather the relevant pages of the highest quality. Second, theWeb consists not only of pages but of hyperlinks that connect one page to another; and thishyperlink structure contains an enormous amount of latent human annotation that can beextremely valuable for automatically inferring notions of authority. Speci�cally, the creationof a hyperlink by the author of a Web page represents an implicit type of \endorsement" ofthe page being pointed to; by mining the collective judgment contained in the set of suchendorsements, we can obtain a richer understanding of both the relevance and quality of theWeb's contents.There are many ways that one could try using the link structure of the Web to infernotions of authority, and some of these are much more e�ective than others. This is notsurprising: the link structure implies an underlying social structure in the way that pagesand links are created, and it is an understanding of this social organization that can provideus with the most leverage. Our goal in designing algorithms for mining link informationis to develop techniques that take advantage of what we observe about the intrinsic socialorganization of the Web.Searching for Authoritative Pages. As we think about the types of pages we hope todiscover, and the fact that we wish to do so automatically, we are quickly led to some di�cultproblems. First, it is not su�cient to �rst apply purely text-based methods to collect a largenumber of potentially relevant pages, and then comb this set for the most authoritativeones. If we were trying to �nd the main WWW search engines, it would be a serious mistaketo restrict our attention to the set of all pages containing the phrase \search engines."For although this set is enormous, it does not contains most of the natural authorities wewould like to �nd (e.g. Yahoo!, Excite, InfoSeek, AltaVista). Similarly, there is no reasonto expect the home pages of Honda or Toyota to contain the term \Japanese automobilemanufacturers," or the home pages of Microsoft or Lotus to contain the term \softwarecompanies." Authorities are often not particularly self-descriptive; large corporations forinstance design theirWeb pages very carefully to convey a certain feel, and project the correctimage | this goal might be very di�erent from the goal of describing the company. Peopleoutside a company frequently create more recognizable (and sometimes better) judgmentsthan the company itself.These considerations indicate some of the di�culties with relying on text as we searchfor authoritative pages. There are di�culties in making use of hyperlink information as well.2



While many links represent the type of endorsement we discussed above (e.g. a softwareengineer whose home page links to Microsoft and Lotus), others are created for reasons thathave nothing to do with the conferral of authority. Some links exist purely for navigationalpurposes (\Click here to return to the main menu") or as paid advertisements (\The vacationof your dreams is only a click away"). Our hope is thus that in an aggregate sense, over alarge enough number of links, our view of links as \conferring authority" will hold.Modeling the Conferral of Authority. We have already argued that link-based analysisof the Web works best if it is rooted in the social organization of Web pages. How, then, canwe best model the way in which authority is conferred on the Web? We noted above thatauthoritative pages are often not very self-descriptive; it is also the case that authorities onbroad topics frequently don't link directly to one another. It is clear why this should betrue for any topic with a commercial or competitive aspect; AltaVista, Excite, and InfoSeekmay all be authorities for the topic \search engines," but they may well have no interest inendorsing one another directly.If the major search engines do not explicitly describe themselves as such, and they do notlink to one another, how can we determine that they are indeed the most authoritative pagesfor this topic? We could say that they are authorities because a large number of relativelyanonymous pages that are clearly relevant to \search engines" have links to each of AltaVista,Excite, and Infoseek. Such pages are a recurring component of the Web: \hubs" that link toa collection of prominent sites on a common topic. These hub pages can appear in a varietyof forms, ranging from professionally assembled resource lists on commercial sites to lists ofrecommended links on individual home pages. Hub pages need not themselves be prominent,or even have any links pointing to them at all; their distinguishing feature is that they arepotent conferrers of authority on a focused topic. In this way, they actually have a role thatis dual to that of authorities: a good authority is a page that is pointed to by many goodhubs, while a good hub is a page that points to many good authorities [1].This mutually reinforcing relationship between hubs and authorities will serve as a centraltheme in our exploration of link-based methods for search, the automated compilation ofhigh-quality Web resources, and the discovery of thematically cohesive Web communities.2 HITS: Computing Hubs and AuthoritiesWe now describe the HITS algorithm [1], which computes lists of hubs and authorities forWWW search topics. Beginning with a search topic, speci�ed by one or more query terms,the HITS algorithm applies two main steps: a sampling component, which constructs afocused collection of several thousand Web pages likely to be rich in relevant authorities; anda weight-propagation component, which determines numerical estimates of hub and authorityweights by an iterative procedure. The pages with the highest weights are returned as hubsand authorities for the search topic.We view the Web as a directed graph, consisting of a set of nodes with directed edgesbetween certain pairs of the nodes. Given any subset S of nodes, they induce a subgraphcontaining all edges that connect two nodes in S. The �rst step of the HITS algorithmconstructs the subgraph in which we will search for hubs and authorities. Our goal is to3



have a subgraph that is rich in relevant, authoritative pages; we construct such a subgraphas follows. We �rst use the query terms to collect a root set of pages (say, 200) from an index-based search engine of the type described in the introduction. We do not expect that this setnecessarily contains authoritative pages; however, since many of these pages are presumablyrelevant to the search topic, we expect at least some of them to have links to most of theprominent authorities. We therefore expand the root set into a base set by including allpages that are linked to by pages in the root set, and all pages that link to a page in theroot set (up to a designated size cut-o�). This follows our intuition that the prominence ofauthoritative pages is typically due to the endorsements of many relevant pages that are not,in themselves, prominent. We restrict our attention to this base set for the remainder of thealgorithm; we �nd that this set typically contains roughly 1000-5000 pages, and that (hidden)among these are a large number of pages that one would subjectively view as authoritativefor the search topic.We work with the subgraph induced by the base set, with one modi�cation. We �nd thatlinks between two pages with the same WWW domain very often serve a purely navigationalfunction, and thus do not correspond to our notion of links as conferring authority. By\WWW domain" here, we mean simply here the �rst level in the URL string associatedwith a page. We therefore delete all links between pages with the same domain from thesubgraph induced by the base set, and apply the remainder of the algorithm to this modi�edsubgraph.We extract good hubs and authorities from the base set by giving a concrete numericalinterpretation to the intuitive notions developed in the previous section. We associate a non-negative authority weight xp and a non-negative hub weight yp with each page p 2 V . Wewill only be interested in the relative values of these weights, not their actual magnitudes;so in our manipulation of the weights, we apply a normalization so that the their totalsum remains bounded. (The actual choice of normalization does not a�ect the results; wemaintain the invariant that the squares of all weights sum to 1.) A page p with a largeweight xp (resp. yp) will be viewed as a \better" authority (resp. hub). Since we do notimpose any a priori estimates, we set all x- and y-values to a uniform constant initially; wewill see later, however, that the �nal results are essentially una�ected by this initialization.We now update the authority and hub weights as follows. If a page is pointed to by manygood hubs, we would like to increase its authority weight; thus we update the value of xp,for a page p, to be the sum of yq over all pages q that link to p:xp = Xq such that q!p yq; (1)where the notation q ! p indicates that q links to p. In a strictly dual fashion, if a pagepoints to many good authorities, we increase its hub weight viayp = Xq such that p!q xq: (2)There is a more compact way to write these updates, and it turns out to shed morelight on what is going on mathematically. Let us number the pages f1; 2; : : : ; ng and de�netheir adjacency matrix A to be the n � n matrix whose (i; j)th entry is equal to 1 if pagei links to page j, and is 0 otherwise. Let us also write the set of all x-values as a vector4



x = (x1; x2; : : : ; xn), and similarly de�ne y = (y1; y2; : : : ; yn). Then our update rule for x canbe written as x  ATy and our update rule for y can be written as y  Ax. Unwindingthese one step further, we havex ATy ATAx = (ATA)x (3)and y Ax AATy = (AAT )y: (4)Thus the vector x after multiple iterations is precisely the result of applying the poweriteration technique to ATA | we multiply our initial iterate by larger and larger powersof ATA | and a standard result in linear algebra tells us that this sequence of iterates,when normalized, converges to the principal eigenvector of ATA. Similarly, we discover thatthe sequence of values for the normalized vector y converges to the principal eigenvector ofAAT . (See the book by Golub and Van Loan [2] for background on eigenvectors and poweriteration.)In fact, power iteration will converge to the principal eigenvector for any \non-degenerate"choice of initial vector | in our case, for example, for any vector all of whose entries arepositive. This says that the hub and authority weights we compute are truly an intrinsicfeature of the collection of linked pages, not an artifact of our choice of initial weights orthe tuning of arbitrary parameters. Intuitively, the pages with large weights represent avery \dense" pattern of linkage, from pages of large hub weight to pages of large authorityweight. This type of structure | a densely linked community of thematically related hubsand authorities | will be a motivating picture in many of the developments to follow.Finally, the output of HITS for the given search topic is a short list consisting of the pageswith the largest hub weights and the pages with the largest authority weights. Thus we seethat HITS has the following interesting feature: after using the query terms to collect theroot set, the algorithm completely ignores textual content thereafter. In other words, HITS isa purely link-based computation once the root set has been assembled, with no further regardto the query terms. Nevertheless, HITS provides surprisingly good search results for a widerange of queries. For instance, when tested on the sample query \search engines" that wediscussed above, the top authorities returned by HITS were Yahoo!, Excite, Magellan, Lycos,and AltaVista | even though none of these pages (at the time of the experiment) containedthe phrase \search engines." This con�rms the intuition expressed in the introduction, thatin many cases the use of hyperlinks can help circumvent some of the di�culties inherent inpurely text-based search methods.
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Trawling the Web for emerging cyber-communities.The Web harbors a large number of communities | groups of content-creators sharing acommon interest which manifests itself as a set of Web pages. Though many communities areexplicitly de�ned (newsgroups, resource collections in portals, etc.), many more are implicit.By using a subgraph-enumeration technique called trawling, we discover �ne-grained com-munities numbering in the hundreds of thousands | a number substantially larger than thenumber of topics in portals and newsgroups. The following communities we have extractedfrom the Web in this way may underscore the point: the community of people interested inHekiru Shiina, a Japanese pop singer; the community of people concerned with oil spills o�the coast of Japan; and the community of Turkish student organizations in the U.S.Identifying these communities helps not only in understanding the intellectual and soci-ological evolution of the Web but also in providing detailed information to a collection ofpeople with certain focused interests. Owing to their astronomical number, embryonic na-ture, and evolutionary ux, it is hard to track and �nd such communities using sheer manuale�ort. Our approach to uncovering communities can be summarized as follows: We treatthe Web as a huge directed graph, use graph structures derived from the basic hub-authoritylinkage pattern as the \signature" of a community, and systematically scan the Web graphto locate such structures.The approach begins from the picture discussed earlier, that thematically cohesive Webcommunities contain at their core a dense pattern of linkage from hubs to authorities. Thisties the pages together in the link structure, despite the fact that hubs do not necessarilylink to hubs, and authorities do not necessarily link to authorities. It is our thesis that thispattern is a characteristic of both well-established and emergent communities. To put thisinto more graph-theoretic language, we use the notion of a directed bipartite graph | onewhose nodes can be partitioned into two sets A and B such that every link in the graph isdirected from a node in A to a node in B. Since the communities we seek contain directedbipartite graphs with a large density of edges, we expect many of them to contain smallerbipartite subgraphs that are in fact complete: each node in A has a link to each node in B.Using a variety of pruning algorithms [3], we can enumerate all such complete bipartitesubgraphs on the Web on a standard desktop PC in about 3 days of running time. In ourexperiments to date, we have used an 18-month old crawl of the Web provided to us by Alexa(www.alexa.com), a company that archives snapshots of the Web. The process yielded, forinstance, about 130,000 complete bipartite graphs in which 3 Web pages all pointed to thesame set of 3 other Web pages. Were these linkage patterns coincidental? Manual inspectionof a random sample of about 400 communities suggested otherwise: fewer than 5% of thecommunities we discovered lacked an apparent unifying topic. These bipartite cliques couldthen be fed to the algorithms of Sections 2 and 3, which \expanded" them to many moreWeb pages from the same community. Moreover, about 25% of the communities were notrepresented in Yahoo!, even today. Of those that do appear in Yahoo!, many appear at asdeep as the sixth level in the Yahoo! topic tree. These observations lead us to believe thattrawling a current copy of the Web will result in the discovery of many more communitiesthat will become explicitly recognized in the future.6



3 Combining content with link informationIn the previous section, we discussed some of the advantages of relying extensively on linksin searching for authoritative pages. Ignoring textual content after assembling the root setdoes, however, can lead to di�culties arising from certain features of the Web that deviatefrom the pure hub/authority view:(1) On narrowly-focused topics, HITS frequently returns good resources for a more generaltopic. For instance, the Web does not contain many resources for skiing in Nebraska;a query on this topic will typically generalize to Nebraska tourist information.(2) Since all the links out of a hub page propagate the same weight, HITS sometimes driftswhen hubs discuss multiple topics. For instance a chemist's home page may containgood links to chemistry resources, as well as to resources in her hobbies, as well asregional information on the town where she lives. In such cases, HITS will confer someof the \chemistry" authority onto authorities for her hobbies and her town, deemingthese to be authoritative pages for chemistry. How can we combat such drift?(3) Frequently, a large number of pages from a single Web site will take over a topic simplybecause many of these occur in the base set. Moreover, pages from the same site oftenuse the same html design template, so that (in addition to the information they giveon the query topic) they may all point to a single popular site that has little to dowith the query topic. The result can be that such a site gains too large a share of theauthority weight for the topic, regardless of its relevance.The Clever system [4, 5] addresses these issues by replacing the sums of Equations (1) and(2) with weighted sums, assigning to each link a non-negative weight. This weight dependson the query terms and the end-points of the link in a number of ways that we now brieydiscuss. Together with some additional heuristics that we also discuss, they mitigate theproblems mentioned above.The text that surrounds hyperlink de�nitions (href's) in Web pages is often referred toas anchor text. The idea of using anchor text in our setting, to weight the links along whichauthority is propagated, is based on the following observation: when we seek authoritativepages on chemistry, for instance, we might reasonably expect to �nd the term \chemistry"in the vicinity of the tails | or anchors | of the links pointing to authoritative chemistrypages. To this end, we boost the weights of links in whose anchor | a window of a �xedwidth | query terms occur.A second heuristic is based on breaking large hub pages into smaller units. On a pagecontaining a large number of links, it is likely that all the links do not focus on a singletopic. In such situations it becomes advantageous to treat contiguous subsets of links asmini-hubs, or pagelets; we may develop a hub score for each pagelet, down to the level ofsingle links. The thesis is that contiguous sets of links on a hub page are more focused ona single topic than the entire page. For instance a page may be a good hub for the generaltopic of \cars", but di�erent portions of it may cater to the topics of \vintage cars" and\solar-powered cars".We mention one other set of modi�cations to the basic HITS algorithm. Recall thatHITS deletes all links between two pages within the same Web domain. We are now working7



with weighted links, and so we can address this issue through our choice of weights. First,links within a common domain are given low weight, following as above the rationale thatauthority should generally be conferred \globally" rather than from a local source on thesame domain. Second, when a large number of pages from a single domain participate ashubs, it is useful to scale down their weights so as to prevent a single site from becomingdominant.Interestingly, it is not hard to implement all of these heuristics without signi�cantlyaltering the mathematics of Equations (1{4). The sums become weighted sums, and thematrix A now has non-negative real-valued entries rather than just 0's and 1's. As before,the hub and authority scores converge to the components of principal eigenvectors of AATand ATA, respectively. In our experience, the relative values of the large components in thesevectors typically resolve themselves after about 5 iterations of power iteration, obviating theneed for more sophisticated eigenvector computation methods.How do the resources computed by Clever compare with those found by other methods?We have conducted a number of user studies in which we compare Clever's compilations withthose of AltaVista1 (a term-index engine), Yahoo!2 (a manually compiled topic taxonomyin which a team of human ontologists create resource lists) and Infoseek3 (generally believedto be some combination of the above). We now summarize the results of one such study [5]comparing Clever with Yahoo! and Altavista.In this study, we began with a list of 26 broad search topics. For each topic, we tookthe top ten pages from Altavista, the top �ve hubs and �ve authorities returned by Clever,and a random set of ten pages from the most relevant node or nodes of Yahoo!4 We theninterleaved these three sets into a single topic list, without an indication of which methodproduced which page. A collection of 37 users was assembled; the users were required tobe familiar with the use of a Web browser, but were not experts in computer science orin the 26 search topics. The users were then asked to rank the pages they visited fromthe topic lists as \bad," \fair," \good," or \fantastic," in terms of their utility in learningabout the topic. This yielded 1369 responses in all, which were then used to assess therelative quality of Clever, Yahoo!, and AltaVista on each topic. For approximately 31%of the topics, the evaluations of Yahoo! and Clever were equivalent to within a thresholdof statistical signi�cance; for approximately 50% Clever was evaluated higher; and for theremaining 19% Yahoo! was evaluated higher.Note that in masking the source (Clever or Yahoo! or Altavista) from which each pagewas drawn, this experiment denied Yahoo! of one of the clear advantages of a manuallycompiled topic list: the editorial annotations and one-line summaries that are powerful cues(in deciding which link to follow). This choice was deliberate | we sought to isolate andstudy the power of di�erent paradigms for resource �nding, rather than for the combined taskof compilation and presentation. In an earlier study [4] we did not mask these annotations,and Yahoo!'s combination of links and presentation beat an early version of Clever.1www.altavista.com2www.yahoo.com3www.infoseek.com4Yahoo! lists pages alphabetically and performs no ranking, hence the random choice.8



The semi-automatic construction of taxonomiesYahoo!, as mentioned above, is a large taxonomy of topics: it consists of a tree of subjects,each node of which corresponds to a particular subject and is populated by relevant pages.The results discussed above suggest that Clever can be used to compile such large taxonomiesof topics automatically; we now explore this theme in more detail. Suppose that we aregiven a tree of topics, designed perhaps by a domain experts; the tree may be speci�edby its topology and the labels on its nodes. We wish to populate each node of the treewith a collection of the best hubs and authorities we can �nd on the Web. The followingparadigm emerges: if we can e�ectively describe each node of the tree (i.e., each topic) asa query to Clever, the Clever engine could then populate the node as often as we please.For instance, the resources at each node could be refreshed on a nightly basis following theone-time human e�ort of describing the topics to Clever. How, then, should we describe atopic/node to Clever?In the simplest form, we may take the name or label of the node as a query term inputto Clever. More generally, we may wish to use the descriptions of other nodes on the pathto the root. For instance, if the topic headings along a root-to-leaf path are Business/RealEstate/Regional/United States/Oregon, the query \Oregon" is not accurate; we might preferinstead the query \Oregon real estate".Additionally, we may provide some exemplary authority or hub pages for the topic. Forinstance, www.att.com and www.sprint.com may be deemed exemplary authority pagesfor the topic \North American telecommunications companies". In practice, we envision ataxonomy administrator �rst trying a simple text query to Clever. In many cases this yieldsa good collection of resources, but in some others Clever may return a mix of high-qualityand irrelevant pages. In such cases, the taxonomy administrator may highlight some of thehigh-quality pages in the Clever results as exemplary hubs, exemplary authorities, or both.This is akin to the well-studied technique of relevance feedback in information retrieval.We take advantage of exemplary pages through the following link-based approach. Anexemplary hub that is supplied is added to the base set, along with all pages that it points to;the weights of the links emanating from the exemplary hub are increased in the iterative com-putation. The treatment for exemplary authorities is similar, except that instead of addingto the base set any page pointing to an exemplary authority (a heuristic found to pull in toomany irrelevant pages), we add in any page pointing to at least two exemplary authorities. Asimilar heuristic is used to delete user-designated \stop-sites" and their link neighborhoodsfrom the base set. This is typically necessary because of the overwhelming Web presence ofcertain topics. For instance, if our topic is Building and Construction Supplies/Doors andWindows, it is di�cult to focus away from Microsoft. Stop-siting www.microsoft.com takescare of this issue.Thus, we may envision a topic node being described to Clever as a combination of queryterms, exempli�ed authority and hub pages, and possibly stop-sites. We have developeda Java-based graphical user interface for administering such descriptions of taxonomies,called TaxMan (for Taxonomy Manager). Using this tool, we have been able to constructtaxonomies with over a thousand topics. We have benchmarked both the time spent increating these taxonomies and the quality of the results of using simple text-only queriesversus a combination of text queries and exempli�edWeb pages. In our study, we found that9



the average time spent per node grows from about 7 seconds to roughly three minutes whenone moves to a combination of text and exemplary page queries. The increase in qualitycan be quanti�ed as follows: outside users considered about 8% more of the pages generatedusing exemplaries to be good pages compared to the pages generated by textual queries.Assigning Web Pages to CategoriesIn addition to their use as a means for �nding hubs, authorities, and communities, hyper-links can be used for categorizing Web pages. Categorization is a process by which a systemlearns (from examples) to assign documents to a set of prede�ned topic categories such asthose found in a taxonomy. Hyperlinks contain high-quality semantic clues as to the topicof a page that are lost by a purely term-based categorizer. It is challenging to exploit thislink information, however, since it is highly noisy; indeed, we have found that naive use ofterms in the link neighborhood of a document can even degrade accuracy.An approach to this problem is embodied in a system called HyperClass [6], which makesuse of robust statistical models such as Markov random �elds (MRF's) together with a relax-ation labeling technique. Using this approach, it obtains improved categorization accuracyby exploiting link information in the neighborhood around a document. The use of theMRF framework derives from the simple observation that pages on the same or related top-ics tend to be linked more frequently than those on unrelated topics. Even if none of thecategories of the linked pages are known initially, signi�cant improvement can be obtainedusing relaxation labeling, wherein the category labels of the linked pages and of the page tobe categorized are iteratively adjusted until the most probable con�guration of class labelsis found. Experiments were performed [6] using pre-classi�ed samples from Yahoo! and theUS Patent Database (www.ibm.com/patents). Using HyperClass with hyperlinks cut thepatent error rate by half and the Yahoo! (Web documents) error rate by two thirds.HyperClass is also used in a focused Web crawler[7], which is designed to search the Webfor only pages on a particular topic or set of topics. By categorizing pages as it crawls,the focused crawler is able not just to �lter out irrelevant pages; it also uses the associatedrelevance judgment, as well as a rank determined by a version of the Clever algorithm, toset the crawling priority of the outlinks of the pages it �nds.
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4 ConclusionThe mining of WWW link structures has intellectual antecedents in the study of socialnetworks and citation analysis [8]. The �eld of citation analysis has developed a numberof link-based measures of the importance of scholarly papers, including the impact factorand inuence weights [8]. These measures in e�ect identify \authoritative" sources withoutintroducing a notion of \hubs." The view of hubs and authorities as dual sets of importantdocuments is inspired by the apparent nature of content creation on the Web, and indicatessome of the deep contrasts that exist between content on the WWW and content in thescholarly literature.The methodology of inuence weights from citation analysis is related to a link-basedsearch method due to Brin and Page [9], forming the basis of the Google search engine onthe Web. Brin and Page �rst compute a score, which they call the PageRank, for every pagethat they index. The score for each page is the corresponding component of the principaleigenvector of a matrix B, which can be viewed as the adjacency matrix A with a verysmall constant added to each entry (recall Section 2). Given a query, they return pagescontaining the query term(s), ranked in order of the PageRanks of these pages. (The actualimplementation of Google incorporates a number of additional heuristics, similar in intentand spirit to those used for deriving Clever from HITS.)It is worth drawing some contrasts between Clever and Google. Google focuses on au-thoritative pages, while Clever seeks good hub pages as well. Note that these hub pages mayhave few (or no) links into them, so that they would end up with low PageRank scores andseldom be reported by Google. A number of participants in our user studies suggested thatgood hubs are especially useful when the user is trying to learn about a new topic, but lessso when seeking a very speci�c piece of information. Another way in which the two methodsdi�er in their behavior is especially apparent in topics with a commercial theme. A com-pany may describe itself (on its Web pages) using terms and language that are di�erent fromthe way a user embarking on a Web search might. Thus, a direct search for \mainframes"would not return IBM's home page (which does not contain the term \mainframes"); butIBM would in fact be pulled in by Clever because there are hub pages describing IBM as amainframe manufacturer.In independent work, Bharat and Henzinger [10] have given a number of other extensionsto the basic HITS algorithm, substantiating the improvements via a user study. For instance,their paper was the �rst to describe the modi�cation in which the weights of multiple linksfrom within a site are scaled down (see Section 3).Our analysis of hyperlink topology has focused on the extraction of densely connectedregions in the link structure | hubs, authorities, and communities on a common topic | andit has made of use of techniques from linear algebra and subgraph enumeration. The paper ofKarypis et al. in this issue deals with di�erent types of problems that arise in the analysis oflink structures | speci�cally, the partitioning of such structures into sparsely inter-connectedpieces | and it approaches this through an interesting combinatorial technique.We believe the mining of WWW link topology has the potential for bene�cial overlapwith a number of areas. One of these is the �eld of information retrieval [11]. Another is themining of well-structured relational data. It is a considerable challenge to extract structure,of the kind that succumbs to traditional database techniques, from an unstructured medium11
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