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ABSTRACT

Sequential behavior such as sending emails, gathering in groups,

tagging posts, or authoring academic papers may be characterized

by a set of recipients, attendees, tags, or coauthors respectively. Such

“sequences of sets" show complex repetition behavior, sometimes

repeating prior sets wholesale, and sometimes creating new sets

from partial copies or partial merges of earlier sets.

In this paper, we provide a stochastic model to capture these pat-

terns. The model has two classes of parameters. First, a correlation

parameter determines how much of an earlier set will contribute

to a future set. Second, a vector of recency parameters captures

the fact that a set in a sequence is more similar to recent sets than

more distant ones. Comparing against a strong baseline, we find

that modeling both correlation and recency structures are required

for high accuracy. We also find that both parameter classes vary

widely across domains, so must be optimized on a per-dataset basis.

We present the model in detail, provide a theoretical examination of

its asymptotic behavior, and perform a set of detailed experiments

on its predictive performance.
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1 INTRODUCTION

A significant fraction of the research in data mining and machine

learning targets models of human behavior in pursuit of advantage

in predicting which ad a user is likely to click on, which search

result a user is interested in, which movie a user will enjoy, and

so forth. Sometimes the event represents the first time a user has

consumed a particular item, but sometimes it is the second or third

time. The first time a user interacts with an item, numerous features

about the item, the user, and their relationship have been studied

to predict the identity of the item; this has largely been the focus of

recommender systems [3]. To predict a repeated behavior, however,

a new and powerful set of features emerges based on the nature

and timing of past interactions of the item in question. Modeling

of repeat behavior has a long history spanning psychology [12],

marketing [15, 23], economics [10], and computer science [1, 28].
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Due to the powerful features available from past interactions, pre-

dictions of repeats are typically far more accurate than predictions

of initial interaction.

Past study has focused almost exclusively on repeated behavior

or interaction with a single item. In many settings, this is natural:

the userwill listen to a single song next, and the task is to predict this

song [6]. However, in other common settings, the user will interact

with several items simultaneously. For instance, online shopping

carts may contain more than one item, emails may be sent to more

than one person, people often meet in groups rather than pairs,

and academic papers are typically produced through multi-way

collaboration. All of these examples have strong repeat interaction

effects, with subsets recurring either exactly or approximately. As

an immediate example, the exact authors of this paper have written

three earlier papers together, while a subset of two of the authors

have written 68 earlier papers together.

With this idea of exact and approximate recurrence in mind, we

now state our technical problem: given a sequence of past inter-

actions, each of which is a set of items, predict the next set to be

consumed. Our goal in studying this question is to capture natural

behaviors effectively. Natural baseline approaches to this problem

follow the techniques of single-item repeat consumption [4], tak-

ing into account the popularity and recency of individual items.

However, we show that co-occurrence patterns within sets are not

well-modeled by populating a new set via independent choices. We

will present a model that out-performs such baselines by incorpo-

rating higher-order co-occurrence patterns.

We study the performance of our model based on eight datasets

containing sets of paper authors, sets of email recipients, sets of tags

applied to questions on stack exchange web sites, and sets of real-

world co-occurrences of individuals. In Section 2.3 we establish that,

as suggested by literature around group formation [13] and single-

item repeat consumption [4, 6], repeated behavior is extremely

common. The fraction of repeats varies, but in nearly all of our

datasets, most set interactions are partial or exact repeats of already-

seen sets. To see this, let us say that a set is an extension if it contains
an already-seen set. In about half our datasets, half the sets are

extensions. In the other half, almost every set is an extension. Hence,

an understanding of re-use is critical to understanding behavior in

these domains.

To complete the motivation for our problem, we consider

whether the elements of each set may be viewed as occurring inde-

pendently, in which case prior approaches to item-level repetition

may suffice. We find strong evidence across all eight datasets that

the constitution of elements within a set is not well-modeled by

independent choices; hence, some set-aware process is required.

Before describing our model, we first define the boundaries of

our repeat behavior modeling problem. We assume that the overall

model is factored into a size model that determines how large a set
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to produce at each timestep and a membership model that produces
a set of the required size. We focus here exclusively on the member-

ship model, and assume that the set sizes are given to us correctly.

Additionally, following standard practice in repeat consumption

and to focus the scope of the paper, we only model elements that

are repeated. If a set contains four elements that have been seen

before plus a novel fifth element, our process is responsible only

for producing the four repeated elements. Our prior work provides

some direction for how to jointly model novel and repeat consump-

tion [6], although this was for sequences of single items (i.e., not of

sets). We leave joint modeling of novel and repeat elements in set

sequences for future work.

We now provide an overview of our most accurate model. At

step k + 1, the model must produce a set Sk+1 of known size based

on the k sets S1, . . . , Sk seen so far. First, the set Sk+1 is initialized
to be empty. Next, the model selects a prototype set Sj from the

past and randomly adds some elements from Sj to Sk+1. This step is
repeated until Sk+1 is of the appropriate size. We call our model the

Correlated Repeated Unions (CRU) model, as it works by repeatedly

taking the union of correlated subsets of prior sets.

The prototype from i timesteps in the past will be selected with

probability proportional to some learned weightwi , optimized to ac-

count for the particularities of recency in the dataset being trained.

As we would expect, the optimized weights are roughly monotoni-

cally decreasing, but at different rates for different datasets.

The number of elements to copy from Sj to Sk+1 is controlled
by a correlation parameter p, which may be learned together with

thew ’s (although in our experiments, we learn thew ’s by gradient

descent and optimize p by grid search). Each element of Sj is copied
to Sk+1 with independent probabilityp, so on average ap fraction of
the elements are copied from each prototype until the target set size

is attained The complexity in fitting the model lies in computing

the likelihood that a certain element from the past contributed to

the formation of a new set; we perform this likelihood calculation

via a trick that requires materializing all partitions of the new set.

Details on the model and learning procedure are in Section 3.

We compare our model to a baseline where we flatten each set

into a sequence of items, and then apply a standard single-item

repeat consumption model. We show that our model significantly

outperforms this baseline, providing a per-set mean likelihood im-

provement between 28% and 100% for an appropriate choice of p.
We also show that correct modeling of the correlation likelihood for

each dataset is essential for best performance. Some datasets, such

as email recipients, perform best as p → 1, whereas others show

a significant likelihood drop as p → 1. Most datasets show a clear

mode, for which one regime of p provides clear best performance.

We also study the theoretical behavior of our process. If novel

elements continue to arrive into the process, of course the behavior

will continue to feature such elements. However, if eventually the

new elements stop arriving, it is reasonable to ask whether the

resulting fixed set of elements will all continue to occur forever, or

whether a diminishing set of increasingly popular items will begin

to dominate. In fact, we show that the outcome depends on the

nature of the recency weights. If the infinite sum of the weights

converges thenwith probability 1, the process will eventually repeat

a single set forever. On the other hand, if the sum of the weights

diverges, then every possible subset will occur infinitely often.

2 DATA ANALYSIS

The datasets we consider here are sequences of sets, where each

sequence is a time-ordered list of subsets of elements from some

universal set U. We ignore the absolute value of the times and only

consider the ordering of the sets in the sequence by time. Thus, by a

“sequence of sets”, we mean a list of sets S1, . . . , Sn , where Si ⊆ U,

and a dataset consists of several such sequences of possibly varying

lengths. In order to study sequences of sets, we collected datasets

from a variety of domains. We briefly describe the datasets below.

All of our data has been made publicly available.
1

Email. In the email datasets, each sequence is derived from the

recipients of emails sent by a particular email address. In the

email-Enron-core dataset, a sequence of sets is the time-ordered

sequence of sets of recipients of an email from a given sender email

address in the Enron corpus [17]. We restrict the dataset to the

“core” group of employees whose email was made public by the

FERC investigation of the company—each sequence corresponds

to one employee’s emails. The email-Eu-core dataset is derived

from the temporal network of email between employees at a Euro-

pean research institution [18, 30]. Timestamps were recorded at a

resolution of one second, and we consider the set of all receivers

of an email from a given sender at a given timestamp to be a set.

Again, each sequences corresponds to one employee’s emails.

Stack exchange tags. Stack exchange is a collection of question-

and-answer web sites. Users post questions and annotate them with

up to five tags. In our stack exchange tag datasets, each sequence is

the time-ordered set of tags applied to questions asked by a user. The

dataset tags-mathoverflow uses the complete history of Math-

Overflow,
2
a stack exchange site for research-level mathematics

questions, and the dataset tags-math-sx uses the complete his-

tory of Mathematics Stack Exchange,
3
a stack exchange for general

mathematics questions at any level.

Proximity-based contacts. The datasets contact-high-school

and contact-prim-school are constructed from interactions

recorded by wearable sensors in a high school [19] and a primary

school [27]. The sensors record proximity-based contacts every 20

seconds. There is one sequence of sets per person, and we consider

the set of individuals that a person comes into contact within each

20 second interval to be a set (only nonempty sets are considered—

some intervals contain no interactions).

Coauthorship. Over time, researchers publish papers, often with

other coauthors. In these datasets, each sequence corresponds to

a researcher, and each set in the sequence is comprised of the

coauthors on the paper (thus, a paper with k authors appears as

part of k sequences—one for each author). The sequence is ordered

by time of publication. Single-author papers are ignored, since these

would correspond to an empty set in the sequence. We derive two

datasets from the Microsoft Academic Graph—coauth-Geology

and coauth-Business—corresponding to papers categorized as

“Geology” or “Business” [5, 26].

We filter each dataset to only keep sequences of length at least

10 and sets of size at most five. The restriction to sets of size five is

to provide uniformity across datasets. Stack exchange only allows

1
http://www.cs.cornell.edu/~arb/data/

2
https://mathoverflow.net

3
https://math.stackexchange.com

http://www.cs.cornell.edu/~arb/data/
https://mathoverflow.net
https://math.stackexchange.com


Table 1: Summary statistics of datasets. Each dataset consists

of sequences of sets, and each sequence is a time-ordered list

of subsets fromauniverse of elementsU. The number of sets

is the sum of the sequence lengths.

Dataset # seqs. |U| # sets # unique sets

email-Enron-core 93 141 10,428 649

email-Eu-core 681 937 202,769 9,694

contact-prim-school 242 242 174,796 18,412

contact-high-school 325 327 308,990 9,785

tags-mathoverflow 1,594 1,399 44,950 24,157

tags-math-sx 15,726 1,650 517,810 122,099

coauth-Business 24,019 236,226 463,070 271,294

coauth-Geology 57,294 525,348 1,438,652 1,090,485
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Figure 1: Distribution of set sizes.

up to five tags, so no data is lost there. Sets of size five capture

most of the email, contact, and coauthorship datasets. Table 1 pro-

vides summary statistics of the datasets, and Figure 1 shows the

distribution of set sizes in the sequences of our datasets. In the

coauthorship and tag datasets, more than 50% of the sets have at

least two elements.

Our subsequent data analysis gets across three points that will

be used by our model. First, repeat behavior is common. Many sets

appearing at some point in a sequence have appeared previously

in the sequence. However, the repeats are not always the same

set—we often see supersets or subsets of prior sets. Second, the

elements appearing in sets are correlated. Specifically, pairs and

triples appear more frequently than one would expect by chance

given their total number of appearances in a sequence of sets. Third,

there is a recency bias in set selection—a set is, on average, more

similar to recent sets than older ones.

2.1 Repeat behavior

We first show that repeat behavior is common in our datasets. For

each dataset, we measure the fraction over all sets in all sequences

that are (i) exact repeats, i.e., the same set appeared earlier (Fig-

ure 2A); (ii) entirely novel, i.e., none of the set elements appeared

earlier in the sequence (Figure 2B); (iii) subsets of a prior set (Fig-

ure 2C); and (iv) supersets of a prior set (Figure 2D). In last two

cases, we do not require proper subsets or supersets. We measured

these statistics as a function of the set size.
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Figure 2: Repeat behavior in our datasets. (A) Fraction of

sets in sequences that are exact repeats of a previous set as

a function of set size. All datasets exhibit repeat behavior,

although larger sets are typically less likely to be exact re-

peats. (B) Fraction of sets in sequences that are made up of

completely novel items that have not appeared earlier in the

sequence. Even when the set size is just 1 element, fewer

than half the sets are comprised of entirely new elements.

This fraction decreases with set size. (C) Fraction of sets in

sequences that are (not necessarily proper) subsets of a pre-

vious set in the sequence. (D) Fraction of sets in sequences

that are (not necessarily proper) supersets of a previous set

in the sequence. In the email and contact networks, nearly

all sets in a sequence of sets are supersets of a previous set.

We highlight a few key results. First, very few sets are comprised

of entirely novel items (Figure 2B)—fewer than 50% for the coau-

thorship datasets, fewer than 35% for tags, and fewer than 10% for

email and contact networks. These numbers decrease as the set

size increases. Exact repeats (Figure 2A) and subsets (Figure 2C)

exhibit similar behavior. We again see a large percentage of exact

repeats or subsets of prior sets for small set sizes, although these

percentages can decrease dramatically for large sets (especially for

the tags datasets). Finally, many sets are supersets of prior sets. For

email and contact networks, nearly all sets are supersets of earlier

sets in the sequence, and in tags and coauthorship data, about half

of the sets are supersets. Thus, our model should capture that new

sets are in some sense constructed from elements appearing in

(possibly several) prior sets in the sequence.

Finally, we examine the distribution of the number of repeated

elements in sets that contain at least one element. Formally, for a se-

quence of sets S1, . . . , Sn , wemeasure |(∪r−1j=1Sj ) ∩ Sr |, r = 1, . . . ,n,

over all sequences in the dataset. Figure 3 shows the distribution of

these values. We see that for several datasets, there is often more

than one repeated element in the subset.

2.2 Subset correlation

Our second observation about our data is that subsets of consumed

sets tend to be correlated. More specifically, the same subsets show

up in multiple sets. This will play a key role in our model.
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Figure 3: Distribution of the number of repeated elements

in sets that contain at least one repeated item (c.f. Figure 1).

Table 2: Subset correlations. For each sequence in each

dataset, we count the number of times each size-2 and size-

3 subset appears. The mean counts are under the “data"

columns. We then perform the same computation under a

null model where elements are placed randomly into sets.

We report the mean ± one standard deviation over 100 ran-

dom samples. The real data has larger counts amongst size-2

and size-3 subsets compared to the null model.

size-2 subset counts size-3 subset counts

Dataset data null model data null model

email-Enron-core 5.82 4.34 ± 0.043 4.23 2.67 ± 0.038

email-Eu-core 4.46 3.11 ± 0.008 3.23 2.08 ± 0.007

contact-prim-school 2.36 1.87 ± 0.003 1.35 1.09 ± 0.002

contact-high-school 4.49 3.26 ± 0.007 2.09 1.35 ± 0.004

tags-mathoverflow 1.49 1.41 ± 0.002 1.18 1.15 ± 0.002

tags-math-sx 1.49 1.31 ± 0.001 1.21 1.12 ± 0.001

coauth-Business 1.50 1.30 ± 0.001 1.40 1.24 ± 0.001

coauth-Geology 1.29 1.15 ± 0.000 1.15 1.07 ± 0.000

We quantify subset correlations as follows. For every size-2 and

size-3 subset T of any set in a sequence, we count the number of

times T appears in the sequence. This generates a count of each

set, where larger counts indicate that T co-appears more often.

Formally, in a sequence of sets S1, . . . , Sn , the count for a set T is

count(T ) =
∑n
j=1 Ind[T ⊆ Sj ], (1)

where Ind[·] is the indicator function. We then aggregate such

counts over all sequences in the dataset and compute the mean

count. We note that the same subset T may appear in several se-

quences, and its counts would be considered separately for each

sequence. The reasoning for this is that our goal is to capture

sequence-level correlations rather than global correlations. Table 2

reports the mean counts over all size-2 and size-3 subsets.

If certain elements appear much more frequently than others,

then the mean count can be large just from this structure. To pro-

vide evidence of subset correlations, we compare against a null

model. The null model for a sequence keeps all of the set sizes the

same but randomly assigns elements to sets. Thus, common items

still appear frequently, but their correlations with other items are

destroyed. We perform the same computations described above for

1 2 3 4 5 6 7 8 9 10
Position prior (k)

0.6

0.8

1.0

R
el

at
iv

e
Ja

cc
ar

d
in

de
x

k
ba

ck

tags-mathoverflow

tags-math-sx

email-Enron-core

email-Eu-core

contact-prim-school

contact-high-school

coauth-Business

coauth-Geology

Figure 4: Evidence of recency bias in set selection. Average

Jaccard index of a set in a sequence with the set appearing

k steps prior in the sequence, normalized to k = 1. In all

datasets, similarity is higher when k is small (all numbers

are less than Jaccard index with the previous set, i.e., when

k = 1). Similarity is roughly monotonically decreasing in k .

100 samples from the null model. Table 2 reports the mean and stan-

dard deviations of the mean counts over these instances of the null

model. The size-2 and size-3 co-appearance counts are significantly

larger than those in the null model. We conclude that our model

should capture the fact that subsets of sets in a sequence tend to

appear again as a subset of a set later in the sequence.

2.3 Recency bias

Our third observation about the data is that there is a recency bias

in the sequences. More specifically, a given set is, on average, more

similar to recent sets in the sequence. We measured the Jaccard

index of sets in a sequence S1, . . . , Sn by

J (Sr , Sr−k ), r = 1, . . . ,n, k = 1, . . . ,max(r − k, 0). (2)

Here, k controls the recency, and k = 1 corresponds to the previous

set in the sequence.

Figure 4 shows the average Jaccard index as a function of k ,
relative to the case of k = 1. The k = 1 case has the largest relative

value in all datasets, meaning that similarity is largest with the

most recent set. For all datasets, the similarities tend to decrease

with k , providing further evidence that new sets are more related to

the most recent sets in the sequence. This is consistent with prior

work on repeat consumption on the Web [4, 6].

3 THE CORRELATED REPEATED UNIONS

(CRU) MODEL FOR SEQUENCES OF SETS

We now propose our model for sequences of sets, incorporating the

three ingredients observed in the previous section: repeat behavior,

subset correlation, and recency bias. Our focus is specifically on

modeling the repeat consumption, rather than the novel items that

might appear in a sequence of sets, as we have identified this as a

substantial feature of our sequences of sets data. Thus, our modeling

framework takes the novel items and number of repeats as given

and tries to reconstruct the repeats in a set from the history of the

sequence up to that point. Modeling the novel items and sequence

of set sizes is outside the scope of this paper, but certainly serves

as an important avenue for future research. We anticipate that our

model here will serve as the foundation for a more holistic modeling



Algorithm 1: Correlated Repeated Unions (CRU) model

for repeat subset sampling.

Input: number of repeat elements r , recency weight vector

w , correlation probability p, sequence of sets
S1, . . . , Sk

Output: a repeat set R ⊆ ∪kj=1Sj with |T | = r

R ← ∅
while true do

if |R | = r then return R

Sample set Si with probability ∝ wk−i+1
Sample T ⊆ Si by including each x ∈ Si with probability

p

if |R ∪T | > n then

while |R | < n do

Uniformly at random sample y ∈ T

R ← R ∪ {y}

T ← T \ {y}

else

R ← R ∪T

framework. We call our model the Correlated Repeated Unions (CRU)
model because it generates repeated elements of the next set in a

sequence by taking the union of correlated subsets of sets in the

history of the sequence.

In the next section, we formally describe the model. After, we

show how to efficiently evaluate the likelihood of the data given

the model parameters and learn the model parameters. Section 4

provides empirical evaluation of our model, showing that it out-

performs a competitive baseline, while Section 5 is dedicated to

theoretical analysis of the model.

3.1 Formal model description

Finally, we get to the model description. Recall that our data consists

of sequences of sets. For simplicity of presentation, we only consider

a single sequence of sets S1, . . . , Sn for now.

Suppose that we have observed the sequence up to the kth set

Sk . To reiterate our setup, we assume that an oracle has given us

the following information about the next set Sk+1:
(1) the size of the new set: |Sk+1 |

(2) the novel elements in the set: Nk+1 = Sk+1 \ ∪
k
i=1Si .

Our goal is to determine the remainder of the set (i.e., Sk+1 \Nk+1),

which are all repeated elements from the history of the sequence

thus far (S1, . . . , Sk ).
The CRU model for constructing the repeated elements is really

an algorithm that accumulates elements by sampling from the

sequence thus far and taking unions (see Algorithm 1). There are

two parameters of the algorithm: the recency weight vectorw (of

length n − 1, where n is the length of the entire sequence) and the

correlation probability p. The algorithm first initializes an empty

set R and then samples a set Si proportional to the recency weight

wk−i+1; for example, the most recent set Sk is sampled proportional

to w1. The algorithm then adds each element from Si to R with

probability p. Equivalently, a subsetT ⊂ Si is sampled by including

each element of Si with probability p, and then R is updated by

taking the union of itself with T . The algorithm then repeats until

R has the correct number of elements (i.e., |Sk+1 \ Nk+1 |). If at

some point the next sampled subsetT would make R too large, then

elements are uniformly at random dropped from T until R is the

appropriate size and the algorithm terminates. The next set in the

sequence is then Sk+1 = Nk+1 ∪ R.
A key idea behind the CRU model is that it induces a probability

distribution over repeat sets, making likelihood computation and

parameter optimization tractable. We show this in the following

two sections.

According to our findings of recency bias in Section 2.3, we

should expect that earlier values (corresponding to smaller indices)

in the optimal vector w should be larger than the later ones (cor-

responding to larger indices). This would imply that we are more

likely to sample from more recent sets. Indeed, we will later find

this to be the case across all datasets when we learn optimized

model parameters from data (Figure 6).

We also expect the correlation probability p to have a role. The

limit as p → 0 means that only one item from a prior subset will be

selected at a time. Our findings in Section 2.2 suggest that p should

be somewhat larger than 0, in order to capture the correlation

patterns of subsets. However, the optimal value of p is not obvious,

and we will see that it is certainly greater than 0 but depends on

the dataset (Figure 5). However, the optimal value of p tends to be

roughly the same within each dataset domain.

3.2 Evaluating model likelihood

We now show how to evaluate the likelihood of a sequence of sets

under our model. For simplicity of presentation, we consider the

evaluation of the likelihood of one particular set in a sequence of

sets. In the full model, the recency weightsw and the correlation

probability p are common across all sequences in a dataset. The

log-likelihood of an entire dataset is then just the sum of the logs

of the likelihoods on each sequence.

Again, let S1, . . . , Sn be the observed sequence, and we will

consider the likelihood of Sk+1 under the CRU model, given

the weight vector w and the correlation probability p. We in-

troduce some additional notation. Let P(X ) be the set of all or-
dered partitions of a set X , and let Er,k be the set of all size-

r subsets of ∪ki=1Si . For example, if X = {a,b}, then P(X ) =
{({a}, {b}), ({b}, {a}), ({a,b})}; and if S1 = {a,b, c}, S2 = {a},
and S3 = {b,d}, then E2,1 = E2,2 = {{a,b}, {a, c}, {b, c}} and
E2,3 = {{a,b}, {a, c}, {b, c}, {a,d}, {b,d}, {c,d}}.

A key component of the CRU model is that there is a canoni-

cal surjective function from the output of Algorithm 1 with input

(r ,w,p, Si , . . . , Sk ) to the space Ω = ∪E∈Er ,kP(E). The output of
Algorithm 1 can be interpreted as a set E ∈ Er,k as the incremental

construction of R is equivalent to an ordered partition of the ele-

ments of R. Specifically, any execution of the outer while loop that

changes R serves as the next subset in the ordered partition (i.e.,

when T \ R , ∅, there is a new subset that is added to the ordered

partition). Since Algorithm 1 is random, it induces a probability

distribution over Ω.
We illustrate the above process with an example. Suppose that

S1 = {a,b}, S2 = {b, c} and we are using the model to predict a

repeat set R with |R | = 2. Let w ′i = wi/(w1 + w2) be normalized



recency weights for i = 1, 2. There are six possible samples T in

each execution of the while loop: T = {a,b} with probability p2w ′
2
;

T = {b, c} with probability p2w ′
1
; T = {a} with probability pw ′

2
;

T = {b} with probability pw ′
2
+ pw ′

1
; T = {c} with probability pw ′

1
;

andT = ∅with probability 1−p2. IfT \R = ∅, then the outerwhile

loop of Algorithm 1 simply executes again with another sample of

T . Otherwise R is updated, and we get the next set in the ordered

partition. There are multiple ways in which, e.g., R = {b, c} could
be returned from Algorithm 1: the size-2 set {b, c} is sampled from

S2; {b} is sampled first from S1 and then {c} is sampled from S2 (or
in reverse order); or {b} is sampled first from S2 as a single item
and then {c} is sampled from S2 (or in reverse order). Each case

corresponds to an ordered partition of {b, c}.
Nowwe assume that we have observed the repeat elementsR and

want to evaluate the likelihood of the data given model parameters.

LetL denote the likelihood and let Rk+1 ⊆ Sk+1 be the set of repeat
elements in Sk+1. Also letA(r ,w,p, S1, . . . Sk ) be a random variable

over Ω denoting the probability of Algorithm 1 using a particular

ordered partition. Then we have that

L(Rk+1 | S1, . . . , Sk ,w,p)

=
∑
X ∈P(Rk+1) Pr(A(|Rk+1 |,w,p, S1, . . . Sk ) = X ). (3)

In other words, the likelihood of observing Rk+1 is just the probabil-
ity that the algorithm constructs Rk+1 from some ordered partition

X ∈ P(Rk+1). Crucially, the CRU model is fashioned in a way that

permits us to efficiently compute these probabilities.

Nowwe fixX and show how to evaluate the probability in Eq. (3).

We will work through this computation algorithmically, following

Algorithm 1. Suppose that we have accumulated X “correctly" thus

far and that we are going to add the next subset B in the ordered

partition X . Further suppose that B is not the last subset in the

ordered partition X . Let T be the sample in a loop of the algorithm

and let R be the accumulation of elements thus far in the execution

of Algorithm 1. For the algorithm to succeed in producing X , one
of two things must occur next

(1) T ⊆ R, in which case the while loop starts over

(2) B ⊆ T ⊆ R ∪ B
Eventually, we need the second event to happen. Let qr be the

“restart probability” of the first case and let qs be the “success prob-
ability” of the second case from one loop of the algorithm. Then

the probability that the algorithm continues to succeed is∑∞
k=0 q

k
r qs = qs

∑∞
k=0 q

k
r =

qs
1−qr . (4)

We can compute both qs and qr . Let w
′
i = wi/

∑k
j=1w j be the

normalized recency weights andpT ,S be the probability of sampling

T ⊆ S under the model that elements of S are taken i.i.d. with

probability p. If |T | = t and |S | = s , then pT ,S = p
t (1 − p)s−t . Then

qs =
∑k
i=1w

′
k−i+1

∑
T ⊆Si pT ,Si · Ind[B ⊆ T ⊆ R ∪ B] (5)

qr =
∑k
i=1w

′
k−i+1

∑
T ⊆Si pT ,Si · Ind[T ⊆ R] (6)

Now suppose that the next set B in the ordered partition X is

the last one added to the set. In this case, we need to account for

the fact that the sampled set T could make R “too big", in which

case we randomly select elements from T to fill up R (the second if

statement in the outer while loop of Algorithm 1). Equations (4)

and (6) stay the same, but the value of qs in Eq. (5) changes.

In this case, success of our algorithm means that |T \ (R ∪ B)| ≥
|R∪B | and only elementsy ∈ R∪B are sampled before any element

y′ ∈ T \ (R∪B). LetC = T \ (R∪B). We claim that given the sample

T , the probability that the algorithm successfully captures B is

zR,B,T :=
|B |!· |C |!
( |B |+ |C |)! ,

To prove this, observe that the sampling procedure in the second

if statement of Algorithm 1 is equivalent to first taking a random

ordering of the elements ofT and adding them in order, one by one

to R, until |R | = r . Sampling y ∈ R ∩ T has no effect, so we only

care about the relative ordering of elements in the disjoint sets B
and C . There are (|B | + |C |)! possible orderings, all equally likely

by symmetry. The number that successfully capturing B have the

first |B | elements fixed to be B, and there are |B |! · |C |! such cases.

We now adjust Eq. (5) with an extra multiplier, using this result:

q̃s =
∑k
i=1w

′
k−i+1

∑
T ⊆Si pT ,Si · Ind[B ⊆ R] · zR,B,T . (7)

Finally, we put everything together. Denote the ordered partition

by X = (B1, . . . ,Bt ) and the repeat and success probabilities by

qr (Bi ) for i = 1, . . . , t ; qs (Bi ) for i = 1, . . . t − 1; and q̃s (Bt ). Then
the likelihood contribution from X for Rk+1 is(∏t−1

i=1
qs (Bi )

1−qr (Bi )

)
q̃s (Bt )

1−qr (Bt )
. (8)

The total likelihood of a given repeat set Rk+1 is then the sum of

the above equation over all ordered partitions X ∈ P(Rk+1). The
log-likelihood takes the log of this sum, and then adds together

other log-sums for R1, . . . ,Rn in the entire sequence of sets for all

sequences in the entire dataset.

3.3 Learning model parameters

The log-likelihood function is not convex, due to the product form

in Eq. (8). We learn p by a simple grid search, as our goal here is

just to capture some macroscopic properties of the correlations.

We learn the recency weightsw from projected gradient descent,

using a linear time (up to logarithmic factors) projection onto the

probability simplex [11]. The remainder of this section sketches out

the computation of the gradient, which can be done in the same

time and space it takes to compute the likelihood. In practice, we

simultaneously compute the likelihood and the gradient.

Following Eq. (3), the log-likelihood with respect to the parame-

tersw for a particular repeat set is

LL(w) = log

[∑
X ∈P(Rk+1) Pr(A(|Rk+1 |,w,p, S1, . . . Sk ) = X )

]
.

Thus, applying the chain rule,

∇wLL =

∑
X ∈P(Rk+1)

∇wPr(A(|Rk+1 |,w,p,S1, ...Sk )=X )∑
X ∈P(Rk+1)

Pr(A(|Rk+1 |,w,p,S1, ...Sk )=X )
.

We now focus on a particular ordered partition X = (B1, . . . ,Bt )
and the gradient ∇wPr(A(|Rk+1 |,w,p, S1, . . . Sk ) = X ).

LetW =
∑k
i=1wi be the weight normalization. We can rewrite

Eq. (8) as(∏t−1
a=1

W ·qs (Ba )
W −W ·qr (Ba )

)
W ·q̃s (Bt )

W −W ·qr (Bt )
=

(∏t−1
a=1

fa (w )
дa (w )

)
˜ft (w )
дt (w )

. (9)
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Figure 5: Mean per-repeat-set likelihood as a function of the correlation probability p. A larger p means more correlation

in selecting items from the same set. We compare our CRU model against a “flat" baseline model, which has more model

parameters but does not explicitly use set structure. Likelihood tends to be unimodal in p. In email, likelihood increases with

p, suggesting that new sets are constructed by merging prior ones. Coauthorship has a maximum for large values of p but is

not strictly increasing, suggesting that new sets are formed from sets close to—but not exactly the same as—prior sets.

We claim that fa , дa , and ˜ft are linear inw . Following Eqs. (5) to (7):

fa (w) =
∑k
i=1wk−i+1

∑
T ⊆Si pT ,Si · Ind[B ⊆ T ⊆ R ∪ Ba ];

дa (w) =
∑k
i=1wk−i+1 −

∑k
i=1wk−i+1

∑
T ⊆Si pT ,Si · Ind[T ⊆ R];

˜ft (w) =
∑k
i=1wk−i+1

∑
T ⊆Si pT ,Si · Ind[B ⊆ R] · zR,Bt ,T .

All of the weights on the linear functions inw are computed when

computing the likelihood. Applying the product and quotient rules

to Eq. (9) gives the final gradient.

4 EXPERIMENTAL RESULTS

We now analyze the CRU model after learning the recency weights

w for each value of p ∈ {0.01, 0.1, 0.2, . . . , 0.9, 0.99}We compare

against a baseline model (described below) and see that there are

substantial likelihood gains for an appropriate correlation probabil-

ityp. We then analyze the learned recency weights and confirm that

they tend to decrease in the vector index, i.e., more weight is indeed

placed on recent items. Under the assumption that recency weights

monotonically decrease, we prove properties of the behavior of the

model in Section 5.

4.1 Likelihood and performance

Figure 5 shows the mean per-set likelihood of the model on our

datasets after having learned the recency weights for various val-

ues of the correlation probability p. Specifically, if LLp is the log-

likelihood with correlation probability p and optimized recency

weightsw , then we report eLLp/N , where N is the total number of

sets in sequences of a dataset that contain at least one repeat.

The absolute value of the mean per-set likelihood may be small

since there can be a large number of possible sets that contribute

contribute to the likelihood. Thus, we compare against a baseline

model that elucidate some of the likelihood gains that are possible

by accounting for set structure. More specifically, we compare

against a “flat model," which is similar to a prior model by Anderson

et al. [4]; this model ignores the set structure and “flattens" the

sequence of sets into a sequence of individual elements. We learn

a set of recency weights (at the element level, instead of the set

level), and draw elements proportional to learned recency weights.

Essentially, this baseline ignores the set structure in the dataset;

however, it also has more model parameters since there are a larger

number of recency weights to learn.

We find that correlation probabilities p between 0 and 1 lead

to substantial likelihood gains over the baseline. Furthermore, the

likelihood gains tend to be unimodal in p with similar optima for

datasets in the same domain. In the email datasets, likelihood simply

increases with p, suggesting that many repeat sets are constructed

from merging the entirety of prior subsets, or simply copying a

single prior set in the sequence. This makes sense in context—there

may be several emails sent by one person to the same set of people

if, for instance, these individuals are working on a project together.

The contact and tags datasets have optimal correlation proba-

bilities p at 0.3–0.4 (contact) and 0.5–0.6 (tags). Thus, new sets are

formed via proper subsets of previous sets. With tags, this could

be explained by the combined use of high-level concept tags and

question-specific tags. An individual might explore the same gen-

eral area of mathematics (e.g., algebra) and then ask questions on

specific sub-areas (e.g., group theory). Finally, the coauthorship

data has optimal likelihoods for large values of p (≥ 0.8), but not for

p = 1. This suggests that coauthorship repeats are largely the same,

but not exactly. This might be explained by individuals getting

added or removed from a research collaboration over time.

4.2 Learned recency weights

Figure 6 shows the learned recency weights for all of the datasets

and all of the correlation probabilities p. The weights tend to mono-

tonically decrease, independent of p, which is consistent with our
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Figure 6: Learned recency weights w for several correlation probabilities p. Weights tend to monotonically decrease, which

is consistent with our recency bias observations in Section 2.3. An exception is the coauthorship datasets which see weight

increases for large indices. This exception is likely due to prolific individuals who publish many papers, as these tail weights

would play no role for individuals without a large number of publications. We also see bifurcations in the recency weights in

tags-mathoverflow and contact-high-school, which align with different sides of the optimal value of p in Figure 5.

results in Section 2.3 on recency bias. This will also serve as a basis

for some of our theoretical analysis in the following section. How-

ever, the coauthorship weights exhibit an increase at large indices

(e.g., near index 100 for coauth-Geology). This is likely due to

prolific authors in the dataset. Most authors in the dataset have

fewer than 100 papers, so the weights above that index play no

role in the likelihood of those sequences of sets. On the other hand,

highly prolific authors could create long-term connections. This

suggests that personalized weight parameters could be useful to

develop better models.

Both tags-mathoverflow and contact-high-school exhibit

bifurcations in the learned recency weights. The two groups cor-

responds to the two sides of the optimal correlation probability p
(see Figure 5). Thus, these datasets might be exhibiting two types

of repeat behavior; exploring this is an avenue for future research.

5 ASYMPTOTIC TIPPING BEHAVIOR

In this sectionwe study the asymptotic behavior of a simple instance

of our process in which every set has size two. We study the event

that at some time, a particular pair occurs at every future timestep;

we will call this the tipping event after which no other pairs appear.

Figure 7 illustrates this sequence of events. We will show that,

similar to the single-item copying case [4], a strict dichotomy occurs:

if

∑∞
i=1wi is bounded then eventually only a single pair will occur

forever, and all other pairs will occur only finitely many times. On

the other hand, if the weight sum is unbounded, then every pair

occurs infinitely often. We begin by showing the first case.

Let h be the length of the history before a candidate tipping

event. Assume that the same pair has occurred j − 1 times consecu-

tively since the candidate tipping event. We wish to lower bound

the probability qj that this pair will occur again for the jth time.

Recall that the algorithm to generate a subset at this timestep will

repeatedly perform a selection event until the correct size of subset

Figure 7: After a tipping event, a single pair occurs forever-

more. Each new occurrence of this pair may result from

copying individual elements from after the tipping point or

by copying an entire pair from after the tipping point (indi-

cated by block arrows). Theorem 5.3 shows that if the sum

of the recency weights converges, every point has non-zero

probability of becoming a tipping point, hence the process

must eventually tip.

(in this case, size two) has been produced. DefineWj =
∑j+h
i=1 wi

and ∆j =Wj+h −Wj . We now define three events on the outcome

of a single selection event, with their probabilities, as follows:

Name Meaning Equation

pick1 the next choice selects a single item

from after the tipping point

p1 =
2p(1−p)Wj

Wj+h

pick2 the next choice selects both of the tar-

get items from after the tipping point

p2 =
p2Wj
Wj+h

old the next choice selects one or more

elements from before the tipping point

p3 =
(1−(1−p)2)∆j

Wj+h

We may now write the probability qj of successfully copying

the same pair for the jth time. There are two paths to success:

the process may copy the entire pair, or may copy each element

independently. For example, in Figure 7, q1 and q2 both arise due

to copies of an entire pair, while q3 and q4 arise due to copying of

individual elements from after the candidate tipping point.



We consider the first time the process copies at least one element

into the new pair; notice that the events pick1, pick2, and old are

disjoint and cover all such cases. Hence, with probability p2/(p1 +
p2 + p3), the process succeeds in its first copy; with probability

p3/(p1 + p2 + p3), the process fails; and with remaining probability

p1/(p1+p2+p3), the process successfully copies a single element, and

success is then dependent on copying the second element before

copying an element from the h timesteps before the candidate

tipping event. In the last case, a pick2 event must lead to success

of the process, while a pick1 event will succeed only half the time

(the other half, the process duplicates the already-chosen element,

and leads to another round). Thus, the overall probability of event

qj may be written as: qj =
p2

p1+p2+p3 +
p1

p1+p2+p3
p1/2+p2

p1/2+p2+p3
.

Note thatp1+p2+p3 = p(2−p); this is expected, as it represents all
events that copy at least one element, which occurs with probability

1 − (1 − p)2 = p(2 − p). We now show the following bound on qj :

Lemma 5.1. qj ≥
(

Wj
Wj+2∆j

)
2

.

Proof. Using the expressions for p1, p2, and p3, we get

qj =
p2

p1 + p2 + p3
+

(
p1

p1 + p2 + p3

) (
p1/2 + p2

p1/2 + p2 + p3

)
=

p2Wj

p(2 − p)Wj+h
+

(
2p(1 − p)Wj

p(2 − p)Wj+h

) (
(p2 + p(1 − p))Wj

(pWj + p(2 − p)∆j )

)
=

Wj
Wj+h

[
Wj

Wj+(2−p)∆j

]
≥

Wj

Wj+h

[
Wj

Wj + 2∆j

]
≥

(
Wj

Wj + 2∆j

)
2

. □

For the remainder of the analysis, we require a technical bound:

Lemma 5.2. log(1 −
2∆j

Wj+2∆j
) ≥ −

2W∞
w1

2∆j
Wj+2∆j

.

Proof. Let x j =
2∆j

Wj+2∆j
. Observe that, as qj values are non-

increasing, x j is maximized at j = 1:

x j ≤
2∆1

w1+2∆1

≤
2(W∞−w1)

W∞+(W∞−w1)
= 1 −

w1

W∞+(W∞−w1)
≤ 1 −

w1

2W∞ .

Therefore, using the identity that log(1 − x) ≥ −αx for 0 ≤ x ≤

1 − 1/α , we conclude that log(1 − x j ) ≥ −
2W∞
w1

x for all j. □

We may now show that there is positive probability of tipping.

Theorem 5.3. IfW∞ < ∞ then with probability 1, only a single
pair will occur infinitely often.

Proof. The probability that a candidate tipping point is a true

tipping point is given by the product of the qj ’s, which we now

show is positive:

log

∞∏
j=1

qj =

∞∑
j=1

log(qj )

≥ 2

∑
j
log

(
Wj

Wj + 2∆j

)
(Lemma 5.1)

= 2

∑
j
log

(
1 −

2∆j

Wj + 2∆j

)

≥
−2w1

W∞

∑
j

2∆j

Wj + 2∆j
(Lemma 5.2)

=
−2w1

W∞

∑
j

2

∑j+h
i=j+1wi

Wj + 2∆j

≥
−2w1

W∞

∑
j

2hw j

2∆1

=
−2w1

W∞
2h

W∞
2∆1

=
−2w1h

∆1

> −∞.

We have now shown that ifW∞ < ∞ then all but one pair will

eventually disappear. The remaining part of the dichotomy requires

us to show that forW∞ = ∞, all items will occur infinitely often.

This follows as an immediate consequence of Anderson et al. [4,

Lemma 2]. This prior result applies to single-item copying, but the

same proof holds for any bounded set size. □

6 RELATEDWORK

Repeat behavior has a long history in psychology and marketing

science [9, 14, 15, 20, 23]. In those domains, repeat behavior might

be purchasing the same product several times. However, this prior

work focuses on individual items—rather than sets—and the datasets

are nowhere near the scale of those analyzed here. However, it is not

surprising that we also see repeat behavior with sets. For example,

social groups are often formed from individuals that one is already

familiar with [13]. Repeats in the email, contact, and coauthorship

data are consistent with this phenomenon.

Repeat behavior has also been studied in the context of the Web,

including repeat search queries [28, 29], Web browsing revisitation

patterns [1, 2], short-term repeat consumption [8], and return times

to user-item interactions [16]. Most closely related to this paper

are prior models of consumption sequences that incorporate repeat

behavior [4, 6]. This past work studied item-level (i.e., not set-level)

consumption, and the datasets and models differ substantially.

Set-based techniques have also recently been used in a number

of machine learning contexts, including embedding methods [24],

deep learning [31], and discrete choice models [7]. While related in

spirit, these techniques do not apply to the sequence data studied

here. Finally, set evolution models appear in theoretical computer

science and probability theory [21, 22, 25]. There is still a large gap

between this theory and the practical data modeling applications,

but the ideas provide interesting avenues for future research.

7 DISCUSSION

This paper proposes the Correlated Repeated Unions (CRU) model

for repeat behavior in sequences of sets. The model was designed

to capture three empirical findings: (i) exact and partial repeats

of sets are extremely common in data, (ii) correlation of subsets

in sequences of sets, and (iii) recency bias. A key property of the

CRU model is that it uses a sampling algorithm which induces

a probability distribution over repeat sets that makes likelihood

computation and model parameter optimization tractable. After

learning model parameters, we see substantial likelihood gains over

a baseline model that does not explicitly incorporate set structure.

We also found that the optimal correlation parameterp was different



across datasets but the same within domains. Our theoretical results

demonstrate that the CRU model is amenable to analysis, and we

envision that the CRU model will serve as a starting point for the

mining, modeling, and analysis of sequences of sets data.

Code accompanying this paper is available at

https://github.com/arbenson/Sequences-Of-Sets.
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