
Sic Transit Gloria Telae: ∗ Towards an Understanding of the
Web’s Decay

Ziv Bar-Yossef
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

ziv@almaden.ibm.com

Andrei Z. Broder
IBM T. J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532.

abroder@us.ibm.com

Ravi Kumar
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

ravi@almaden.ibm.com

Andrew Tomkins
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120.

tomkins@almaden.ibm.com

ABSTRACT
The rapid growth of the web has been noted and tracked
extensively. Recent studies have however documented the
dual phenomenon: web pages have small half lives, and thus
the web exhibits rapid death as well. Consequently, page
creators are faced with an increasingly burdensome task of
keeping links up-to-date, and many are falling behind. In
addition to just individual pages, collections of pages or even
entire neighborhoods of the web exhibit significant decay,
rendering them less effective as information resources. Such
neighborhoods are identified only by frustrated searchers,
seeking a way out of these stale neighborhoods, back to more
up-to-date sections of the web; measuring the decay of a
page purely on the basis of dead links on the page is too
naive to reflect this frustration. In this paper we formalize
a strong notion of a decay measure and present algorithms
for computing it efficiently. We explore this measure by
presenting a number of validations, and use it to identify
interesting artifacts on today’s web. We then describe a
number of applications of such a measure to search engines,
web page maintainers, ontologists, and individual users.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.3.5 [Information Storage
and Retrieval]: Online Information Services—Web based
services; I.7.5 [Document and Text Processing]: Docu-
ment Capture—Document analysis; G.3 [Probability and
Statistics]: Markov processes

∗Latin for “Thus passes away the glory of the Web”. (Ac-
cording to Vocabula computatralia [24] the Latin transla-
tion of “World Wide Web (WWW)” is “Tela Totius Terrae
(TTT)”. See also “Sic Transit Gloria Mundi” in Bartleby at
http://www.bartleby.com/59/3/sictransitgl.html)

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

General Terms
Algorithms, Experimentation, Measurements

Keywords
Link analysis, 404 return code, Web information retrieval,
Web decay, dead links

1. INTRODUCTION
On November 2, 2003, Anick Jesdanun of the Associated

Press reported that the “Internet [is] littered with aban-
doned sites” [20]. The story was picked up by many news
outlets from USA’s CNN to Singapore’s Straits Times. The
article further states that

“[d]espite the Internet’s ability to deliver infor-
mation quickly and frequently, the World Wide
Web is littered with deadwood – sites abandoned
and woefully out of date.”

Of course this is not news to most net-denizens, and speed of
delivery has nothing to do with quality of content, but there
is no denial that the increase in the number of outdated sites
has made finding reliable information on the web even more
difficult and frustrating. Part of the problem is an issue of
perception: the immediacy and flexibility of the web create
the expectation that the content is up-to-date; after all, in
a library no one expects every book to be current, but on
the other hand, it is clear that books once published do not
change1, and it is fairly easy to find the publication date.

While there have been substantial efforts in mapping and
understanding the growth of the web (see, for example, [9]),
there have been fewer investigations of its death and de-
cay. Determining whether a URL is dead or alive is quite
easy, at least in a first approximation (see below), and in
fact, it is known that web pages disappear at a rate of
0.25-0.5%/week [16]. However determining whether a page
has been abandoned it is much more difficult. Our main

1Neon highlighting by under-age patrons does not count.



goal in this paper is to start understanding and quantifying
this problem: how can we determine that a page has been
abandoned, or that it is no longer well-maintained, in other
words has the page decayed? How widespread is the web
decay? Assuming that decay can be measured how can we
use this knowledge?

A human might use obvious clues: a page offering pre-
cautions for Year 2K, a page that urges people to vote for
someone in the 2002 elections, a page where “next week”
refers to times long gone, a page were most links do not
work, are obvious clues. However except for the last, none
of these is easily “readable” by a machine. We are facing an
issue similar to the classic Information Retrieval problem:
there, one must find “signals” that a program could use to
determine whether a page is relevant to a given query; here,
we need “signals” to determine whether a page has decayed
or not. In both cases the signals are noisy—what we are
trying to find is a correlation.

Dead links

Dead links are the clearest giveaway to the obsolescence
of a page. Indeed, this phenomenon of “link-rot” has been
studied in several areas—for example, Fetterly et al . [16] in
the context of web research, Koehler [22, 23] in the context
of digital libraries, and Markwell and Brooks [26, 27] in the
context of biology education. However using the proportion
of dead links as a decay signal, presents two problems, one
“fix-able”, one not.

(1) The first problem is that of determining whether a link
is “dead” is not trivial. According to the HTTP protocol [17]
when a request is made to a server for a page that is no longer
available, the server is supposed to return an error code,
usually the infamous 404. (This code is so popular that “has
gone 404” meaning “gone and cannot be found” seem to have
entered the vernacular.) As we discuss in Section 3, in fact
many servers, including most reputable ones, do not return a
404 code—instead the servers return a substitute page and
an OK code (200). The substitute page sometimes gives
a written error indication, sometimes is a redirect to the
original domain home page, and sometimes has absolutely
nothing to do with the original page. Our study shows that
these type of substitutions, called “soft-404s” account for
more than 25% of the dead links. We discuss this issue in
detail in Section 3 and propose a heuristic for the detection
of servers that engage in soft 404s. The heuristic is effective
for all cases except for one special case: a dead domain home
page bought by a new entity and/or “parked” with a broker
of domain names: in this special case we can determine that
the server engages in soft 404 in general but there is no way
to know whether the domain home page is a soft 404 or not.

(2) The second problem of dead links as a decay signal, is
that this is a very noisy signal. One reason is because it is
easy to manipulate. Indeed, many commercial sites use con-
tent management systems and quality check systems that
automatically remove any link that results in a 404 code.
For example, our experiments indicate that the Yahoo! tax-
onomy is continuously purged of any dead links (See Section
5.4). However, this is hardly an indication that every piece
of the Yahoo! taxonomy is up-to-date.

Another reason for the noisiness is that pages of certain
types tend to live “forever” even though no one maintains

them: a typical example might be graduate students pages—
many universities allow alumni to keep their pages and e-
mail addresses indefinitely as long as they do not waste too
much space. Because these pages link among themselves at
a relatively high rate, they will have few dead links on every
page, even long after the alumni have left the ivory towers;
it is only as we look at a larger radius around these pages
that we start noticing a surfeit of dead links.

Our contributions

The discussion above suggests that the measure of the de-
cay of page p should depend not only on the proportion of
dead pages at distance 1 from p but also, maybe to a de-
creasing extent, on the proportion of dead pages at distance
2, 3, and so on.

One way to estimate these proportions is via a random
walk from p: at every step if we land on a dead page we
declare failure, otherwise with probability σ we declare suc-
cess, and with probability 1 − σ we continue the walk. We
define the decay score of p, denoted D(p) as the probability
of failure in this walk. Thus the decay score of a page p will
be some number between 0 and 1.

At first glance, this process is similar to the famous ran-
dom surfer of PageRank [7]; however, they are quite different
in practice: for PageRank the importance of a page p de-
pends recursively on the importance of the pages that point
to p. In contrast the decay of p depends recursively on the
decay of the pages that are linked from p. Thus, comput-
ing the underlying recurrence once the web graph is fully
explored and represented is very similar, but

(a) The decay of a given page can be approximated in
isolation, that is, without having to compute the decay
of all pages in the graph, hence it is a much easier
task when the number of nodes of interest is relatively
small.

(b) While the owner of a page p has few licit means of
improving its PageRank, it can easily reduce its decay
by simply making sure that all the links on page p go
to well maintained pages.

It is generally agreed that PageRank is a better signal
for the quality of a page than simply its in-degree (i.e., the
number of pages that point to it) and recent studies [29,
10] have shown that the in-degree has only limited correla-
tion with PageRank. Similar questions can be asked about
the decay number versus the dead links proportion: our ex-
periments indicate that their correlation is only limited and
indeed the decay number is a better indicator. For instance,
on average, the set of 30 pages that we analyzed from the
Yahoo! taxonomy have almost no dead links, but have rel-
atively high decay, roughly the median value observable on
the Web. This seem to indicate that Yahoo! has a filter that
drops dead links immediately, but on the other hand the
editors that maintain Yahoo! do not have the resources to
check very often whether a page once listed continues to be
as good as it was.

Organization of this paper

In Section 2 we discuss related work in further detail. In
Section 3 we address the problem of identifying dead pages
despite soft 404 servers. In Section 4 we provide a rigorous
definition of the decay measure and give algorithms for its



computation. In Section 5 we present and interpret our
experiments. In Section 6, we conclude the paper with a
discussion of potential applications of the decay measure.

2. RELATED WORK
The related work falls into four categories. The first is

the study of dead links on the web, and more generally the
evolution of web pages. The second is link analysis. The
third is the use of random walks in web algorithmics. The
fourth is the study of theoretical graph models for the web.

As we mentioned in the Introduction, there have several
studies analyzing the so-called “link-rot”. A large study of
the evolution of web pages was done by Cho and Garcia-
Molina [13] and this study was expanded substantially by
Fetterly et al . [16]. The latter studied millions of web pages
over a period of time and reported statistics including dead
link count, etc. Very recently Ntoulas et al. [28] studied
page changes (including link structure) in 154 popular web
sites. The rate of change within web pages and implication
for crawling and caching policies were studied in [13, 6, 31,
14].

Koehler [22, 23] studies web attrition in the context of dig-
ital libraries and reports statistics including dead link rate.
Markwell and Brooks [26, 27] study the link rot phenomenon
in the context of biology education. As we noted earlier, the
“Internet deadwood” has been “discovered” by the popular
media.

The graph structure of the Web has been used extensively
in Web IR work. In particular the HITS algorithm of Klein-
berg [21] and the PageRank algorithm of Brin and Page
[7] have been widely studied. Improvements to HITS were
obtained by Bharat and Henzinger [5] and Chakrabarti et
al . [11]. There have been numerous subsequent modifica-
tions and enhancements to the algorithmic implementation
of the basic PageRank algorithm—in this version of the pa-
per, we do not attempt to list these references. The one
that is most relevant to us is the recent work of Haveliwala
[18], who developed the notion of topic-sensitive PageRank;
the PageRank notion is refined to reflect the relevance of a
page to a topic. However, as we discussed in the Introduc-
tion, PageRank and its variation are quite different from our
decay score.

Random walks are quite popular to compute various web
statistics. For instance, Bar-Yossef et al . [2] used random
walks to approximate aggregate queries about web pages.
Henzinger et al . [19] and subsequently, Rusmevichientong
et al . [30] used random walks to uniformly sample URLs.

Finally, developing models to capture the evolution and
characteristics of the web graph has been an active area
of research. See, for example, [3, 25, 1]. These models
primarily address the growing aspect of the web. To the
best of our knowledge, there are no graph models that strive
to explicitly include the decay and death of pages within the
graph model, although as we already mentioned, the birth,
change, and death of pages in isolation has been examined
in detail. We hope that our study will stimulate research
to produce web graph models that correlate well with the
experimental data that we present here.

3. IDENTIFYING DEAD PAGES
A dead page is a page that is not publicly available over the

web. A page can be dead for any of the following reasons: (1)

its URL is malformed; (2) its host is down or non-existent;
or (3) it does not exist on the host. The first two types
of dead pages are easy to detect: the former fail the URL
parsing and the latter fail the resolution of the host address.
When fetching pages that are not found on a host, the web
server of the host is supposed to return an error; typically,
it is the (in)famous 404 HTTP return code. However, it
turns out that many web servers today (see Section 5.2 for
statistics) do not return an error code even when they receive
HTTP requests for non-existent pages. Instead, they return
an OK code (200) and some substitute page; typically, this
substitute is an error message page or the home-page of that
host or even some completely unrelated page. We call such
non-existent pages that behave as above “soft-404 pages”.

The existence of soft-404 pages makes the task of identify-
ing dead pages non-trivial. We next describe our algorithm
for this task. The pseudo-code of the algorithm is given in
Table 1. For the rest of the discussion we identify a page
with its URL and use the two notions interchangeably.

Loosely speaking, a soft-404 page is a non-existent page
that does not return an error code. In contrast a hard-404
page is a non-existent page that returns an error code of
403, 404, or 410, or any code of the form 5xx (see [17] for a
list of all error codes). Dead pages consist of soft-404 pages,
hard-404 pages, and a few more cases such as time-outs and
infinite redirects discussed below.

Let u be the URL of a page, to be tested whether dead
or alive. Let u.host denote the host of u, and let u.parent
denote the URL of the parent directory of u. For exam-
ple, both the host and the parent directory URL of http:
//www.ibm.com/us are http://www.ibm.com; however the
parent directory of http://www.ibm.com/us/hr is http://

www.ibm.com/us. u.host and u.parent can be extracted
from u by a proper parsing.

Our algorithm starts by trying to fetch u from the web
(Line 3 of the function isDeadPage). A fetch (see function
atomicFetch) may result in one of the following three out-
comes: (1) it succeeds, (2) it fails, or (3) it redirects to
a different URL v. The possible reasons for a failure are:
(a) u is an invalid URL and could not be properly parsed
(Lines 2-3 of atomicFetch); (b) the local DNS server could
not resolve the IP address of u.host (Lines 6-7 of atom-
icFetch); (c) when creating a connection to u.host, there
was no response within T seconds (in our experiments we
choose T = 10) (Lines 10-11 of atomicFetch); or (d) the
web server of u.host returns an error HTTP return code in
response to the request for u (Lines 12-13 of atomicFetch).
The HTTP return codes which we consider as error are 403
(Forbidden), 404 (Not found), 410 (Gone), and all the codes
of the form 5xx (Server errors). A success is a HTTP return
code in the 2xx series or 4xx series (except for 403,404,410),
and a redirect is indicated by an HTTP return code in the
3xx series.

Clearly when the fetch fails, the page is dead. We now
discuss how to analyze the two other cases (success or redi-
rect). The redirect case is also rather simple. Our algorithm
attempts to fetch u. If it redirects to a new URL v, it then
attempts to fetch v. It continues to follow the redirects, un-
til reaching some URL wu, whose fetch results in a success
or a failure (see the function fetch). (A third possibility is
that the algorithm detects a loop in the redirect path (Lines
12-13 of fetch) or that the number of redirects exceeds some
limit L, which we chose to be 20 (Lines 14-15 of fetch); in



Function bool isDeadPage(u)
in: URL u
1: string Tu, Tr, int Ku, Kr, bool error
2: fetch(u, wu, Tu, Ku, error)
3: if (error) then // A hard-404
4: return true
5: URL r = u.parent+ 25 random characters
6: fetch(r, wr, Tr, Kr, error)
7: if (error) then // host returns a hard-404 on dead pages
8: return false
9: if (u is the root of u.host) then
10: return false // a root cannot be a soft-404
11: if(Ku 6= Kr) then // different number of redirects
12: return false
13: if (wu = wr) then // same redirects & same number of redirects
14: return true
15: if (shingle(Tu) = shingle(Tr)) then // almost-identical content
16: return true
17: return false // not a soft-404 page

Function fetch(u, Tu, wu, Ku, error)
in: URL u
out: string Tu, URL wu, int Ku, bool error
1: wu := u
2: Ku := 0
3: set〈URL〉 redirects
4: redirects.insert(u)
5: while (true) do
6: URL v, bool redirect
7: atomicFetch(wu, Tu, v, redirect, error)
8: if (error) then
9: return // A hard-404
10: if (!redirect) then // no more redirects
11: return
12: if (redirects.find(v)) then // a redirect loop
13: error = true; return
14: if (Ku ≥ 20) then // too many redirects
15: error = true; return
16: wu := v, Ku := Ku + 1
17: end while

Function atomicFetch(w, T , v, redirect, error)
in: URL w
out: string T , URL v, bool redirect, bool error
1: parse(w, error)
2: if (error) then // parse URL failed
3: return
4: IPAddress address
5: getIPAddress(w.host, address, error)
6: if (error) then // resolution of host’s IP address failed
7: return
8: HTTPRetCode code
9: httpGet(address, T , v, code, timeout = 10sec, error)
10: if (error) then // http get timed out
11: return
12: if (code in { 403, 404, 410, 5xx} ) then // bad http return code
13: error = true; return
14: if (code in { 3xx }) then
15: redirect := true
16: else
17: redirect := false

Table 1: Pseudo-code of the algorithm for identify-
ing dead pages

such a case the algorithm declares u to be a dead page, and
stops.) If the fetch of wu results in a failure, u is declared
a dead page as before. If the fetch results in a success, the
algorithm proceeds to checking whether u is a soft-404 page.

Detecting soft-404 pages

The algorithm detects whether u is a soft-404 page or not
by “learning” whether the web server of u.host produces
soft-404 at all. This is done by asking for a page r, known
with high probability not to exist on u.host. It then com-
pares the server behavior when asked for r, with its behavior
when asked for u.

The first question to be addressed is how to come up with
a page r that is guaranteed not to exist on u.host. We do
this as follows: we choose a URL, which has the same direc-
tory as u, and whose file name is a sequence of R random
letters (in our experiments we choose R = 25; see Line 5 of
isDeadPage). The URL r is simply the concatenation of the
URL u.parent with the random sequence. Since the file
name is chosen at random, the probability that it exists un-
der that directory is at most N/26R, where N is the number
of files that do exist under the directory. For any reasonable
value of N , this probability is tiny, and thus we can safely
assume that the random page r does not exist.

The reason to choose r to be in the same directory as u
(and not as a random page under u.host) is that in large
hosts different directories are controlled by different web
servers, and therefore may exhibit different responses to re-
quests for non-existent pages. An example is the host http:
//www.ibm.com. When trying to fetch a non-existent page
http://www.ibm.com/blablabla, the result is a 404 code.
However, a fetch of http://www.ibm.com/us/blablabla re-
turns the home-page http://www.ibm.com/us. Thus http:

//www.ibm.com/us/blablabla is a soft-404 page, but http:
//www.ibm.com/blablabla is a hard-404 page.

Next we need to compare the behavior of the web server
on r with its behavior on u. Let wr and wu denote the
final URLs reached when following redirects from r and u,
respectively. Let Tr and Tu denote the contents of wr and
wu, respectively. Let Kr and Ku denote the number of
redirects the algorithm had to follow to reach wr and wu,
respectively.

If the fetch of wr results in a failure, we conclude that the
web server does not produce soft-404 pages. Since the fetch
of wu succeeded, the algorithm can safely declare u as alive
(Lines 7-8 in isDeadPage). Suppose, then, that the fetch of
wr results in a success. Thus, r is a soft-404 page.

If wr = wu and Kr = Ku, then u and r are indistin-
guishable. This gives a clear indication that u is a soft-
404 page except for one special cases: there are situations
when soft-404 pages and legitimate URLs both redirect to
the same final destination (e.g., to the host’s home-page). A
good example of that is the URL http://www.cnn.de (the
CNN of Germany), which redirects to http://www.n-tv.de;
however, also a non-existent page like http://www.cnn.de/

blablabla redirects to http://www.n-tv.de. We thus use
the following heuristic: if u is a root of a web site, then it
can never be a soft-404 page (Lines 9-10 of isDeadPage; see
discussion below about when this heuristic may fail). Oth-
erwise, if wr = wu and kr = ku, then u is declared a soft-404
page (Lines 13-14 of isDeadPage).

If Kr 6= Ku, the algorithm declares u to be alive (even
if wr = wu), because the behavior of the web server on u



is different from its behavior on r (Lines 11-12 of isDead-
Page). An example that demonstrates that the number of
redirects is crucial for the test is http://www.eurosport.

de/. Fetching http://www.eurosport.de/ incurs two redi-
rects that finally land in a valid page. However, fetch-
ing http://www.eurosport.de/blablabla redirects first to
http://www.eurosport.de/ and then two more redirects as
before. Thus, both the valid page and the soft-404 page
end up at the same valid page, but the former requires two
redirects while the latter requires three.

Even if wr 6= wu it is still possible that u is a soft-404 page,
because in some hosts each soft-404 page is redirected into
a unique address (http://www.amazon.com, for example).
We thus next look at the contents of wr and wu, and at
the parameters Kr, Ku. If wr 6= wu, Kr = Ku, and Tu

and Tr are identical or nearly-identical (near-identity can
be checked via shingling [8]), the algorithm declares u to
be a soft-404 page (Lines 15-16 of isDeadPage). Note that
testing near-identity (as opposed to complete identity) may
be important, because sometime the web server embeds the
non-existing URL u in the text of the page it returns or does
other minor changes.

The above scheme is doing its best to capture as many
of the cases of soft-404 pages as possible. It is not flawless
though. The main weakness is in the heuristic that asserts
roots of web sites can never be soft-404 pages. An emerging
phenomenon on the web is the one of “parked web sites”.
These are dead sites whose address was re-registered to a
third party. The third party (typically, a porn site owner)
puts a redirect from those dead sites into his own web site.
The idea is to profit from the prior promotional works of
the previous owners of the dead sites. A report by Edelman
[15] gives a nice description of this phenomenon as well as a
case study of a specific example.

4. DEFINITION AND COMPUTATION OF
DECAY

4.1 The decay measure
Let n be the total number of pages. Let D ⊂ [n] be the

set of all dead pages, and let all other pages be live. Let
M be the n × n matrix of the multi-graph of links among
pages, so that Mij is the number of links on page i to page
j. To begin, we perform one modification to the matrix:
M ←M + I, adding a self loop to each page. We will define
a measure Dσ(i) in terms of a “success parameter” σ ∈ [0, 1].
(In our experiments, we take σ = 0.1.)

We begin by describing decay as a random process, and
argue that it captures the intuition that we seek. Next, we
give a formal recursive definition, and finally, we cast it as
a random walk in a Markov chain.

A process for computing decay

The measure can be seen as a random process govern-
ing a “web surfer,” as follows. Initially, the current page p
is set to i, the page whose decay we are computing. The
surfer at the current page will perform the following steps,
eventually returning a binary decay score depending on the
random choices made during execution of the steps; the pro-
cess therefore defines a distribution over {0, 1}. The decay
Dσ(i) is the mean of this distribution.

1. If p ∈ D, the surfer terminates with decay value 1: the
page is completely decayed.

2. Otherwise, the surfer flips a biased coin, and with
probability σ decides that the content of the current
page meets his information need, and hence terminates
successfully with decay score 0.

3. With the remaining probability 1−σ, the surfer chooses
an outlink of p uniformly at random, sets p to be the
destination of that outlink, and begins the again from
step 1.

Unrolling this definition a few steps, it becomes clear that
the decay of a page is influenced by dead pages a few steps
away, but that the influence of a single path decreases expo-
nentially with the length of the path. For example a dead
page has decay 1, a live page whose outlinks are all dead has
decay 1−σ, a live page whose all outlinks point to live pages
that in turn point only to dead pages has decay (1 − σ)2,
etc.

A formal definition of the decay measure

Recursively, we can define Dσ(i) as follows:

Dσ(i) =

{
1 i ∈ D,

(1− σ)
(∑

j∈[n] MijDσ(j)∑
j∈[n] Mij

)
otherwise.

Understanding the solution to this recursive formulation
is easiest in the context of random walks, as described below.

Decay as a random walk with absorption

Decay scores may also be viewed as absorption probabil-
ities in a random walk. We now define the Markov chain
in which this walk takes place. First, the incidence matrix
of the web graph must be normalized to be row stochastic
(each nonzero element is divided by its row sum). Next,
two new states must be added to the chain, each of which
has a single outlink to itself: n + 1 is the success state, and
n + 2 is the failure state. Thus these two new states are
absorbing. Finally, we make the following two modifications
to the matrix: first, each dead state is modified to have a
single outlink with probability 1 to the failure state; second,
all edges from non-dead states ([n] \ D) are multiplied by
1 − σ in probability, and a new edge with probability σ is
added to the success state. Hence the two new states are the
only two absorbing states of the chain, and any random walk
in this chain will be eventually absorbed in one of the two
states. Walks in this new chain mirror the random process
described above, and the decay of page i is the probability
of absorption in the failure state when starting from state i.

4.2 Computing absorption probabilities
Global static ranking measures such as PageRank [7] usu-

ally have to be computed globally for the entire graph dur-
ing a lengthy batch process. Other graph oriented measures
such as HITS [21] may be computed on-the-fly, but require
inlink information typically derived from a complete repre-
sentation of the web graph, such as [4], or from a large scale
search engine that makes available information about the
inlinks of a page.

Decay, on the other hand, is defined purely in terms of
the out-neighbors of i. We make the following observation:



Observation 1. The decay value of a page can be ap-
proximated to within constant accuracy in a constant num-
ber of HTTP fetches, independent of the link structure of the
graph, without access to any other supporting indexes.

Such an implementation mirrors the random process defi-
nition of decay given in Section 4.1. Because the walk termi-
nates with probability at least σ at each step, the distribu-
tion over number of steps is bounded above by the geometric
distribution with parameter σ; thus, the expected number of
steps for a single trial is no more than 1/σ, and the probabil-
ity of long trials is exponentially small. Further, the value of
each trial is 0 or 1, and so decay can be estimated to within
error ε with probability 1 − δ in O(1/ε2 log 1/δ) steps; this
follows from standard Chernoff bounds. (In practice, we
employ 300 trials to estimate the decay value of each page.)

Like other measures, decay is also amenable to the more
traditional batch computation; we have not tried it but we
expect the time required to be similar to the time required
by PageRank.

5. EXPERIMENTS AND RESULTS
We implemented the algorithm for identifying dead pages

and the random walk algorithm for estimating the decay
score of a given page. We then ran several sets of exper-
iments described below. The first set of experiments vali-
dates that our decay measure is a reasonable measure for
decay of web pages. We compare it against another plausi-
ble measure, namely, the fraction of dead links on a page.
After establishing that our measure is reasonable, we use it
to discover interesting facts about the web.

5.1 System parameters
In this section we specify the settings of parameters for

our two algorithms that were used in the experiments.
The parameters of the algorithm for detecting dead pages

were set as follows:

• We allow a timeout of T = 10 seconds for fetching a
page. If the server does not respond within 10 seconds,
the page is declared dead.

• We allow at most L = 20 redirects for a page. If more
than 20 redirects are encountered, the page is declared
dead.

• To create a random URL in the same directory of the
page, we append the parent directory with a sequence
of 25 random lower case Latin letters.

The parameters of the random walk algorithm were set as
follows:

• In general, we use a success parameter σ = 0.1. Thus,
at each step of the random walk, with probability 0.1,
the random walk proceeds to the success absorbing
state. The expected length of a random walk is then
at most 10.

• For each page, we run the random walk algorithm 300
times. This guarantees an additive error in our decay
estimates of at most 0.1 with confidence at least 0.8.

On average, getting the decay score of a page took about 7
minutes on a machine with double 1.6GHz AMD processors,
3 GB of main memory, running a Linux operating system

and having a 100 Mbps connection to the network. Since
our task was highly parallelizable (the decay score of differ-
ent pages could be estimated in parallel, and also different
random walks for the same page could be run in parallel),
we ran about 10 random walk processes simultaneously, in
order to increase throughput.

5.2 Random pages
Our first experiment involved computing the decay score

and the fraction of dead links on 1000 randomly chosen
pages. The pages were chosen from a two billion page crawl
performed largely in the last four months.

To begin with, of the 1000 pages, 475 were already dead
(substantiating the claim that web pages have short half
lives, on average). For each remaining page, we computed
its decay score as well as the fraction of its dead links. In to-
tal, there were 710 dead links on the pages and out of these,
207 were pointing to soft-404 pages (roughly 29%). More-
over, the random walks during the decay score computation
of the 525 pages encountered a total of 22,504 dead links,
out of which 6.060 pointed to soft-404 pages (roughly 27%).
Such a high fraction of soft-404 pages detected by our al-
gorithm should be a further impetus to develop even better
algorithms to detect them. Another interesting statistic is
that only 350 of the 525 pages alive had a non-empty ‘Last
Modified Date’.

Figure 1: Distribution of fraction of dead links and
decay scores for various σ’s.

The main statistic emerging out of this experiment is that
the average fraction of dead links is 0.068 whereas the the av-
erage decay scores of a live page with at least one outlink are
0.168, 0.106, 0.072, and 0.041 for values of σ = 0.1, 0.2, 0.33
and 0.5, respectively.

The decay curves in Figure 1 reflect the fact that for a
given page i if σ1 ≥ σ2 then

Dσ1(i) <= Dσ2(i).

Proof. The decay is the probability of absorption into
the failure state. Consider all paths that lead to the failure
state. Then the weight of each individual path under σ1

is less or equal to its weight under σ2; namely for a path



of length k it is (1 − σi)
k times the unbiased random walk

weight of the path. (The same argument does not work for
the paths that lead to the success state; their individual
weight is not monotonic in σ.)

For the rest of the paper we use σ = 0.1.
Clearly the decay and the fraction of dead links are re-

lated but not in a simple way. More precisely, if F(i) is the
fraction of dead links on page i, and page i is not dead then

Dσ(i) = (1− σ)
(
F(i) +

(
1−F(i)

)
D̄(i)

)
, (1)

where D̄(i) is the average decay of the non-dead neighbors
of i.

Figure 1 shows that the distributions of D and F intersect.
The difference among them can also be seen from the scatter
plot of these distributions for σ = 0.1 (Figure 2). The scatter
plot shows that the decay score is generally more than the
fraction of dead links. (This also follows from equation 1.)
More interestingly, it also shows that the decay measure can
be close to 0.5 even when the fraction of the dead links is
close to 0.

Figure 2: Scatter plot of decay scores vs. fraction
of dead links.

5.3 The WWW conferences
Our next experiments deal with the papers from the last

ten World Wide Web conferences. We crawled all the (ref-
ereed track) papers from WWW3 to WWW12 and for each
paper with at least one outlink, we computed its decay score
and the fraction of dead links. The averaged results are
shown in Figure 3. The main observation is the following.
We claim that the trend exhibited by decay scores is more
representative and more useful than that of the fraction of
dead links. From the figure, it is evident that the decay
scores decline as conferences get more recent; on the other
hand, the fraction of dead links exhibits a flatter trend. It
is arguably the case that on average, links contained in pa-
pers from older conferences not only have a higher chance
of themselves being dead, but also are more likely to point
to pages that are dead. Decay scores are therefore able to
reflect better the temporal aspect of hyperlink creation and
maintenance; we believe this feature might have other ap-
plications.

Figure 3: Average decay scores and fraction of dead
links for papers from the last ten WWW confer-
ences.

5.4 Yahoo! leaf nodes
Our next experiment consisted of a set of 30 nodes from

the current Yahoo! ontology (Figure 4). We chose the nodes
so as to have a relatively large number of outside links and
be well represented in the Internet Archive (www.archive.
org). We computed the decay score and fraction of dead
links for each of the 30 nodes. We then used the Internet
Archive to fetch the previous incarnations of the same nodes
in the past five years and computed the decay scores and
fraction of dead links for these ‘old’ pages as well. Since the
archived pages have time stamps embedded in the URL, at
the end of this step, we obtained a history of decay scores
and fraction of dead links for each leaf. We then averaged
these scores over the 30 nodes and bucketed the time line
into months (since 1998) to obtain Figure 5. The behavior
of decay scores and fraction of dead links are still different;
but the important point is that this difference in behavior is
different from that of WWW conferences as well (Figure 3).
Unlike in the WWW conference case, here, the decay score
is flatter whereas the the fraction of dead links is rapidly
decreasing. The behavior of the dead links is as expected—
the fraction of dead links is close to 0 in the current version
of the Yahoo! nodes; this is obviously due to their automatic
filtering of dead links. But, even in the current version of
these nodes, the figure shows that the decay score of these
is as high as that of a random web page (i.e., close to 0.2).

Thus, we can conclude that many of the pages pointed
by Yahoo! nodes, even though are not dead themselves yet,
are littered with dead links and outdated. E.g., consider
the Yahoo! category Health/Nursing. Only three out of 77
links on this page are dead. However, the decay score of
this page is 0.19. A few examples of dead pages that can be
reached by browsing from the above Yahoo! page are: (1)
the page http://www.geocities.com/Athens/4656/ has an
ECG tutorial where all the links are dead; (2) the page http:
//virtualnurse.com/er/er.html has many dead links; (3)
many of the links in the menu bar of http://www.nursinglife.
com/index.php?n=1&id=1 are dead; and so on. We believe
that using decay scores in an automatic filtering system will
improve overall quality of links in a taxonomy like Yahoo!.



1. Business_and_Economy/Classifieds
2. Business_and_Economy/Employment_and_Work/

Organizations
3. Computers_and_Internet/News_and_Media/Magazines
4. Computers_and_Internet/Internet/World_Wide_Web/

Organizations
5. News_and_Media/Journalism
6. News_and_Media/Television/Satellite
7. Entertainment/Music/Band_Naming
8. Entertainment/Humor
9. Recreation/Automotive

10. Recreation/Gambling
11. Health/Medicine
12. Health/Nursing
13. Health/Fitness
14. Government/Military/Weapons_and_Equipment
15. Government/Law
16. Regional/U_S__States/California/Education
17. Regional/Countries/France/Arts_and_Humanities/

Museums__Galleries__and_Centers
18. Society_and_Culture/Environment_and_Nature
19. Society_and_Culture/Food_and_Drink/Cooking
20. Society_and_Culture/Death_and_Dying
21. Education/Higher_Education
22. Education/K_12/Gifted_Youth/Schools
23. Arts/Visual_Arts/Photography/Digital
24. Arts/Humanities/Literature/Poetry
25. Science/Computer_Science/Electronic_Computer_Aided_

Design__ECAD_
26. Science/Biology/Zoology/Animals__Insects__and_Pets/

Pets/Health
27. Social_Science/Psychology/Branches/Sleep_and_Dreams
28. Social_Science/Anthropology_and_Archaeology/

Archaeology
29. Reference/Quotations
30. Reference/Dictionaries

Figure 4: Yahoo! nodes used in our experiments.

5.5 Frequently asked questions (FAQs)
Our final set of experiments involves the Frequently asked

questions (FAQs) obtained from www.faqs.org. We col-
lected all the 3,803 FAQs and computed the decay scores
and the fraction of dead links for each of them. We also
computed the last modified/last updated date for the FAQs
by explicitly parsing the FAQ (since the last modified date
returned in the HTTP header from www.faqs.org does not
represent the actual date when the FAQ was last modi-
fied/updated). As in the earlier case, we collated the results
and bucketed the time line into years since 1992 to obtain
Figure 6. From the figure, it is clear that despite the fact
that the FAQs are hand-maintained in a distributed fash-
ion by a number of diverse and unrelated people, it suffers
from the same problem—many pages pointed to by FAQs
are unmaintained.

6. FINAL REMARKS
We have introduced and formalized the decay measure,

compared and contrasted it to the technique of counting
number of dead links on a page, and motivated our mea-
sure as an approach to capturing subtle but pervasive phe-
nomenon on the web.

We now point out a number of applications areas that we
believe could fruitfully apply the decay concept:

(1) Webmaster and ontologist tools: There are a number
of tools made available to help webmasters and ontologists

Figure 5: Average decay scores and fraction of dead
links for 30 Yahoo! nodes.

Figure 6: Average decay scores and fraction of dead
links for FAQs.

track dead links on their sites; however, for web sites that
maintain resources, there are no tools to help understand
whether the linked-to resources are decayed. Our observa-
tion about Yahoo! leaf nodes suggests that such tools might
provide an automatic or semi-automatic approach to ad-
dressing the decay problem.

(2) Ranking: As far as we know, decay measures have not
been used in ranking, but users routinely complain about
search results pointing to pages that either do not exist
(dead pages), or exist but not reference valid current infor-
mation (decayed pages). Incorporating the decay measure
into the rank computation will alleviate this problem.

Furthermore, web search engines could use our soft-404
detection algorithm to eliminate soft-404 pages from their
corpus. Note that soft-404 pages indexed under their new
content are still problematic since most search engines put
a substantial weight on anchor text, and the anchor text to
soft-404 pages is likely to be quite wrong.



(3) Crawling: Decay score can be used to guide the crawl-
ing process and the frequency of the crawl, in particular for
topic sensitive crawling [12]. For instance, one can argue
that it is not worthwhile to frequently crawl a portion of
the web that has sufficiently decayed; as we saw in our ex-
periments, very few pages have valid last modified dates in
them2. The on-the-fly random walk algorithm for comput-
ing the decay score might be too expensive to assist this
decision at crawl-time but post a global crawl one can com-
pute the decay scores of all pages on the web at the same
cost as PageRank. Heavily decayed pages can be crawled
infrequently.

(4) Web sociology and economics: Measuring decay score
of a topic can give an idea of the ‘trendiness’ of the topic.

There are a number of interesting directions for future
work — both theoretical and applied.

On the applied side, it will be interesting to know if there
are other decay-like measures that can have applications.
For instance, in the context of business intelligence, one such
measure can be: following a link to a competitor’s web page
is like encountering a 404. It will be interesting to study such
measures and see if they can be applied in market analysis,
etc.

It also might be possible to estimate decay by completely
surfing a small neighborhood around the node of interest,
say radius two, although a very similar effect can be obtained
by setting σ = 0.5.

Furthermore there could be other signals of decay that can
be automatically determined (such as HTML level, dates,
the use of obsolete slang, etc.) that could be combined with
our notion of decay. It would be interested to build a decay
classifier and see it it can approach human discernment.

Large search engines and crawlers can keep copies of the
crawled content and detect and analyze changes between
consecutive versions. However, it is not obvious how to in-
terpret them: frequent changes might represent good main-
tenance or might be mechanical changes or insertions (e.g.,
current date). No change might represent abandonment or
it might indicate a stable or infrequently changing document
(e.g., legislation).

It might be also possible to use the random walk approach
to determine the centrality and focus of a given directory
with respect to a particular topic. Here the stopping prob-
ability should be proportional to the topicality of the page
and non-topic page should yield failure.

As we mentioned in Section 2, theoretical study of models
for the web graph has focused primarily on page creation,
and to a much lesser extent on page death. It has not fo-
cused at all on page abandonment, even though model fi-
delity would be greatly enhanced by doing so. It is will be
quite valuable to study decay in an model for the web graph.

2There are web pages that take last modified date to the
extreme. For instance, see http://www.yale.edu/lawweb/
avalon/league/locarno1.htm for a ‘Treaty of Locarno be-
tween France and Poland’ that gets continuously modified!

7. REFERENCES
[1] W. Aiello, F. Chung, and L. Lu. A random graph

model for power law graphs. Experimental
Mathematics, 10:53–66, 2001.

[2] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol,
and D. Weitz. Approximating aggregate queries about
web pages via random walks. In Proceedings of the
26th International Conference on Very Large
Databases, pages 535–544, 2000.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[4] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast
access to linkage information on the Web. In
Proceedings of the 7th International World Wide Web
Conference, pages 104–111, 1998.

[5] K. Bharat and M. Henzinger. Improved algorithms for
topic distillation in a hyperlinked environment. In
Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 104–111, 1998.

[6] B. Brewington and G. Cybenko. How dynamic is the
web? In Proceedings of the Ninth International World
Wide Web Conference, pages 257–276, May 2000.

[7] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the
7th International World Wide Web Conference, pages
107–117, 1998.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the Web. In
Proceedings of the 6th International World Wide Web
Conference, pages 391–404, 1997.

[9] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. WWW9/Computer
Networks, 33(1–6):309–320, 2000.

[10] A. Z. Broder, R. Lempel, F. Maghoul, and
J. Pedersen. Efficient Pagerank approximation via
graph aggregation. Manuscript.

[11] S. Chakrabarti, B. Dom, D. Gibson, R. Kumar,
P. Raghavan, S. Rajagopalan, and A. Tomkins.
Spectral filtering for resource discovery. In Proceedings
of the ACM SIGIR Workshop on Hypertext Analysis,
pages 13–21, 1998.

[12] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused crawling: a new approach to topic-specific
web resource discovery. WWW8/Computer Networks,
31(11–16):1623–1640, 1999.

[13] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proceedings of the 26th International Conference on
Very Large Databases, pages 200–209, 2000.

[14] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C.
Mogul. Rate of change and other metrics: a live study
of the world wide web. In USENIX Symposium on
Internet Technologies and Systems, 1997.

[15] B. Edelman. Domains reregistered for distribution of
unrelated content: A case study of “Tina’s Free Live
Webcam”. http://cyber.law.harvard.edu/people/
edelman/renewals/, 2002.

[16] D. Fetterly, M. Manasse, M. Najork, and J. L.
Wiener. A large-scale study of the evolution of web



pages. In Proceedings of the 12th International World
Wide Web Conference, pages 669–678, 2003.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. RFC2616:
Hypertext Transfer Protocol – HTTP/1.1. http:
//www.w3.org/Protocols/rfc2616/rfc2616.html,
June 1999.

[18] T. Haveliwala. Topic-sensitive PageRank. In
Proceedings of the 11th International World Wide
Web Conference, pages 517–526, 2002.

[19] M. Henzinger, A. Heydon, M. Mitzenmacher, and
M. Najork. On near-uniform URL sampling.
WWW9/Computer Networks, 33(1–6):295–308, 2000.

[20] A. Jesdanun. Internet littered with dead web sites.
http://story.news.yahoo.com/news?tmpl=story&u=

/ap/20031102/ap_on_hi_te/%deadwood_online_1,
November 2002.

[21] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[22] W. Koehler. An analysis of web page and web site
constancy and permanence. Journal of the American
Society for Information Science, 50(2):162–180, 1999.

[23] W. Koehler. Digital libraries and world wide web sites
and page persistence. Information Research, 4(4),
1999.

[24] K. Kokoszkiewicz (a.k.a. Alectorides Conradus).
Vocabula Computatralia Anglico-Latinum. University
of Warsaw, Centre for Studies on the Classical
Tradition in Poland and East-Central Europe
(OBTA). http:
//www.obta.uw.edu.pl/~draco/docs/voccomp.html.

[25] R. Kumar, P. Raghavan, S. Rajagopalan,
D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic
models for the web graph. In Proceedings of the 41st
IEEE Annual Foundations of Computer Science,
pages 57–65, 2000.

[26] J. Markwell and D. W. Brooks. Broken links: The
ephemeral nature of educational WWW hyperlinks.
Journal of Science Education and Technology,
11(2):105–108, 2002.

[27] J. Markwell and D. W. Brooks. “Link rot” limits the
usefulness of web-based educational materials in
biochemistry and molecular biology. Biochemistry and
Molecular Biology Education, 31(1):69–72, 2003.

[28] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? The evolution of the web from a search engine
perspective. In Proceedings of the 13th International
World Wide Web Conference, 2004.

[29] G. Pandurangan, P. Raghavan, and E. Upfal. Using
PageRank to characterize web structure. In
Computing and Combinatorics: 8th Annual
International Conference, pages 330–339, 2002.

[30] P. Rusmevichientong, D. M. Pennock, S. Lawrence,
and C. L. Giles. Methods for sampling pages
uniformly from the world wide web. In Proceedings of
the AAAI Fall Symposium on Using Uncertainty
Within Computation, pages 121–128, 2001.

[31] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman,
and L. Ozsen. Optimal crawling strategies for web
search engines. In Proceedings of the 11th International
World Wide Web Conference, pages 136–147, 2002.


