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ABSTRACT

Multinomial logistic regression is a classical technique for modeling

how individuals choose an item from a finite set of alternatives.

This methodology is a workhorse in both discrete choice theory and

machine learning. However, it is unclear how to generalize multi-

nomial logistic regression to subset selection, allowing the choice of

more than one item at a time. We present a new model for subset

selection derived from the perspective of random utility maximiza-

tion in discrete choice theory. In our model, the quality of a subset

is determined by the quality of its elements, plus an optional cor-

rection. Given a budget on the number of subsets that may receive

correction, we develop a framework for learning the quality scores

for each item, the choice of subsets, and the correction for each

subset. We show that, given the subsets to receive correction, we

can efficiently and optimally learn the remaining model parameters

jointly. We show further that learning the optimal subsets is both

NP-hard and non-submodular, but there are efficient heuristics that

perform well in practice. We combine these pieces to provide an

overall learning solution and apply it to subset prediction tasks.

We find that with reasonably-sized budgets, there are significant

gains in average per-choice likelihood ranging from 7% to 8x de-

pending on the dataset and also substantial improvements over a

determinantal point process model.
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1 INTRODUCTION

Human decision making frequently falls within the classical frame-

work of discrete choice, in which an individual selects a single item

from an available slate of alternatives. The items might be a set

of kid-safe family sedans for possible purchase, or modes of trans-

portation to take to work. The available alternatives may differ

between individuals or over time—e.g., walking to work might not

be feasible for some and a carpool may only be available certain

days of the week. There is a rich history in analyzing these types

of choices [2, 8, 13, 32], but typical models predict the likelihood of
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choosing a single item. Often, one chooses a subset of the available
alternatives, e.g., a subset of items to purchase from a supermarket,

or a subset of songs to form a playlist.

Of course, this is a strict extension of traditional discrete choice,

in which subsets are restricted to singletons. The motivation is clear,

as higher-order interactions between items are well known to have

a significant effect on decision making. See, for example, research

on product bundling in marketing [31] or co-purchase modeling in

e-commerce recommender systems [28].

Generalizing discrete choice models to subset choice brings a

number of challenges. Naively, one could consider the subsets them-

selves to be the items and then employ the classical models of dis-

crete choice. However, with this approach, the size of the model

grows exponentially in the number of alternatives, and the under-

lying structure of item correlations becomes lost in the identities

of the subsets. On the other hand, one might model the selection

of a subset as the independent selection of individual items. While

this approach is computationally feasible, it does not capture any

of the higher-order interactions between items.

Here we develop a sparse model that interpolates between a

“full” model that considers the available items to be subsets and

a “separable” model that assumes the presence of an item in a

subset has no effect on the likelihood of selecting any other item.

Our model is rooted in random utility theory so that subset choice

probabilities may be interpreted as the strategy of an individual

trying to maximize her utility, where the utility of each subset is a

random variable expressed as the sum of a utility value (a constant)

and a random error. Intuitively, our model says: (i) every item has

a fixed base utility, (ii) a subset’s base utility is the sum of the

utilities of the items in the subset, and (iii) up to k subsets may

receive an additional corrective utility, either positive or negative.

Corrective utility might represent complementary value, e.g., the

utility of the subset {chips, guacamole} might be larger than the

sum of the individual utilities. On the other hand, while the set

{milk, beer}might be frequently purchased, the utility of the subset

could be well-described by the utilities of the individual items. Our

model can also capture negative utility corrections. For example,

pork sausage and vegan tofu sausage each carry utility, but

empirically individuals may be unlikely to purchase them together.

Given a budget k , our algorithmic challenge is two-fold: (i) iden-

tify k special subsets that will most benefit from corrective utility

and (ii) given these subsets, find the base (item-level) and corrective

(subset-level) utilities that maximize the likelihood of the data. From

the utilities, we can then determine the probability that an individ-

ual will select a given subset from a given set of alternatives through

discrete choice theory. We learn the utilities (and subsequently the

selection probabilities) under two different assumptions. In the first,

the slate of alternatives, or choice set, is “universal” and common to

all choices. This is largely true in the case of grocery shopping or
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“market basket” data—individuals may choose any subset of items

from the food in the store, modulo issues of availability. In this set-

ting, we prove that given the k subsets receiving corrective utility,

the optimal selection probabilities for universal slates have a closed

form. Under the second and more general assumption, the choice

set is “variable” and may change with each instance of choice in the

data. For example, clicks on the youtube.com homepage depend

on the slate of options available there, which changes frequently.

In this case, there is no closed form for the selection probabilities

that maximize likelihood of the data, but we can compute them

efficiently via a convex optimization problem formulation, after we

identify the subsets that will receive corrective utility.

For both universal and variable choice sets, we show that the

problem of finding the best k subsets is NP-hard, and furthermore,

the optimization problem is non-submodular. Thus, we present

several heuristics for identifying good subsets and evaluate them

on several real-world datasets from a variety of domains. We find

that using our sparse model with these heuristics provides sub-

stantial likelihood gains over the baseline separable model while

maintaining the same computational feasibility. In addition, our

sparse model often out-predicts determinantal point processes that

have been used for modeling subset creation [15], while also taking

orders of magnitude less time to train. We also find that for some

universal choice sets, the corrective utilities are always positive.

We show that under this condition, our discrete choice models have

an alternate representation as a mixture of two independent multi-

nomial logits. Such mixtures have been studied heavily in discrete

choice [33], where the structure is typically set by the data modeler

in advance, rather than learned from data, as in our model.

To summarize, our contributions are the following:

(i) We develop a new discrete choice model for subset choice from

the perspective of random utility theory, where the utility of sub-

sets is the sum of the utility of the items and some special subsets

receive corrective utility. The model parameter complexity is pa-

rameterized by the number of subsets receiving corrective utility

and is close to that of multinomial logistic regression. In addition,

the learned values are highly interpretable.

(ii) We analyze several structural properties of the model and give

algorithms to learn the model parameters. We prove that the sub-

set selection probabilities have a closed form for universal choice

sets and a convex optimization form for variable choice sets. We

also prove that it is NP-hard to find the best k subsets to receive

corrective utility.

(iii) We find that over a collection of six datasets with universal

choice sets, introduction of the corrective utilities improves like-

lihood on a held out test set in all cases. Our core metric is the

geometric mean likelihood of selecting each subset. Under this met-

ric, two of our datasets show significant gains of 5x or more; three

more show between between 20% and 40% lift; and the remaining

one over 7%, all with just a few corrective utilities. We also see

improvements of 5–8% in two datasets with variable choice set,

again with just a few corrective utilities.

Implementations of our algorithms and the datasets used in our

experiments are available at

https://github.com/arbenson/discrete-subset-choice.

2 SUBSET CHOICE AND RANDOM UTILITY

THEORY

We now develop our model for subset selection. We begin with a

quick summary of random utility theory, a “rational actor” model

of human decision making. In this theory, an individual’s value for

every possible choice is drawn from some pre-specified joint distri-

bution. The user then behaves rationally by selecting the option of

highest utility. Our models (and multinomial logit) belong to the

class of random utility models and hence lie within a principled

framework of decision making. Stated another way, for all the mod-

els we consider, the predicted probability of selecting a particular

item or subset from a set of alternatives is always the likelihood

of a rational user making this choice, under an appropriate joint

utility distribution from which the rational user draws values.

The remainder of this section proceeds as follows. In Section 2.1

we review the multinomial logit model from the perspective of

random utility theory. We then develop our model for size-2 subsets

in Section 2.2 and extend to arbitrary subsets in Section 2.3. With

the model fully described, Section 3 gives the learning algorithms

and results for the case in which the choice set is always the entire

universe of items, and Section 4 extends to choice sets.

2.1 Background on multinomial logit

We briefly derive the classical multinomial logit model from random

utility maximization (see, e.g., the book by Train [33] for a thorough

treatment). In this setting, choice theory stipulates the selection

of a single element from a set C of choices, where C is a subset of

some universe U. The utility of choice i ∈ C is a random variable

Ui = Vi + ϵi , (1)

where Vi is the inherent quality of item i (a constant), and the ϵi ’s
are i.i.d. following a Gumbel distribution.

If individuals select the highest-utility option under this random

model, an algebraic manipulation shows that the probability of

selecting choice i from the choice set C is

Pr[select i | C] = eVi∑
j∈C eVj

. (2)

In other words, the probability of selecting an item is proportional

to the exponential of the base utility of the item, eVi , independent
of the choice set C .

In the datasets we consider in this paper, there are many in-

stances of selections made from choice sets. If the choice sets are

C1, . . . ,CN , and i ∈ Cr , then the random utility of choosing item i
in choice set Cr is

U
(r )
i = Vi + ϵir , (3)

where the ϵir ’s are i.i.d. Gumbel (cf. Equation (1)). In other words,

the errors are i.i.d. random across different choice sets. However,

the choice probability (Equation (2)) remains the same. For the

remainder of the paper, we drop the notational dependence on the

choice set identifier r when it is clear from context.

While this formulation comes from discrete choice theory, multi-

nomial logistic regression is also a widespread tool in machine

learning. In this domain, one usually has a fixed choice set C of

classes, a coefficient vector βi for each class i , a feature vector x
for each sample, and then assumes a linear form for the quality

of each class, i.e., Vi = βTi x . Here, the probability of labeling the
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sample as class i (or in our language, “choosing” class i as the appro-
priate choice for the context encoded by the sample’s features) is

proportional to eβ
T
i x , and the interest is in learning the regression

coefficients βi . In this paper, we focus on learning the inherent qual-

ities Vi and not the regression coefficients, although our models

can accommodate that structure.

2.2 Fixed-size subset choice models

We are interested in extending the traditional multinomial logit

model to a random utility model of subset selection. Instead of a

choice being an element i ∈ C , a choice will be a subset S ⊂ C .
Technically, we consider S to be a multiset, so selections may be

duplicated in S . This provides additional modeling flexibility for

common situations in Web data such as multiple clicks on a link.

We first consider the case of |S | = 2 and generalize later to larger

cardinalities. We begin by presenting the full model that captures
arbitrary interactions between elements by assigning a general util-

ity to each of the exponentially many possible subsets. We contrast

this with the separable model in which each item has a utility, and

each subset delivers the summed utilities of its members; this model

is highly efficient but captures no higher-order interactions. We

then present our sparse model that is between these two extremes.

Full model. One simple model for subset choice is to assume a

multinomial logit with an expanded space of choices, i.e., the space

of subsets. In this case, the random utility of selecting a subset

S = {i, j} is
Ui j = Vi j + ϵi j , (4)

where the ϵi j ’s are i.i.d. from a Gumbel distribution. In the utility

maximization setting,

Pr[select {i, j} | C] ∝ eVi j . (5)

In the case when |S | > 2, we again specify a unique quality VS for

each subset of that size.

This model has the advantage that it captures arbitrary higher-

order structure in the utilities. However, the model grows exponen-

tially in the size of the subsets considered, and thus is impractical

for modern large-scale datasets.

Separable model. An alternative model for subset choice assumes

that the utilities of elements in a subset separate additively. In this

model, the presence of any given item in the subset has no effect

on the remainder of the subset.

Observation 2.1. Let the random utility of the set {i, j} be

Ui j = Vi +Vj + ϵi j , (6)

where ϵi j ’s are i.i.d. Gumbel-distributed. Then the probability of any
item i belonging to the subset, conditioned on item j belonging to the
subset, is the same for all j.

To see this, if we condition on j ∈ S under the utility maximiza-

tion framework, we get a term independent of j:

Pr[select {i, j} | C, j] =
eVi+Vj∑

k ∈C eVj+Vk
=

eVi∑
k ∈C eVk

. (7)

The model generalizes to subsets S of larger size in the same

way—the inherent subset qualities just separate additively as in

Equation (6). The model has the advantage that the number of pa-

rameters is linear in the number items (i.e., linear in |U|). However,

the separable assumption on the utility is quite strong as it ignores

higher-order interactions between the items in the subset.

Sparse model. In this work, we focus on a new model that inter-

polates between the full and separable models. This is a sparse

model that takes the separable model as a baseline and adds sparse

corrections for several subsets. We again derive this model from

random utility theory and again begin with subsets of cardinality

2. Let H be a (small) set of pairs of indices, representing subsets to

receive utility correction. The random utilityUi j is

Ui j =



Vi +Vj + ϵi j {i, j} < H

Vi +Vj +Wi j + ϵi j {i, j} ∈ H ,
(8)

where the ϵi j ’s are i.i.d. Gumbel, Vi and Vj are constants represent-
ing the individual utilities of item i and j, andWi j is a constant

representing the additional utility of the subset {i, j}.
Intuitively, we follow the separable model for most cases but

allow ourselves the flexibility to correct the utility for special pairs

of indices in H . This sparse model is a special case of both the

separable model (by setting H to be empty) and the full model (by

setting H to be all pairs). We emphasize that this model is still

a multinomial logit—the probability of choosing a set is propor-

tional to the exponential of the constant term in the random utility.

However, we have imposed a certain structure on these constants.

The subset utilities given abovemay be normalized to convenient

probabilities as shown in the following observation. We use this

representation throughout the paper.

Observation 2.2. Under the random utility model of Equation (8)

the probability of selecting S = {i, j} is proportional to

pi j =



γpipj {i, j} < H

γpipj + qi j {i, j} ∈ H ,
(9)

for some parameters pi , qi j , and γ , where
∑
i pi = 1, pi ≥ 0, γ ≥ 0,

and
∑
{i, j } pi j = 1.

To get this representation, setpi = eVi /
∑
j e

Vj
,q′i j = eVi eVj eWi j−

pipj if {i, j} ∈ H , q′i j = 0 if {i, j} < H , and γ = 1/(
∑
{i, j } (pipj +q

′
i j )).

Under utility maximization,

Pr[select {i, j} | C] ∝ eVi eVj eWi j = pipj + q
′
i j ∝ γ (pipj + q

′
i j ),

if {i, j} ∈ H . Finally, set qi j = γq′i j to get Equation (9). If |S | > 2,

then the parameterization is again a mixture of the separable and

full models: pS = γ
∏

i ∈S pi + qS for S ∈ H .

At this point, Equation (9) provides a model for the likelihood of

choosing a subset if we know the size of the subset to be selected.

In the next subsection, we provide a complete model that does not

rely on this conditioning.

2.3 Variable-size sparse subset choice model

We now remove the restriction that choices are a fixed size. In this

case, our model becomes a mixture of multinomial logits, where

each component of the mixture is a model for choosing subsets of

a fixed size. Importantly, the utilities from the mixture components

overlap so that the utility for each subset is the sum of utilities of

the individual items in the subset plus a possible corrective term.

Following this mixture intuition, we select a subset by first choos-

ing the size of the selection (the cardinality of S) and then choosing

the subset S itself, conditioned on its size. Formally, given a subset



S of cardinality k , we say that the probability of selecting S from a

choice set C is

zk
z1 + · · · + z |C |

· Pr[select S | C , size-k selection], (10)

where zk is the probability of choosing a size-k set,

∑
k zk = 1,

(here, this is normalized over the possible selection size probabili-

ties given C). Such an approach is common in other variable-size

choice models such as approval voting [10, 24], and we will show

in Section 3 that it makes learning model parameters simple.

Given the size of S , we model the selection using the sparse

model already outlined in Section 2.2 with the crucial assumption

that the individual item qualitiesVi are the same regardless of the size
of S . In other words, baseline item qualities are the same regardless

of the size of the set in which they appear. However, we learn a

parameter γk for each subset size k and H may contain multisets

of various sizes. For example, if H = {{i, j}, {i, j,k }}, then
Pr[S = {i, j} | size-2 choice] ∝ γ2pipj + qi j
Pr[S = {i, j,k } | size-3 choice] ∝ γ3pipjpk + qi jk .

Our formulation permits size-1 selections (and our datasets con-

tain such selections), but we restrictH to contain multisets of size at

least two, since the correction term is meant to model higher-order

effects. Finally, we note that the variable-size sparse subset model

is a random utility model as it is a mixture of logits [33].

3 UNIVERSAL CHOICE SETS

We first study the sparse model with universal choice sets, i.e., all

subset selections aremade from the same slate of alternatives, which

is the universe of items U. This is common in a variety of domains,

including “market basket” data where individuals buy a collection

of items from a store. We show that, given the set of corrections

H , the maximum likelihood estimator for the sparse model has a

simple closed form. However, we also show that finding the optimal

set H is NP-hard. We compare several heuristics for choosing H
on a variety of real-world datasets and find substantial likelihood

improvements with the sparse model. These heuristics also lead

to models that are better predictors on our datasets compared to

more involved probabilistic models for subset selection, namely

determinantal point processes.

3.1 Optimizing model parameters

We now assume that the set H is given and learn the model param-

eters in two parts: (i) the mixture probabilities zk of Equation (10)

and (ii) the subset selection probabilities of Observation 2.2. We

assume that our data is a list of subsets S1, S2, . . . , Sm represent-

ing the selections from the universe of items U and that there are

n = |U| items. We use maximum likelihood estimation (MLE) for

optimizing the model parameters.

Mixture probabilities. It is straightforward to find the MLE for

zk , the probabilities of choosing a subset of a particular size. Since

the choice set is universal,

∑
k zk = 1. Let NS be the number of

times that the set S was chosen in the data. Then the log-likelihood

given the data is:∑
k
∑
|S |=k NS log(zk Pr[S | size-k choice])

=
∑
k (
∑
|S |=k NS ) log zk +

∑
k
∑
|S |=k NS log Pr[S | size-k choice].

Under the constraint that

∑
k zk = 1, it is easy to see that the MLE

for zk is simply the fraction of times a size-k subset was selected.

Subset selection probabilities. We now seek to maximize like-

lihood by optimizing the probabilities of choosing a subset for a

fixed-size selection. For simplicity, we derive this for the case when

|S | = 2. Let Ni j be the number of times that set S = {i, j} was
selected in the data. Then, the likelihood maximization problem is

maximize

p,q,γ

∑
{i, j }∈H Ni j log(γpipj + qi j ) +

∑
{i, j }<H Ni j log(γpipj )

(11)

subject to

∑n
i=1 pi = 1, pi ≥ 0, 1 ≤ i ≤ n∑
{i, j } γpipj +

∑
{i, j }∈H qi j = 1, γ ≥ 0.

Here, the likelihood formulation uses the structure of Equation (9).

Theorem 3.1 below provides a simple closed-form solution for p, q,
and γ that maximizes the likelihood. Essentially, using Equation (9)

to codify the random utility model of Equation (8), the optimal

parameters take an intuitive form: the pi are empirical frequencies

of item appearances for subset choices not in H and then γ and

qi j adjust the probability of subset choices in H to match their

empirical frequency of selection. This generalizes the single-item

logit model, where the exponentials of the maximum likelihood

utilities match the empirical frequency of item selection.

Theorem 3.1. Let pDij = Ni j/
∑
{k,l } Nkl be the empirical proba-

bility of observing set {i, j} in the data. The MLE for Equation (11) is:
(i) the pi ’s are proportional to the number of times item i is selected
in any set {i, j} < H , i.e., pi ∝

∑
j :{i, j }<H Ni j ;

(ii) γ = (1 −
∑
{i, j }∈H pDij )/(

∑
{i, j }<H pipj ); and

(iii) given p and γ , q is set to match the empirical distribution of {i, j},
i.e., γpipj + qi j = pDij .

Proof. Suppose p and γ are fixed. Dividing Equation (11) by the

constant

∑
i j Ni j , the likelihood maximization problem becomes

maximize

q

∑
{i, j }∈H pDij log(γpipj + qi j )

subject to

∑
{i, j }∈H qi j = 1 − γ

∑
{i, j } pipj .

Setting the gradient of the Lagrangian to zero (with Lagrange mul-

tiplier λ) gives pDij /(γpipj + qi j ) − λ = 0→ γpipj + qi j = p
D
ij /λ.

Let R =
∑
{i, j }∈H pipj , M =

∑
{i, j }∈H pDij , and C =

∑
{i, j } pipj .

Then the constraints give

λ = M/(1 − γ (C − R)). (12)

Now suppose p is fixed in Equation (11). Plugging Equation (12)

into the objective function over γ gives (up to constant)∑
{i, j }∈H pDij log(1/λ) +

∑
{i, j }<H pDij log(γ ) (13)

= −M logM +M log(1 − γ (C − R)) + (1 −M ) logγ (14)

Equation (14) is maximized for γ = (1 −M )/(C − R) ≥ 0. For this

value of γ , λ = 1 and γpipj + qi j = pDij . This proves parts (ii) and

(iii) of the theorem.

For constants γ and q, the log-likelihood is (up to a constant)∑
{i, j }<H Ni j logpipj =

∑
i
(∑

j :{i, j }<H Ni j
)
logpi ,

which is maximized with pi ∝
∑
j :{i, j }<H Ni j .

Finally, we check that our set probabilities sum to 1:∑
{i, j } γpipj +

∑
{i, j }∈H qi j =

∑
{i, j }<H γpipj +

∑
{i, j }∈H γpipj + qi j



= γ (C − R) +M = 1−M
C−R (C − R) +M = 1. □

Theorem 3.1 can be generalized for choice sets with greater than

two elements; the proof remains the same. For an arbitrary subset S
with |S | = k , we set pDS to be the empirical probability of observing

set S among all size-k choice sets. We then set γk and q according

to the same formulas (ii) and (iii) in the statement of Theorem 3.1,

but with size-k sets instead of size-2 sets.

At this point, if we are given the setH of corrections, it is straight-

forward to compute the MLE. Next, we deal with the issue of con-

structing a set H of a fixed size to maximize likelihood.

3.2 Constructing H
Theorem 3.1 says that once we know the subsets receiving proba-

bility corrections from the separable model, finding the parameters

that maximize the likelihood of the data is easy. We are now inter-

ested in algorithms for finding H . Unfortunately, this problem is

difficult in general.

Proposition 3.2. Finding the set H with |H | = k that maximizes
the likelihood of the sparse model is NP-hard.

Proof. We reduce frommaximum3-dimensionalmatching (3DM):

given a subset T ⊂ X × Y × Z and an integer k , the decision prob-

lem is to determine if there exists M ⊂ T , |M | = k , such that no

two tuples inM share an element. We construct an instance of the

sparse model maximum likelihood problem as follows: for every

(x ,y, z) ∈ T , create one subset choice of the subset {x ,y, z}. Let
d = |T | + 1 and let da be the number of times element a shows up

inT (a ∈ X ∪Y ∪Z ) and create d −da choices of sets {a}. With this

construction, each item is selected exactly d times.

Set the budget for the size of H to be k . We claim that if there

is a 3DM of size k , then such a matching is the optimal H . Let ca
be the number of times element a shows up in a subset in H . For

any H , applying (the generalization of) Theorem 3.1 says that the

log-likelihood is

k log(1/|T |) + ( |T | − k ) logγ +
∑
a (d − ca ) log

d−ca
W ,

whereW =
∑
a d − ca is the normalization constant and

γ =
1 − k/|T |∑

{x,y,z } pxpypz −
∑
{x,y,z }∈H pxpypz

(15)

The normalization constantW and the numerator of Equation (15)

are independent of H . Thus, the likelihood is maximized when the

denominator of Equation (15) is minimized. We have that

−
∑
{x,y,z }∈H pxpypz = −

∑
{x,y,z }∈H

(d−cx ) (d−cy ) (d−cz )
W 3

,

which is minimized when cx = cy = cz = 1 for all {x ,y, z} ∈ H .

This occurs if and only if the subsets in H form a 3DM.

Next, letL =
∑
S={x,y,z }: |S |=3 pxpypz ,K =

∑
S={x,x,y }: |S |=2 p

2

xpy ,

andD =
∑
S={x,x,x } p

3

x . Then 6L+3K+D =
∑
x
∑
y
∑
z pxpypz = 1,

and

∑
{x,y,z } pipjpk = L + K + D = 1+3K+5D

6
. We claim that this

term is minimized with a 3DM. Note that

K + D =
∑
x
∑
y p

2

xpy =
∑
x p

2

x
∑
y py =

∑
x p

2

x =
1

W 2

∑
x (d − cx )

2.

Under the constraint that k subsets are in H , this summation is

minimized when H is a 3DM so that 0 ≤ cx ≤ 1. Next, note that

D =
∑
x p

3

x =
1

W 3

∑
x (d − cx )

3
, which again is minimized with a

3DM so that 0 ≤ cx ≤ 1.

Table 1: Subset choice datasets with universal choice sets.

The zk are the fraction of selections that are size-k subsets.

Dataset #items = |U| #choices z1 z2 z3 z4 z5

Bakery 50 67,488 0.05 0.20 0.37 0.25 0.13

WalmartItems 183 16,698 0.51 0.45 0.03 0.01 0.00

WalmartDepts 66 120,973 0.33 0.28 0.17 0.13 0.10

Kosarak 2,605 505,217 0.27 0.30 0.23 0.14 0.07

Instacart 9,544 806,662 0.19 0.21 0.21 0.21 0.19

LastfmGenres 413 643,982 0.52 0.21 0.12 0.08 0.06

Finally, we account for likelihood due to the selection of subsets

not in H , which is (up to constant)

∑
x

(d−cx )
W log

d−ca
W = E (p),

where px = (d − cx )/W and E is the entropy function. Under

the constraint

∑
x cx = 3k , entropy is maximized when there are

exactly 3k elements x for which cx = 1. Again, this occurs if and

only if H is a 3DM. □

In addition to being NP-hard, the problem is non-submodular

(formalized below), which rules out easy algorithmic approaches.

Observation 3.3. Let L(H ) be the log-likelihood of the MLE. The
function f : H → L(H ) is non-submodular.

To see this, consider a dataset consisting of three subset selec-

tions: {a,b}, {a, c}, and {d, e}. Using Theorem 3.1, some simple calcu-

lations show that L({{a,b}, {a, c}})+L(∅) > L({{a,b}})+L({{a, c}}).
We leave the design of approximation algorithms to future work.

Instead, we develop a few simple heuristics for constructing H
that still lead to substantial likelihood gains in our experiments on

several real-world datasets in the next section. We briefly describe

the heuristics below.

Frequency heuristic. With the frequency heuristic, we put the

most frequently selected sets S in H . An advantage of this heuristic

is that we can use established algorithms from frequent itemset

mining to find the most frequently occurring subsets [1, 20, 27].

Lift heuristic. The frequency heuristic ignores the fact that items

in frequently selected subsets may already be frequently occurring

and their likelihood accounted for by high utility of those items.

With the lift heuristic (analogous to the lift score in association rule

mining), we select the subsets S maximizing NS /
∏

i ∈S Ni , where

NS is the number of times that the set is selected, and Ni is the

number of times that item i is selected in any set.

Normalized lift heuristic. With the normalized lift heuristic, we

“normalize" the lift by the frequency of the subset in the data. This

corresponds to selecting the subsets S maximizing N 2

S /
∏

i ∈S Ni .

3.3 Data

We collected six universal choice set datasets from a variety of

domains. We describe them below and provide summary statistics

in Table 1.

Bakery. This dataset is comprised of the receipts from purchases

by patrons of a bakery.
1
The items on each receipt form a selected

subset. The elements of each selected subset are distinct.

WalmartItems and WalmartDepts. These datasets are con-

structed from individual shopping trips at Walmart.
2
For each trip,

1
https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery

2
https://www.kaggle.com/c/walmart-recruiting-trip-type-classification

https://wiki.csc.calpoly.edu/datasets/wiki/ExtendedBakery
https://www.kaggle.com/c/walmart-recruiting-trip-type-classification
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Figure 1: Mean per-choice likelihood improvements over the separablemodel as a function of the number of corrections in the

sparsemodel (i.e., |H |) for several datasets with universal choice sets alongwith the relative likelihood of a determinantal point

process (DPP)model. DPPs do notmodel subset selections with repeated items, so there are no DPP results onWalmartDepts

and LastfmGenres, which contain suchmultiset selections. Our sparse model (i) provides substantial improvements over the

separable model with only a modest increase in the number of model parameters and (ii) out-performs DPPs with at most a

few corrections on Bakery, WalmartItems, and Instacart.

the items purchased are the selected subset. Using department iden-

tifiers for the items, we also construct a separate dataset where the

selected subset consists of all departments from which the shop-

per made a purchase. Selections in WalmartDepts may contain

repeats (multiple purchases from the same department), but the

elements of a subsets selected in WalmartItems are distinct.

Kosarak. The Kosarak dataset is derived from publicly available

anonymized clickstreams from a Hungarian online news portal.
3

The de-duplicated set of links visited by a user in a given session is

the selected subset, so no subset selections contain repeated items.

Instacart. Instacart is an online same-day grocery delivery ser-

vice, where users order groceries through a web application. This

dataset consists of a sample of orders from users living in the United

States [14].
4
We consider the de-duplicated items in a user’s order

to be a subset choice.

LastfmGenres. This dataset come from the listening behavior

of users from the music streaming service Last.fm [6].
5
We break

user behavior into sessions, where a new session is created if the

user goes 20 minutes without starting a new song (this is the same

procedure from our previous work [3]). We create subset choices

by the genres of music played in the session, where genres are

derived from user-provided tags for artists.
6
We assign an artist

to the most commonly provided tag for that artist. Many subset

3
http://fimi.ua.ac.be/data

4
https://www.instacart.com/datasets/grocery-shopping-2017

5
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

6
https://musicmachinery.com/2010/11/10/lastfm-artisttags2007

selections contain repeated genres, corresponding to cases when a

user listens to the same genre more than once in a session.

To unify structure across our data, we filter each dataset to

contain subset selections of size at most 5 and only items that are

selected at least 25 times. This filtering also focuses our attention

on sets that are possible candidates for corrective utility, as larger

sets with more than 5 items do not tend to appear repeatedly nor

frequently.

3.4 Experiments

Likelihood improvements. We used the frequency, lift, and nor-

malized lift heuristics to find correction sets H for each dataset

for |H | = 0, 1, 2, . . . |U| (see Table 1 for the values of |U|). The

case of |H | = 0 corresponds to the separable model and the case of

|H | = |U| corresponds to the sparse model with twice the number of

parameters as the separable model. Thus, all model sizes are linear

in the number of items. For each value of |H |, we trained the model

with 80% of the data and evaluated the mean per-choice likelihood

gain on the remaining 20% of the data (the test data). Specifically, if

LLk is the log-likelihood on the test data when |H | = k , then we

measured the relative improvement rk = e (LLk−LL0 )/N , where N
is the number of choices made in the test set.

The separable model (i.e., the case when |H | = 0) serves as

one baseline, and we also compare against a determinantal point

process (DPP) model. DPPs are probabilistic models for generating

“diverse” subsets from a discrete set of objects [15]. We use the

expectation maximization algorithm of Gillenwater et al. [12] to

http://fimi.ua.ac.be/data
https://www.instacart.com/datasets/grocery-shopping-2017
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
https://musicmachinery.com/2010/11/10/lastfm-artisttags2007


learn a DPP from the same training data as our sparse model. DPPs

cannot model selected subsets with repeated items (i.e., multisets),

and the WalmartDepts and LastfmGenres contain such subsets.

Therefore, we do not evaluate DPPs for these two datasets.

Figure 1 shows rk—the mean per-choice relative likelihood gain

over the separable model—as a function of k for each of our datasets

as well as the relative likelihood gain for the DPP (note that the

DPP is just one model and does not depend on k). For all datasets,
the likelihood gains from the frequency heuristic exhibit a sharp

increase for small values of k and then gradually decay for larger

values ofk . In otherwords, a few sparse corrections can dramatically

increase likelihood. In nearly all cases, the frequency heuristic out-

performs the lift-based heuristics.

In all datasets, our sparse model provides substantial improve-

ments over the separable model, often with just a few subsets in H
receiving corrective probability. Our sparse model is also a much

better predictor than DPPs in the Bakery, WalmartItems, and

Instacart datasets, again with just a few subsets in H (the ex-

ception is Kosarak, where DPPs provide a performance gain over

our sparse model). Our sparse model’s performance is especially

good for Bakery and WalmartItems, where we achieve 5x per-

choice likelihood improvements with only a modest increase in the

number of parameters in the model (|H | < 1

2
|U|).

Running time. Using Theorem 3.1, the computational complexity

of training the sparse subset choice model depends on (i) computing

relative item frequencies, (ii) computing γ , and (iii) constructing H
and computing the relative frequencies of subsets. Parts (i) and (ii)

take linear time and space in the size of the data. The complexity

of part (iii) is more involved and depends on the heuristic and

distribution of subsets in the data.

Instead of a detailed complexity analysis, we report the time

to train and test our sparse model with the frequency heuristic

in Table 2 (times for the other heuristics were similar) as well as

the time for the DPP model for our datasets. For our model, we

measured the running time for the largest value of |H | in Figure 1

(i.e., the biggest model). All experiments ran on a single thread of a

2.4 GHz Intel Xeon E7-4870 server. The software for learning our

model was implemented in Julia,
7
and the software for DPP learning

was implemented in MATLAB.
8
While the implementations are in

different languages, our goal is to roughly compare the time it takes

to use these models.

As shown in Table 2, training and testing our sparse model is at

least two orders of magnitude faster than to train and test the DPP

models. The EM algorithm for DPP training has a cubic dependence

on the number of items |U| [12], so this performance discrepancy

is not that surprising. Practically, the running times for our model

are all quite modest, often completing in just a few seconds and

taking fewer than 5 minutes for the largest dataset (Instacart).

Values of correction probabilities. Next, we analyze the actual

values of the sparse corrections q. Specifically, we are interested in

the sign of the corrections. Figure 2 shows that there are relatively

few sets S ∈ H for which qS < 0, (regardless of the size of H )

when using the frequency heuristic to construct H . In fact, for the

Bakery, WalmartItems, and WalmartDepts datasets, the values

7
https://github.com/arbenson/discrete-subset-choice

8
https://code.google.com/archive/p/em-for-dpps
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Figure 2: Fraction of subsets S ∈ H with correction proba-

bility qS < 0 as a function of the size of H when using the

frequency heuristic to construct H . In many cases, the cor-

rections are always positive, in which case our model has an

alternative interpretation (Observation 3.4).

of q are always positive, and the same is true for nearly all sizes of

H in the Instacart dataset. These results are consistent with prior

work on supermarket purchase data showing that most co-purchase

correlations are positive [9]. It turns out that our choice model has

an alternative interpretation in the case when the correction values

are all positive, as summarized in the following observation.

Observation 3.4. If qS > 0 for all S ∈ H , then the sparse model is
a mixture of two logit models: (i) with probability α =

∑
{i, j }∈H qi j ,

choices follow the full model restricted to subsets in H and (ii) with
probability 1 − α , choices follow the separable model.

To see this, let |S | = 2 for each S ∈ H for simplicity. Since

qi j ,γ ,pi > 0 and γ
∑
{i, j } pipj +

∑
{i, j }∈H qi j = 1, α ∈ [0, 1]. The

probabilities for the full model are simply q̃i j = qi j/α .
Thus, in many of our datasets, we can interpret user behavior

as the following. First, the user decides whether or not to pick a

subset from H . If the user picks from H , each set has its own utility

and the user picks according to a multinomial logit. If the user does

not pick from H , their set is filled with non-interacting items.

Finally, we examined the largest correction probabilities in the

LastfmGenres dataset using the frequency-based algorithm. Ta-

ble 3 lists the five sets with the most positive and most negative

corrective values. We see that the most positive corrections account

for repeat behavior—users listen to several indie, hip hop, or rock

songs in the same session—whereas the negative corrections show

unlikely combinations such as indie and metal.

4 VARIABLE CHOICE SETS

Next we consider datasets with subset choices where the available

alternatives may change with each selection. In this setting, we no

longer have the closed form of the maximum likelihood parameters

provided by Theorem 3.1, but we show in Section 4.1 that the

likelihood function remains concave, given the set H of subsets

receiving corrective utility.

https://github.com/arbenson/discrete-subset-choice
https://code.google.com/archive/p/em-for-dpps


Table 2: Training and test time in seconds for (i) our sparse subset choice model with the frequency heuristic for the largest

value of |H | in Figure 1 and (ii) a determinantal point process (DPP) model, using EM [12]. DPPs cannot model selections with

repeated items, so there are no results for WalmartDepts and LastfmGenres. In all cases, our sparse model is much faster.

Bakery WalmartItems WalmartDepts Kosarak Instacart LastfmGenres

Sparse subset choice 1s 0.2s 1s 26s 270s 7s

DPP 193s 12s N/A 3,080s 67,054s N/A

Table 3: The top fivemost positive andmost negative correc-

tion probabilities q in LastfmGenres.

Most positive q Most negative q

{indie, indie} 0.0301 {indie, metal} -0.0015

{rock, indie} 0.0174 {indie, progressive_metal} -0.0009

{hip_hop, hip_hop} 0.0123 {rock, rock, electronic} -0.0007

{indie, indie, indie} 0.0119 {indie, industrial} -0.0006

{rock, rock, rock} 0.0101 {metal, electronic} -0.0005

4.1 Optimizing model parameters and

constructing H
Again, we learn the model parameters in two parts: the mixture

probabilities and the subset selection probabilities.

Mixture probabilities. There is no longer a closed form for the

optimal mixture probabilities zk that model how likely it is to

choose a size-k set. The log-likelihood of choosing a size-k set S
from choice set C is

log
zk

z1+z2+...z |C | + log Pr[select S | size-k choice]. (16)

Since zk ≥ 0, we may write zk = eYk for some Yk , and the log-

likelihood function becomes concave. We learn the zk with a stan-

dard gradient descent algorithm.

Subset selection probabilities. With variable choice sets, it is

easier to derive the optimization of model parameters from the

random utility perspective of Equation (8), rather than the prob-

abilistic formulation of Observation 2.2 used for universal choice

sets. Consider some choice set C and suppose that we know that

the selected subset is of size 2. The likelihood of observing a choice

S = {i, j} ⊂ C is eVi+Vj+Wi j /
∑
{k,l }⊂C eVk+Vl+Wkl with the under-

standing thatWkl = 0 if {k, l } < H . Let Sr = {ir , jr } ⊂ Cr be the

subset selections, r = 1, . . . ,N , where N is the total number of

selections. Given H , maximizing the log-likelihood is the following

optimization problem:

maximize

V ,W

∑N
r=1Vir +Vjr +Wir jr − log

∑
{k,l }⊂Cr e

Vk+Vl+Wkl

subject to Wi j = 0, for {i, j} < H .

The optimization problem has a concave objective with trivial

linear constraints. Thus, if we know the set of correction locations

H , then we can efficiently find the optimal likelihood parameters

(we use a simple gradient descent procedure). However, since the

universal choice set data is a special case of variable choice sets, it

is still NP-hard to find the optimal H by Proposition 3.2.

Constructing H . In our prior experiments, the frequency-based

algorithm performed well in all cases, so we use that heuristic for

our experiments here.

Table 4: Subset choice datasets with variable choice sets.

Here, |C | denotes the range of choice set sizes. The subset

size probabilities zk are learned from data (Section 4.1).

Dataset #items #choices |C | z1 z2 z3 z4 z5

YcCats 20 134,057 2–10 0.26 0.31 0.23 0.12 0.08

YcItems 2,975 156,039 2–10 0.16 0.20 0.23 0.22 0.18
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Figure 3: Mean per-choice likelihood improvements on the

test set over the separablemodel as a function of the number

of corrections in the sparse model (i.e., |H |) for datasets with

variable choice sets.

4.2 Data

We constructed two subset choice datasets from user browsing ses-

sions on an e-commerce Web site that contain click and purchase

information (made available from YOOCHOOSE
9
). In YcItems, the

variable choice set C is all items clicked on by a user in a given

browsing session, and the subset selection is the set of items pur-

chased in that session. Each item also has a category, and YcCats

is constructed by considering choices at the category level. In both

cases, the choice set varies for each browsing session. We filtered

the datasets to consider subset selections of size at most 5 made

from choice sets of size at most 10, where each item or category

appears in at least 8 total choice sets and at least 4 subset selections.

Table 4 provides summary statistics of the datasets.

4.3 Experiments

We used the frequency-based algorithm to find the correction setsH
for each dataset for |H | = 0, 1, 2, . . . , 20. Again, the case of |H | = 0

corresponds to the separable model. We trained the model on 80% of

the data and evaluated the mean per-choice likelihood gain on the

remaining 20% of the data (the same evaluation as for the datasets

9
http://2015.recsyschallenge.com

http://2015.recsyschallenge.com


with universal choice sets in Figure 1). There is no methodology for

learning determinantal point processes with variable choice sets,

so we do not compare against them here.

Figure 3 shows the mean per-choice likelihood improvements

over the separable model. In both datasets, our model achieves

over 5% likelihood gain with |H | < 10. With YcItems, we see the

same pattern in likelihood gains as for the datasets with universal

choice sets: a rapid increase for the first several corrections and

then a leveling of the gains. For this dataset, |H | is less than 1% the

number of items, and we achieve substantial likelihood gains with

an extremely sparse model.

5 RELATEDWORK

There are variable-size choice models for universal choice sets

based on pairwise interactions and conditional distributions [26],

correlated random utility errors [17], or a priori knowledge of utili-

ties [11, 35]. Our model makes no assumptions on pairwise interac-

tions and can handle arbitrary-order interactions. Also, the datasets

used in our experiments contain orders of magnitude more items

than experiments for pairwise interaction models in market basket

data [5, 9]. Set prediction functions in neural networks [22, 37] and

mutli-label classification methods more broadly [23, 34] are also

relevant to the subset prediction problem. However, these methods

are designed to predict a set of labels from features (e.g., predict

several tags of an image), whereas our experiments predict new

subsets given previous subset selections. The recently developed

set embedding model offers a statistical approach to the subset

choice problem with universal choice sets [25]. Unlike our models,

neural networks and the embedding models are not known to carry

a random utility maximization interpretation.

Another variant of subset choice is approval voting, where an

individual selects all candidates that she approves [10, 24, 29]. In

this case, there is an implicit assumption that only one alternative

will ultimately be selected (only one candidate will win the election),

whereas we deal with subsets that give complementary utility.

Lastly, our work fits into the context of several recent analyses

on effectively learning discrete choice models [4, 16, 18, 19, 21, 38]

as well as applications of discrete choice models to user behavior

on the Web [7, 30, 36].

6 DISCUSSION

We developed a general random utility model for how individuals

choose a subset of items from a given choice set and analyzed its

structure in two contexts: (i) the choice set is universal and is the

same for all selections and (ii) the choice set varies. In both cases, we

prove that after identifying subsets receiving corrective probability

within our model, we can efficiently find the optimal model param-

eters. However, we also showed that finding the best set of subsets

to receive corrections is NP-hard. Approximation algorithms for

coping with this issue are a direction for future work. Nevertheless,

our sparse model provides substantial likelihood improvements in

subset prediction compared to competing baselines.
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