
BusTr: Predicting Bus Travel Times from Real-Time Traffic
Richard Barnes

UC Berkeley
richard.barnes@berkeley.edu

Senaka Buthpitiya
Google Research

senaka@google.com

James Cook
Google Research

jcook@cs.berkeley.edu

Alex Fabrikant
Google Research

fabrikant@google.com

Andrew Tomkins
Google Research

tomkins@google.com

Fangzhou Xu
Google Research

fangzhoux@google.com

ABSTRACT
We present BusTr, a machine-learned model for translating road
traffic forecasts into predictions of bus delays, used by Google Maps
to serve the majority of the world’s public transit systems where no
official real-time bus tracking is provided. We demonstrate that our
neural sequencemodel improves over DeepTTE, the state-of-the-art
baseline, both in performance (−30% MAPE) and training stability.
We also demonstrate significant generalization gains over simpler
models, evaluated on longitudinal data to cope with a constantly
evolving world.
ACM Reference Format:
Richard Barnes, Senaka Buthpitiya, James Cook, Alex Fabrikant, Andrew
Tomkins, and Fangzhou Xu. 2020. BusTr: Predicting Bus Travel Times from
Real-Time Traffic. In 26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3394486.3403376

1 INTRODUCTION
We present BusTr, a real-time delay forecasting system for public
buses, which is used by Google Maps to expand the availability of
real-time data for transit users around the world [9].

Public transit systems are vital to human mobility in our rapidly
urbanizing world. World-wide, transit is the most common mode
for trips after walking [1]. Public transit investments and avail-
ability continue to grow, driven especially by the many societal
benefits of public transit over private transportation, from reduced
congestion [2], to environmental impacts [17, 24, 36], to social
impacts [7, 26].

A modern global-scale mapping and navigation service thus
needs to serve the needs of transit users. What are these needs?
Broadly, a transit user wants to know (1) what the transit system
is supposed to do: the system’s routes, stops, and schedules, and (2)
what the transit system is doing right now: the current locations
and delays of the transit trips, which often deviate significantly
from published schedules [40]. Of these two modalities, the real-
time state is disproportionately important for the routine trips
that dominate most people’s transportation needs. Most transit
users know by heart the routes connecting their home, work, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’20, August 23–27, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7998-4/20/08.
https://doi.org/10.1145/3394486.3403376

other frequent destinations, but they have a well-established need
for information about real-time changes. Transit variability is a
source of rider anxiety and a barrier to increasing ridership [4, 5,
10, 34, 39, 42], and users place significant value on commute time
reliability [21].

Google Maps and other public transit apps are typically built
on transit data distributed via the GTFS protocol [13] for static
data, and its GTFS-Realtime extension [12] for real-time tracking
of public transit vehicle locations and delays. Ideally, every public
transit agency would instrument its vehicles with networked real-
time tracking hardware and provide a fresh, precise, and open feed
of the location data. Anecdotally, many agencies are interested
in such a system, but, as of 2020, the vast majority of the world’s
GTFS feeds with static transit data do not yet come with a matching
real-time feed, due to a variety of operational constraints on the
transit agencies’ capabilities. Furthermore, even if an agency is
able to reliably maintain tracking devices on its entire vehicle fleet,
generating a useful real-time transit data feed requires live labeling
of vehicles with transit metadata (via algorithmic approaches [25],
integration with dispatching solutions, or labor-intensive operator
input). Any given agency can certainly overcome these barriers
with a sufficient investment of capital and operating expenses, but
here we aim for a solution to meet the needs of a global-scale transit
tracking product.

An alternative to agency-driven solutions is to crowd-source the
real-time location of transit vehicles [33], but this is infeasible to do
with global-scale coverage while still fully protecting user privacy:
plenty of transit trips will have too few users providing vehicle
location data. Other crowd-sensing options hinge on activity recog-
nition on mobile devices: inferring from a device’s sensors what
type of vehicle it’s being transported on in real time. Distinguishing
buses from other road vehicles via on-device sensors with usably
high quality remains an open research question [14].

1.1 Our approach: BusTr
With BusTr, we pursue a different approach: we infer bus delays
from a combination of real-time road traffic forecasts and contex-
tual information about the transit and road systems learned from
historical data. This focuses our attention on transit affected by
road traffic: buses, rather than trains and subways.

Note that we specifically use real-time traffic to estimate delays,
or estimated travel times (ETTs) between pairs of stops. A transit
user typically seeks two figures in real-time: the ETD, estimated
time of departure from their source stop, and the ETA, estimated
time of arrival to their destination stop, where ETA = ETD + ETT.

https://doi.org/10.1145/3394486.3403376
https://doi.org/10.1145/3394486.3403376


In the common case of journeys where bus headways, gaps between
consecutive buses on the same line, are much shorter than typical
trip times, we expect that ETTs dominate the user’s information
need. Estimating absolute ETDs and ETAs is infeasible without
directly tracking the bus in real time, especially without optimistic
assumptions about on-schedule departures from the stop of origin.

Road traffic forecasts are obtained from crowd-sensed data, a
well-studied approach [37]. In our deployment, the road traffic fore-
casts come from Google Maps. Buses are not cars, though. Due to
stops, schedule constraints, bus-specific road rules, and other dy-
namics of bus movement, bus delays are substantially different from
car delays on the same roads [23]. BusTr combines real-time road
traffic forecasts with contextual information about the transit sys-
tem learned from historical data and the static features of the transit
system, yielding 2.7× overall error reduction over the baseline of
using off-the-shelf road traffic forecasts directly (Sec. 6.1).

To learn such a model, we need labeled examples of bus trips
labeled with the incurred delays, combined with historical data
about traffic on relevant roads. To learn about the peculiarities
of local transit systems, road networks, and human movement
dynamics, we need the training data to have as high coverage
as possible in terms of space and time. In practice, such data is
necessarily sparser and more heterogeneous than ideal, and can
come from a mix of different sources, such as after-the-fact bus
data provided by public transit agencies, user-contributed labels,
road loop detectors, etc. To allow as many different data sources
as possible, we optimize the system for training on a minimal set
of features and strong generalization to areas and transit features
never seen at training. For reproducibility, we focus our experiments
here on training data from transit systems that do provide real-
time transit data via GTFS-Realtime, but we heavily strip down
the training data format and data density to allow the system to
generalize to other settings, as detailed in Sec. 3.

The other features used by the model, detailed in Sec. 4 are
relatively spartan. While some prior work [19, 29] relies on detailed
metadata such as bus lane locations and turn lanes, we expect
that this data won’t be available with high coverage, quality, and
freshness at a global scale. Instead, we rely on our model to infer
local features of the transit and road networks on various scales
from the training data.

In Sec. 6, we measure the performance of BusTr on held-out data.
We focus on comparisons against simple baselines, and against a
state-of-the-art system described in [38]. We also demonstrate the
importance of the features of the model and the training protocol
with ablation tests, and show how our model generalizes to data
not seen at training time, to adjust to a changing world.

2 RELATEDWORK
There is some existing literature on predicting bus travel times
based on road traffic speeds, either measured using inductive loop
detectors or inferred from bus speeds. We review some of this work
here, then conclude by highlighting the differences between this
work and our own.

Salvo et al. [29] compare the performance of a multilayer percep-
tron (MLP) and a radial basis function (RBF) network in predicting
the average speed of a bus over a segment of road. They find that

the RBF performs better, but come to this conclusion by training
on a very small dataset (112 points) drawn from a single bus line;
generalization was tested by comparing against a second line. They
break the bus’s route into several segments and, for each, generate
several features: traffic flow and capacity, whether or not there
is a reserved bus lane, number of intersections with and without
traffic lights, number of bus stops, whether there is illegal parking
or free parking present, the number of inlets and outlets to the
segment, the number of pedestrian crossings, and whether or not
“commercial activities" are present. Details on the final network
structure are omitted. The paper does not describe how traffic data
was measured, only that it was provided by the Public Transport
Company of Palermo. On unseen data, their RBF had a MAPE of
9% and their MLP had a MAPE of 34%.

Mazloumi et al. [22] note that while previous approaches focus
on predicting average bus travel times, the variability in travel
time is often neglected. Accordingly, they train two fully-connected
neural networks—one to predict average time and the other its
variance—each with a single hidden layer on an 1,800 point dataset
for a four segment (five stop) route. Traffic variance is assumed to
be normal about the mean, though they note that there can be long
tails in delays. Training features include: traffic speed within each
segment, measured using inductive loop detectors and averaged
over a variable time window; schedule adherence (delay relative
to the timetable); and temporal variables (day of week, time of day,
month of year). They find that weather does not influence their
predictive accuracy, possibly due to the lower number of training
examples, so they omit this from their model. A neural networkwith
a single hidden layer is used. After training networks of various
sizes with Bayesian regularization, networks with 2–3 nodes turn
out to provide the best accuracy. They find that traffic information
adds little additional value beyond temporal variables alone.

Sun et al. [31] predict arrival times at various bus stops by calcu-
lating the delay versus a scheduled time. They distinguish between
cases where the predicted time of arrival is in the near versus far
future. Far future delays are found by dividing the data into seven
groups by day of week, then within each group using k-means to
cluster delay data according to the delay and the time of day to
produce between 2 and 5 clusters. For arrival times in the near
future, a two-stage Kalman filter is used. The first stage uses the
bus’s reported location to develop an estimate of its true position.
The second stage uses the position to estimate the delay of the bus
on its current segment. While the first stage of the filter is updated
on a per-bus basis, the second stage updates each segment using
information from possibly many buses whose routes overlap. In-
formation is drawn from GTFS static and real-time data as well as
historical bus timing data; using traffic flow is listed as future work.
The model was deployed in Nashville, TN, USA and reduced hour-
ahead arrival prediction errors by an average of 25% and 15-minute
errors by 47%.

Julio et al. [19] compare the performance of multi-layer percep-
trons, SVMs, and Bayes Nets on predicting bus travel speeds from
traffic conditions (the bus’s real-time location is used as a proxy
for traffic), finding that MLPs performed best. To do so, they dis-
cretize each bus’s trajectory into a space-time grid where each cell
represents about 400m distance and 15–30 minutes of time. It is
unclear whether these cells aggregate statistics from multiple bus



lines or only multiple buses on a single line. From this information
they extract eight potential features: real-time and historic speeds
for the incoming, current, and outgoing cell over the previous ten
minutes, historical speeds for the current cell at the moment to be
predicted, and a binary variable indicating whether the cell con-
tains a bus-only lane. Forward selection narrows the features to
only the real-time speeds of the downstream and current cell, as
well as the historic speed of the current cell. This information was
fed to an MLP with two hidden layers of size 6 and 5 (structure
obtained via trial-and-error). Predictive accuracy declined for times
with high congestion, so k-means was used to multiplex models
across possible traffic conditions. MAPE ranged from 14–22%.

Dhivyabharathi et al. [8] use real-time bus location informa-
tion as a proxy for traffic with the aim of predicting travel times
over each segment of a trip. They note that their data has a log-
normal distribution and build two predictors around this: a seasonal
AR model with possibly non-stationary effects and a linear non-
stationary AR model. The seasonal model performs better with a
MAPE of 17–19%, as tested on a single bus route. They compare
this against an MLP of unspecified structure, trained on the travel
times of recent trips through a segment, with a MAPE of 20–24% on
the same route. Notably, the MLP has less feature diversity than in
other works and is trained with Levenberg–Marquardt back propa-
gation rather than the Bayesian regularization approach preferred
by other authors.

Jeong and Rilett [18] and Zheng et al. [43] also use bus location
traces as a proxy for traffic data when modelling bus travel times.

The DeepTTE system presented in Wang et al. [38] predicts tran-
sit times between locations. Their deep neural model first converts
raw latitude-longitude pairs from GPS trackers to 16-dimensional
vectors. A convolution is run across each time series and the results
concatenated with embedded metadata features (such as the day
of the week and the weather). This is then passed through a two-
high stacked LSTM. Two things now happen. (1) The LSTM time
series outputs are passed through densely connected layers to give
per-segment timing predictions. (2) The LSTM time series outputs
are combined with the metadata again in an attention layer. The
result is again concatenated and passed through a series of residual
fully-connected layers to give a prediction for the travel time across
all segments. The per-segment and overall predictions are jointly
used to train the model for which they report a MAPE of 11.89% in
Chengdu and 10.92% in Beijing. In Sec. 6.2 we use this model as a
baseline for its state-of-the-art performance and its deep network
structure, comparably modern to BusTr.

Including the broader literature of predicting bus arrival times,
non-neural methods are the dominant approach and perform well
[27], but shallow perceptrons of only 1–3 layers show similar or
better performance while potentially providing superior general-
ization versus deeper nets [6, 22]. Despite this, more recent work
has shown good performance with deep nets [15, 35], recurrent
nets [16], and attention (MAPE 14.8%) [32]. Several authors have
found it advantageous to cluster historical travel information and
use this as part of a multiplexed prediction approach [19, 31, 41].
This may offer advantages over MLPs because MLPs may have
difficulty accounting for disruptions or out-of-band events [27].
Reich et al. [27] note that the lack of standard benchmarks and
open source code make inter-comparison difficult.

Our approach differs from previous work in several key
respects. (a) Our model is developed with generalization in mind.
Our model should provide reasonable estimates of traffic-bus re-
lations both for new routes in cities for which we have training
data, as well as for cities in which we have no training data. The
existing literature (with the exception of [29]) focuses on improving
predictions for known bus routes without regard to generalization.
(b) Our model uses a restricted feature set. Salvo et al. [29] notes
that features noting “bus only" lanes, commercial activities, and
illegal parking all add significant predictive power to their model;
however, acquiring such information globally is difficult. Instead,
the spatial elements of our model allow it to infer the existence of
these features when they are present by learning both local and
regional characteristics of the space a bus route passes through.
(c) Our model is trained with a much larger amount of data. While
previous authors have performed their analysis around single bus
routes, we consider our model’s performance on a planet-scale
dataset. This allows us to avoid having to incorporate strong priors
such as log-normality [8]. (d) Our model makes inferences from
real-time traffic data. Previous work used real-time bus locations
as a proxy for traffic information, thus limiting generalization, or
traffic loop sensors, which are sparse and usually confined to major
roadways.

3 DATASETS
To forecast a travel time, BusTr needs two points on a bus route to
delimit the trip; road traffic speed info for the relevant streets and
times; and contextual data for the trip: the identity of the bus route,
the roads involved, and time-of-week.

At training time, we need golden data: a clean, validated, inte-
grated dataset with durations of specific bus trip segments, aligned
with road traffic speeds at the relevant time. Here, we focus on
training on data provided by GTFS-Realtime feeds via “Vehicle
Position” reports, which specify the live locations of transit vehi-
cles. Inference in this setting can actually add a delay forecast to
a fresh Vehicle Position to provide an absolute ETA estimate, but
this is not our primary focus. Instead, we aim to build and evaluate
a model that can estimate delays for bus lines where there is no
GTFS-realtime data, just a sporadic flow of offline observations of
bus timings from a variety of sources, which will likely not have full
coverage of bus lines, roads, and/or timings, and may also substan-
tially vary in frequency, regularity, and precision of bus location
observations.

To work in such a setting, we first represent our input data as
training examples that are just pairs of timed trip endpoints, with-
out finer-grained information on the timing at points in-between.
Similarly to text mining, we shingle an input trajectory, here a se-
quence of GTFS-RT vehicle positions, into possibly-overlapping
examples with several heuristic constraints:

• We avoid shingle endpoints at or near stops. Although user
queries will typically pertain to bus delays between pairs
of stops, there is extra uncertainty inherent in a vehicle
position reported at a stop: we cannot tell whether the bus
just arrived at the stop or is just departing. These two states
represent a noticeable difference in a bus’s progress through
a trip. Since vehicle positions may be reported imprecisely,



we also exclude reports that are near to a stop. Instead, we
use vehicle positions reported at other points along the bus
trip polyline, which various data sources including GTFS
will often have.

• For each input bus trajectory, we sample a minimum shingle
length uniformly from [1, 5] km, and pick shingles of at
least this length. This approximates a common range of
user trip lengths, avoids shingles that are short enough that
their observed duration is likely subsumed by noise in the
endpoint location, and, by sampling from awide range, forces
the model to not overfit on typical shingle length.

• The start times of shingles extracted from the same input
trajectory are spaced at least 30 seconds apart, to limit data
redundancy from very densely reported trajectories

• We remove outlier shingles during which a gap between
consecutive trajectory reports exceeded corpus-specific val-
ues (5min or 3 km). Shingles with unlikely reported average
speeds (outside [0.7, 140] km/h) are also excluded.

Our shingling intentionally does not attempt to resample or
interpolate between the points in raw location reports because we
expect relevant bus motion to be non-uniform, especially when a
pair of location reports spans a stop, a long red light, or a localized
traffic snarl.

Shingling can confound simple protocols for holding out data,
since adjacent shingles from one trajectory are not independent. In
our experiments, we separate training, validation, and test sets by
calendar weeks, using a separate 7-day span of data for each. This
also gives us a way to measure generalization of the model as the
world evolves over time, addressed further in Sec. 6.4.

Road traffic forecasts are obtained from Google Maps, on a per
road segment basis. A single road segment is, roughly, a stretch of
road between two adjacent turns. Since we train offline, we train
using the traffic speed estimates that were available at the time the
bus traversed a segment, estimated by the underlying road traffic
system from the best available combination of aggregate real-time
data and historical inferences. At inference time, the model can rely
on the underlying system to provide forward forecasts of traffic per
road segment, with the expectation that training on "cleaner" data
without forecasting errors will not bias the model.

4 MODEL
The job of the model is to predict how long a bus will take to travel
along a given interval of its route, based on traffic conditions and
the current time.

The model separately predicts the time taken to traverse each
road segment and service each stop, both denoted 𝑡𝑞 where 𝑞 is a
road segment or stop. These predictions are summed to produce a
prediction 𝑇 of the total trip duration 𝑇 as the final output:

𝑇 =
∑
𝑞∈𝑄

𝑡𝑞

where 𝑄 is the set of road segments and stops in the trip interval,
and 𝑡𝑞 is the model’s prediction of 𝑡𝑞 .

Figure 1: Model Overview. (a) An example trajectory in-
cluding several stops and segments. Note that segments are
shorter than the distance between two stops. (b) A depiction
of the model’s overall structure. Information about the tra-
jectory, as well as each stop and segment on the trajectory,
is used to produce independent estimates of the travel time
across each stop and segment. Finally, these estimates are
summed to estimate the travel time of the route as a whole.

4.1 Structure of an example
The structure of the model reflects the structure of the examples
given to the model, so we start by describing those. An example
consists of:

• A trip interval. Each example is built around an interval of a
bus trip. At inference time, this interval is typically between
an arbitrary pair of stops. At training time, the interval is
an arbitrary shingle with endpoints not aligned to stops, as
described in Sec. 3.

• A sequence of quanta constituting that interval. The trip in-
terval is divided into a sequence of road segments and stops,
hereafter “quanta”. For example, the trip interval shown in
Figure 1(a) becomes the following sequence: the blue start-
ing stop; three road segments (red, yellow, and green, each
a separate quantum); the next stop (white); and part of the
next road segment (gray).

• Traffic speeds and other per-quantum features. Each quantum
has an associated feature vector, described in Sec. 4.3.2.

• Full-trip context features. The trip as a whole has an associ-
ated feature vector, described in Sec. 4.2.

At training time, we require a prediction target: the time duration
𝑇 the bus took to traverse the trip interval.



Learning rate 𝜂 0.01, 0.03, 0.1, 0.3
Decay rate 𝛿 0.97 every 1000 steps
Hidden layer size 𝑘 16, 32
S2 cell levels 𝐿 [15, 12.5, 4.5]
Ablation rates 𝑝𝐿 [0.2, 0.1, 0.1]
𝐿1 regularizer base 𝑏 1.25
𝐿1 regularizer 𝛼 0.001, 0.01, 0.1, 1.0
Feature selection threshold 𝜀 0.1

Embedding dimensions:
Hour of day 𝑑ℎ 0, 2, 4
Day of week 𝑑𝑤 0, 2
Spatial 𝑑𝑠 0, 4, 8
Route 𝑑𝑟 0, 2, 4

Table 1: Model hyperparameters. Vizier was used to select
the red ones over the black ones where given; others were
set manually.

4.2 Full-trip context features
Each example carries two context features describing the sequence
as a whole:

• A 𝑑𝑟 -dimensional embedding of the bus route identifier. Con-
trary to GTFS practice, we use “route” to refer to the exact
ordered sequence of stops and the public route identity. So,
“bus 5 northbound”, “bus 5 southbound”, and “2am run of
bus 5 skipping stop X” are treated as three distinct routes.

• The time when the bus is at the start of the trip interval. In
training data, this is the observed time; at inference time,
this is typically the current wall time.

Similarly to DeepTTE [38], we represent time by discretizing
and embedding it, expecting to encourage our network to learn a
more nuanced representation of time than it would likely do so by
operating on numerical values alone. Time of week is discretized
to two values: a day of the week and a half-hour slice of the day.
These are embedded separately inR𝑑𝑤 andR𝑑ℎ , respectively. While
we initialize other embeddings randomly, we’ve observed that the
model eventually arranges times of day roughly in a contiguous
cycle in the target space. We shortcut this by initializing the first
two dimensions of the embedding to put the time on a circle, so that
the model immediately starts out with a notion of “similar” times
of day. In trials with 𝑑ℎ > 2, the other dimensions are initialized
with Gaussian noise.

Note that we consciously use time as a context feature rather than
a per-quantum feature. In our configuration, both training shingles
and user trips are typically so short that they rarely span meaning-
fully different times of day (e.g. “rush hour” vs “late evening”). In
ad hoc experiments, we did not see a measurable quality lift from
estimating a separate per-quantum “time as of traversal” feature.

We train on data on the scale of weeks, and thus do not attempt
to directly capture seasonality effects beyond what is captured by
the real-time traffic data implicitly.

4.3 Per-quantum features
Each quantum has associated features. Both stops and road seg-
ments get an embedding of the quantum’s location, described in

4.3.1 below. Stops get no other features. Road segments get two
more features, described in 4.3.2 below.

4.3.1 Representing locations. Each trajectory is a sequence of nar-
rowly defined locations: a stop or a road segment (typically shorter
than 100m). Yet, we aim to capture spatial variation in bus behavior
on many scales of locality, hoping to balance the model’s needs to
respond to both narrowly local phenomena such as bus pullouts or
bus lanes and regional phenomena like national traffic laws, with
the need to generalize well to specific locations not seen verbatim
in the training data.

For each quantum, we take a representative point — a road seg-
ment’s endpoint or a stop’s GTFS-reported point location — and
discretize it using cell identifiers from the S2 Geometry Library
(s2geometry.io), which provides a discrete global grid hierarchy
(see [3, 28] for a review of alternatives). We start with a “level
15” S2 cell, a roughly square quadrilateral of area about 0.08 km2.
We also go “up” the hierarchy to coarser cells containing that one.
We somewhat arbitrarily use “level 12.5” and “level 4.5” cells (i.e.
adjacent pairs of level 13 and 5 S2 cells). These quadrilaterals are
roughly 2 : 1 rectangles of area 2.5 km2 and 1.3 × 106 km2. These
three levels correspond, roughly, to a small neighborhood, a town,
and a metropolitan area. Each cell identifier is separately embedded
into R𝑑𝑠 , and these embeddings, for each quantum separately, are
combined together with an unweighted sum. This redundant repre-
sentation is regularized (see Secs. 5) to encourage the model to learn
heavier weights for the coarser cells where possible, with the more
numerous coarse cells only getting embedded with a substantial
norm when there’s a need to represent something more local.

Spatial representation is shared across stop and road features, in
hopes that some salient unobserved features such as crowdedness
patterns may contribute to both computations.

4.3.2 Additional features for road segments. For road segments, we
use the segment’s length as a feature. In cases where the stop or
trip interval endpoint lands in the middle of a segment, we use only
the length actually traversed.

We also obtain a road traffic speed estimate from Google Maps,
as described in Sec. 3. To get the forecast, we must first decide on a
target time for that forecast. Ideally, this would be the time at which
the bus will reach that road segment, but at inference time, we only
know the start time of the trip. To solve this, we estimate when the
bus will reach the segment by starting with the trip’s start time and
crudely extrapolating based on car travel time along previous legs.
For consistency, this method is used to retrieve historical traffic
speeds at training time, as well.

An alternative to car travel time would be to iteratively use
the model’s own predictions, but this would limit parallelizability
at inference time, and introduce additional model complexity. In
early ad hoc experiments, we did not observe substantial quality
gains from more sophisticated approaches to propagating absolute
timestamps through the sequence of quanta.

4.4 Model structure
The model consists of one unit for each quantum 𝑞 that makes up
the trip interval. Each unit produces a prediction 𝑡𝑞 of how long the
bus will spend traversing that segment or waiting at that stop. The



model outputs the sum 𝑇 =
∑
𝑞∈𝑄 𝑡𝑞 of these per-unit predictions

as an estimate of the overall trip duration, as shown in Figure 1(b).
Each unit in the model has a single fully-connected hidden layer

of width 𝑘 , with ReLU activation, with a single set of hidden layer
weights shared across all the units of both types.

4.4.1 Stop units. To predict time spent at a stop, the unit simply
connects the hidden layer to all context and per-quantum features,
and to a single output node responsible for the prediction.

4.4.2 Road segment units. For road segments, two of the features
are handled specially: the road traffic speed forecast 𝑠 and the
distance 𝑑 travelled on the segment. The hidden layer is connected
directly to all of the other context and per-quantum features, and
to two intermediate outputs 𝛼 and 𝛽 which are used as coefficients
in a sum:

Segment duration = 𝛼
𝑑

𝑠
+ 𝛽𝑑

(Here, 𝑑/𝑠 is an estimate of the time a car would take to traverse
the segment.) This formula effectively lets the unit learn a simple
linear mixture of “car-dependent” and “car-independent” impacts
on the time taken to traverse the segment.

4.4.3 Post-processing. The duration produced by each unit is fur-
ther clipped, by replacing negative durations with 0. The model’s
output for the example is the sum of the clipped per-unit values.

4.4.4 Summary. For a stop 𝑞, the time estimate is computed as

𝑡𝑞 = ReLU
(
𝑊2 ReLU

(
𝑊1

(
ℓ𝑞
𝑐

)))
where𝑊2 are the weights connecting the output to the hidden
layer, 𝑊1 is the matrix of weights connecting the hidden layer
to the location embedding, ℓ𝑞 is the location embedding, 𝑐 is the
concatenated full-trip context features, and ReLU(𝑥) = max{0, 𝑥}.

For a road segment 𝑞, the time estimate is computed as

𝑡𝑞 =ReLU(𝛼𝑞𝑑𝑞/𝑠𝑞 + 𝛽𝑞𝑑𝑞)(
𝛼𝑞
𝛽𝑞

)
=𝑊2 ReLU

(
𝑊1

(
ℓ𝑞
𝑐

))
5 TRAINING
5.1 Spatial input ablation
To push the model to generalize better without losing training data
coverage, we simulate novelty in training data by spatial input abla-
tion, i.e. by removing fine-grained spatial and route features. For
each training example, we pick an ablation level L: “remove route
id and spatial cell features at level 𝐿 and finer for all quanta” with
probability 𝑝𝐿 for each 𝐿, otherwise “keep all features”. This allows
the model to experience seeing examples that are “far from what
I know about”, for various degrees of “far”. This is applied to the
whole trajectory to avoid leaking spatial information across quanta.
On the other hand, for another example on the same route or in
the same area, the spatial input ablation policy is sampled indepen-
dently, so the model can still find a good embedding for the local
features. We intend for this to push the larger spatial embedding
weights “up” the spatial hierarchy unless there’s something special
about the fine-grained location.

Steps Test MAPE (stdev) p-value
25K 13.886 (0.084) 𝑝 ≪ 10−10
50K 13.480 (0.065) 𝑝 ≪ 10−10
100K 13.240 (0.045) −
200K 13.337 (0.063) 𝑝 < 8 × 10−6
400K 13.377 (0.087) 𝑝 < 9 × 10−7

Table 2: Test MAPE by training step count and p-value for
100K being optimal, with one tailed t-test with 4× Bonfer-
roni correction

5.2 Feature selection
In an additional effort to move the spatial embedding weights “up”
to coarser cells, we train the model twice. In the first pass, we apply
an 𝐿1 regularizer to the average embedding in each layer, weighted
with 𝛼𝑏𝐿 , where 𝛼 and 𝑏 are hyperparameters we tune for and 𝐿

is the S2 cell level (per Table 1). The exponentially higher penalty
aims to get near-zero embeddings for most fine cells that don’t need
them. At the end of the first pass, we select only the spatial features
that got embeddings with norm above 𝜀 = 0.1, and then re-train
the model from scratch, with no 𝐿1 regularization, while discarding
any spatial features that were not selected in the first round.

This has the additional benefit of significant model size reduction.
In 20 trials, the size of the embedded vocabulary, dominated by
level-15 spatial cells, is shrunk by an average of 2.2× (𝜎 = 0.060).

5.3 Training protocol
We train our model using the Adam optimizer [20] with MSE loss,
using 100,000 training steps and 200 training examples per step.
We evaluate the model on 100,000 examples sampled from the
validation set every 500 training steps, and select the checkpoint
with the lowest MAPE on the validation set. We use Adam since
most of our model’s parameters are for embeddings of very sparse
features, which Adam is designed for.

5.4 Hyperparameter tuning
We tuned the model’s hyper-parameters with the results shown in
Table 1 using Vizier [11, 30] with 64 trials, at 100,000 training steps
each.

We further validated the 100K-step duration at Vizier’s reported
optimal parameters with 20 trials at 25K, 50K, 100K, 200K, and
400K steps. 100K-step training performed modestly, but statistically
significantly, better on MAPE over a held-out test set (Table 2).

6 EXPERIMENTS
We adopt per-shingle MAPE (mean absolute percentage error) as
the target metric. A review of the ETA prediction literature [27]
notes that inconsistencies in reporting standards prevent the inter-
comparison of approaches. MAPE, they report, is the most common
metric used by the studies reviewed (13 of 40 studies), and is thus
our choice here, too.

Except where otherwise stated, all the experiments train a model
20 times and evaluate its performance on 100,000 examples sampled
from the test data set. The test data comes from a week of calendar
data that is not used during training or validation.



We show themean and standard deviation of per-run test MAPEs.
Statistical significance of improvements are evaluated with one-
tailed t-tests, with the p-values shown.

6.1 Simple baselines
The zero-th order approximation to our problem is to just use
car traffic to estimate bus delays. Anecdotally, users of many bus
services without real-time data use car mapping services just like
this. This approach, tested on 20 trials of 100k examples each from
our test dataset produces mean MAPE 35.616 (stdev 0.060).

Another natural baseline is a linear regression of the trajectory-
scale features, without context, using just three per-trajectory nu-
merical features: number of stops, distance traversed, and car traffic
time estimates. With 20 trials of linear regression tested on disjoint
data slices from our training week, evaluated on 100k disjoint slices
of the test week, the per-trial mean MAPE is 22.944 (stdev 0.089).

The model’s inference latency was fast enough in absolute terms
that we did not rigorously compare computational performance
gaps against the compute performance of simpler models. In one
deployment, 90th percentile computation latency for a TensorFlow
implementation of BusTr over a natural query distribution required
per-query compute time below 38.1 msec, over 700× faster than
the typical 30-second reporting interval of GTFS-Realtime feeds.

6.2 Comparison against DeepTTE
As a state of the art baseline, we implemented DeepTTE [38] to
run in our setting using our full set of features. We made two ad-
justments. First, we omitted the model components operating on
intra-trajectory points, since we expect those to not be available
in our setting. Second, for a fair comparison, we tuned hyperpa-
rameters for both DeepTTE and BusTr with Vizier using 10K steps
of training for each, since training DeepTTE, a substantially more
complex model, for 100K steps proved prohibitively slow.

For our model, the Vizier-optimized parameters at 10K steps
only differed from Table 1 by changing the learning rate settings
to 𝜂 = 0.03 and 𝛿 = 0.9. For DeepTTE’s contextual features, we
used time of day, route ID, and spatial features at the same three S2
levels as BusTr. Vizier chose embedding dimensions of 2 for time,
2 for route ID, and 4 for each spatial level separately. Vizier gave
𝑘 = 5 filter kernel size; 𝑐 = 32 for the geo-conv layer size; 128 as
the LSTM size; and set the learning rate at 0.01.

We then evaluated both models on 20 independent training runs
using the final model at step 10K on one week of data, and tested
the performance on a held-out week of data. In addition to signifi-
cantly slower training, we observed that DeepTTE, under the same
conditions produces both significantly lower MAPE on average,
and substantially worse convergence: in 37% of trials, DeepTTE
MAPEs never converged, staying significantly above 40% (Fig. 2).
The mean MAPE performance of DeepTTE was statistically signifi-
cantly worse than BusTr (Table 3), even if we manually discarded
the runs that did not converge as outliers.

6.3 Feature ablation
We now consider ablating several of the model’s features one at a
time to evaluate their contribution to the model’s performance, as
summarized in Table 4.

Figure 2: MAPEs for BusTr vs DeepTTE from 20 training tri-
als.

Test MAPE (stdev) p-value
BusTr 15.164 (0.143) −
DeepTTE 31.466 (14.368) 𝑝 < 8 × 10−6
DeepTTE (excluding
MAPEs above 40%) 21.242 (4.200) 𝑝 < 3 × 10−7

Table 3: BusTr vs DeepTTE, tuned for 10K-step training. We
substantially outperform DeepTTE, even if we discard the
runs where DeepTTE MAPEs don’t converge. One-tailed t-
test p-values are for losses compared to BusTr.

Variant Test MAPE (stdev) p-value
Full model 13.240 (0.045) −
Road traffic ablated 15.443 (0.139) 𝑝 ≪ 10−10
Route IDs ablated 13.602 (0.064) 𝑝 ≪ 10−10

Route IDs and level-15
cells ablated

14.923 (0.074) 𝑝 ≪ 10−10

Route IDs and all spatial
cells ablated

22.190 (0.116) 𝑝 ≪ 10−10

Time of week ablated 13.865 (0.062) 𝑝 ≪ 10−10
Numerical signals as
generic hidden inputs 13.459 (0.107) 𝑝 < 4 × 10−10

Table 4: Feature ablations, with one-tailed t-test p-values for
losses compared to the full model, over 𝑛 = 20 runs

Wefirst evaluate the importance of real-time data for the forecasts.
With traffic data absent, the model remains free to make predictions
informed by the current time and the location of the trip, but is
capturing nothing about what makes today’s behavior any different
from historical data. This degrades the model’s MAPE by +16%.

We next consider fine-grained spatial features. We disable the
route ID embedding — is the fine spatial location of the trajectory
sufficient without knowing which of the several bus routes running
through the area is being queried? The MAPE here degrades by
+3%. We conjecture the modest loss is likely due to the few places
where different bus routes are timed substantially differently, such
as with asymmetric bus lanes, or express and local buses operating
differently on the same road segments. Ablating spatial information
further, to remove both the route ID and the finest (level 15) spa-
tial cell, degrades the performance further, by +13%, reflecting the
importance of local structure to the model. Once we ablate route
IDs and spatial information entirely, thus removing geographical
context even at the metro and country level, the errors skyrocket by
+69%. Even with all the spatial features dropped, we still perform



statistically significantly (𝑝 ≪ 10−10) above the linear baseline in
Sec. 6.1, but by a much thinner margin, just 4%.

Adding back all the spatial information and ablating time signals
(hour of day and day of week), we incur a +5%MAPE loss versus
the full model. Note that hour of week also figures into both the
observed real-time traffic, and into historical inferences made by
the underlying road traffic forecaster, so this likely underestimates
the true impact of temporal context.

Lastly, we consider the possibility of undoing the final linear
layer in the model’s architecture, instead allowing the model to
learn a more arbitrary function of the observed speed and distance
features, which also produces a small but statistically significant
MAPE loss (+2%).

6.4 Generalization
Several of the features of our model and training protocol are espe-
cially designed to promote generalization. It turns out that remov-
ing these features actually produces modest quality improvements
compared to the full model when tested in our default set up.

To measure the trade-off behind generalization features, we use a
natural experiment: testing on data describing routes and locations
that appeared in our GTFS data over a 2-month period and weren’t
available at training time. In particular, we compare results from
testing on three distinct test datasets:

(1) “1 week away - full”: A full test week of held-out data from
trips during a time window 1 week away from the training
data, as in Sec. 6.3 above.

(2) A held-out test week 9 weeks away from training data, re-
stricted to:

(a) “New routes over 9 weeks” - Trip shingles on route IDs
that were never seen at training time.

(b) “New areas over 9 weeks” - Trip shingles that at least once
pass through a level-12.5 S2 cell that was never seen at
training time.

The “new route ID” case can capture new bus routes created in
the world, changes to which stops a route visits, and new GTFS feed
providers. The “new L=12.5 cell” case is likelier to capture whole
neighborhoods that weren’t previously served by buses, or weren’t
described with a GTFS feed available to us.

In these settings, we test ablating these generalization-oriented
features:

• Removing feature selection, to instead train with a single
100K-step round with no spatial regularization.

• Disabling spatial input ablation (SIA) at training time
• Disabling coarse S2 cells, leaving only level-15 features
• Disabling both spatial input ablation and S2 cells coarser
than level 15 in the spatial hierarchy

The last “double” feature ablation accounts for the fact that just
removing coarse cells makes spatial input ablation a much weaker
proposition, since in the ablated examples, this would leave the
model with no spatial context at all. Interestingly, the generalization
losses are milder here than either feature in isolation, which we
find unexpected.

Table 5 summarizes the generalization experiments. We believe
that foregoing the minor quality wins seen in the “1 week away”

full test is worthwhile given the substantial generalization gains
on novel data in both the “new route” and “new area” test sets.

By focusing on real changes to the ecosystem over 2 months, we
provide a measurement of practically-relevant generalization. An
alternative experiment would be to instead use a synthetic model
for holding out test data to simulate novelty. For instance, we can
try applying spatial input ablation to the test data as well. Unsur-
prisingly, this gives an advantage to a model that’s also trained
with spatial input ablation: 4% improvement in MAPE, statistically
significant at 𝑝 ≪ 10−10. However, this may well just speak to the
synthetic assumptions made during training being better aligned to
the synthetic assumptions during test, so we do not consider this as
a separate strong argument to support our model’s generalization.

7 CONCLUSION
We have described a new model, BusTr, for predicting how long
it will take public transit buses to travel between points on their
routes based on contextual features such as location and time as well
as estimates of current traffic conditions. Our model demonstrates
excellent generalization to test data that differs both spatially and
temporally from the training examples we use, allowing our model
to cope gracefully with the ever-changing world.

Our model outperforms not only simple predictors, but also
DeepTTE, the previous state of the art. This is remarkable given
the relative simplicity of our design. Our work shows that judicious
feature selection and design choices, coupledwith sufficient training
data, can give superior results, in terms of both prediction accuracy
and training cost, versus more complex designs.

Uncertainty regarding transit times for public transit buses is a
barrier to increasing transit ridership; our work is another step in
the direction of reducing this uncertainty.

ACKNOWLEDGEMENTS
The authors thank Cayden Meyer for directing us toward this
problem space; Da-Cheng Juan for his ML modeling insights; and
Neha Arora, Anthony Bertuca, Matt Deeds, Julian Gibbons, Reuben
Kan, Ivan Kuznetsov, Oliver Lange, David Lattimore, Thierry Le
Boulengé, Ramesh Nagarajan, Marc Nunkesser, Anatoli Plotnikov,
Ivan Volosyuk, and the greater Google Transit and Road Traffic
teams for support, helpful discussions, and assistance with bringing
this system to the world at large. We are also indebted to our part-
ner agencies for providing the GTFS transit data feeds the system
is trained on.

REFERENCES
[1] Anne Aguiléra and Jean Grébert. Passenger transport mode share in cities:

exploration of actual and future trends with a worldwide survey. International
Journal of Automotive Technology and Management, 14(3-4):203–216, 2014.

[2] Michael L Anderson. Subways, strikes, and slowdowns: The impacts of public
transit on traffic congestion. American Economic Review, 104(9):2763–96, 2014.

[3] Richard Barnes. Optimal orientations of discrete global grids and the poles of
inaccessibility. International Journal of Digital Earth, 0(0):1–14, 2019.

[4] Candace Brakewood, Sean Barbeau, and Kari Watkins. An experiment evaluating
the impacts of real-time transit information on bus riders in Tampa, Florida.
Transportation Research Part A: Policy and Practice, 69:409–422, 2014.

[5] Sandip Chakrabarti and Genevieve Giuliano. Does service reliability determine
transit patronage? insights from the Los Angeles Metro bus system. Transport
Policy, 42:12 – 20, 2015. ISSN 0967-070X. URL http://www.sciencedirect.com/
science/article/pii/S0967070X15300068.

http://www.sciencedirect.com/science/article/pii/S0967070X15300068
http://www.sciencedirect.com/science/article/pii/S0967070X15300068


Model 1 week away - full New routes over 9 weeks New areas over 9 weeks
Full model 13.240 (0.045) − 15.495 (0.103) − 19.581 (0.352) −
No feature selection 13.167 (0.058) ∗ 16.074 (0.197) 𝑝 ≪ 10−10 22.667 (0.549) 𝑝 ≪ 10−10
No SIA 13.140 (0.048) ∗ 15.997 (0.224) 𝑝 < 10−10 21.810 (0.846) 𝑝 ≪ 10−10
No coarse cells 13.258 (0.078) 𝑝 > 0.2 16.685 (0.317) 𝑝 ≪ 10−10 23.604 (0.551) 𝑝 ≪ 10−10
No SIA, no coarse cells 13.052 (0.061) ∗ 15.632 (0.227) 𝑝 < 0.011 21.511 (1.220) 𝑝 < 4 × 10−8

Table 5: Effect of generalization features on test data soon after training, and on novel data over 9-week span. Test MAPE with
standard deviation in parentheses. One-tailed t-test p-values given where the full model’s mean improves over the ablation
(n=20 trials); ∗ - trials where the system under test outperformed the full model.

[6] Mei Chen, Jason Yaw, Steven I. Chien, and Xiaobo Liu. Using automatic passenger
counter data in bus arrival time prediction. Journal of Advanced Transportation,
41(3):267–283, 2007. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.
5670410304.

[7] Raj Chetty and Nathaniel Hendren. The impacts of neighborhoods on inter-
generational mobility I: Childhood exposure effects. The Quarterly Journal of
Economics, 133(3):1107–1162, 2018.

[8] B. Dhivyabharathi, B. Anil Kumar, Avinash Achar, and Lelitha Vanajakshi. Bus
travel time prediction: A lognormal auto-regressive (AR) modeling approach.
arXiv: 1904.03444, 2019.

[9] Alex Fabrikant. Predicting bus delays with machine learning. Google AI
Blog, 2019. URL https://ai.googleblog.com/2019/06/predicting-bus-delays-with-
machine.html.

[10] Brian Ferris, Kari Watkins, and Alan Borning. OneBusAway: results from provid-
ing real-time arrival information for public transit. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1807–1816. ACM,
2010.

[11] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D. Sculley. Google Vizier: A Service for Black-Box Optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’17, pages 1487–1495, Halifax, NS, Canada,
2017. ACM Press. ISBN 978-1-4503-4887-4.

[12] GTFS. GTFS Realtime Specification. https://developers.google.com/transit/gtfs-
realtime/reference/, 2020.

[13] GTFS. GTFS static overview. https://developers.google.com/transit/gtfs, 2020.
[14] M. Amac Guvensan, Burak Dusun, Baris Can, and H. Irem Turkmen. A novel

segment-based approach for improving classification performance of transport
mode detection. Sensors, 18(1), 2018.

[15] Cristina Heghedus. PhD Forum: Forecasting Public Transit Using Neural Network
Models. In 2017 IEEE International Conference on Smart Computing (SMARTCOMP),
pages 1–2, Hong Kong, China, May 2017. IEEE. ISBN 978-1-5090-6517-2.

[16] Cristina Heghedus, Antorweep Chakravorty, and Chunming Rong. Neural Net-
work Frameworks. Comparison on Public Transportation Prediction. In 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 842–849, Rio de Janeiro, Brazil, May 2019. IEEE. ISBN 978-1-72813-510-6.

[17] IPCC. Climate Change 2014: Mitigation of Climate Change. Cambridge University
Press, 2014. ISBN 978-1-107-05821-7.

[18] Ranhee Jeong and R Rilett. Bus arrival time prediction using artificial neural
networkmodel. In Proceedings. The 7th International IEEE Conference on Intelligent
Transportation Systems (IEEE Cat. No. 04TH8749), pages 988–993. IEEE, 2004.

[19] Nikolas Julio, Ricardo Giesen, and Pedro Lizana. Real-time prediction of bus
travel speeds using traffic shockwaves and machine learning algorithms. Research
in Transportation Economics, 59:250 – 257, 2016. ISSN 0739-8859. Competition
and Ownership in Land Passenger Transport (selected papers from the Thredbo
14 conference).

[20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[21] Terence C. Lam and Kenneth A. Small. The value of time and reliability: measure-
ment from a value pricing experiment. Transportation Research Part E: Logistics
and Transportation Review, 37(2):231 – 251, 2001. ISSN 1366-5545. Advances in
the Valuation of Travel Time Savings.

[22] Ehsan Mazloumi, Geoff Rose, Graham Currie, and Majid Sarvi. An integrated
framework to predict bus travel time and its variability using traffic flow data.
Journal of Intelligent Transportation Systems, 15(2):75–90, 2011.

[23] Claire McKnight, Herbert Levinson, Kaan Ozbay, Camille Kamga, and Robert
Paaswell. Impact of traffic congestion on bus travel time in northern new jersey.
Transportation Research Record, 1884:27–35, 01 2004.

[24] Daniel L Mendoza, Martin P Buchert, and John C Lin. Modeling net effects of
transit operations on vehicle miles traveled, fuel consumption, carbon dioxide,
and criteria air pollutant emissions in a mid-size US metro area: findings from

Salt Lake City, UT. Environmental Research Communications, 1(9):091002, Sep
2019.

[25] Georg Osang, James Cook, Alex Fabrikant, and Marco Gruteser. Livetravel:
Real-time matching of transit vehicle trajectories to transit routes at scale. In
Proceedings of 2019 IEEE ITSC, pages 2244–2251, 2019.

[26] Rahul Pathak, Christopher K. Wyczalkowski, and Xi Huang. Public transit access
and the changing spatial distribution of poverty. Regional Science and Urban
Economics, 66:198 – 212, 2017. ISSN 0166-0462.

[27] Thilo Reich, Marcin Budka, Derek Robbins, and David Hulbert. Survey of ETA
prediction methods in public transport networks. arXiv: 1904.05037, 2019.

[28] Kevin Sahr, Denis White, and A. Jon Kimerling. Geodesic discrete global grid
systems. Cartography and Geographic Information Science, 30(2):121–134, 2003.

[29] G. Salvo, G. Amato, and Pietro Zito. Bus speed estimation by neural networks to
improve the automatic fleet management. European Transport, 37:93–104, 2007.

[30] Benjamin Solnik, Daniel Golovin, Greg Kochanski, John Elliot Karro, Subhodeep
Moitra, and D. Sculley. Bayesian optimization for a better dessert. In Proceedings
of the 2017 NIPS Workshop on Bayesian Optimization, December 9, 2017, Long
Beach, USA, 2017. The workshop is BayesOpt 2017 NIPS Workshop on Bayesian
Optimization December 9, 2017, Long Beach, USA.

[31] F. Sun, Y. Pan, J. White, and A. Dubey. Real-time and predictive analytics for
smart public transportation decision support system. In 2016 IEEE International
Conference on Smart Computing (SMARTCOMP), May 2016.

[32] Yidan Sun, Guiyuan Jiang, Siew-Kei Lam, Shicheng Chen, and Peilan He. Bus
Travel Speed Prediction using Attention Network of Heterogeneous Correlation
Features. In Proceedings of ICDM. Society for Industrial and Applied Mathematics,
May 2019. ISBN 978-1-61197-567-3. URL https://epubs.siam.org/doi/book/10.
1137/1.9781611975673.

[33] Transit App. "how we mapped the world’s weirdest streets", 2015. URL "https:
//medium.com/transit-app/hello-nairobi-cc27bb5a73b7".

[34] Transit Center. Who’s on board. Technical report, Transit Center,
2016. URL http://transitcenter.org/wp-content/uploads/2016/07/Whos-On-
Board-2016-7_12_2016.pdf.

[35] W. Treethidtaphat, W. Pattara-Atikom, and S. Khaimook. Bus arrival time predic-
tion at any distance of bus route using deep neural network model. In 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC), pages
988–992, Oct 2017.

[36] William Vincent and Lisa Callaghan Jerram. The potential for bus rapid transit
to reduce transportation-related 𝑐𝑜2 emissions. Journal of Public Transportation,
9(3):12, 2006.

[37] Jiafu Wan, Jianqi Liu, Zehui Shao, Athanasios V. Vasilakos, Muhammad Imran,
and Keliang Zhou. Mobile crowd sensing for traffic prediction in internet of
vehicles. Sensors (Basel), 16(1), 2016.

[38] DongWang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. When will you arrive?
Estimating travel time based on deep neural networks. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[39] Kari Edison Watkins, Brian Ferris, Alan Borning, G Scott Rutherford, and David
Layton. Where is my bus? impact of mobile real-time information on the per-
ceived and actual wait time of transit riders. Transportation Research Part A:
Policy and Practice, 45(8):839–848, 2011.

[40] Nate Wessel, Jeff Allen, and Steven Farber. Constructing a routable retrospective
transit timetable from a real-time vehicle location feed and GTFS. Journal of
Transport Geography, 62:92–97, 2017.

[41] Haitao Xu and Jing Ying. Bus arrival time prediction with real-time and historic
data. Cluster Computing, 20(4):3099–3106, December 2017. ISSN 1573-7543.

[42] Feng Zhang, Qing Shen, and Kelly J. Clifton. Examination of traveler responses
to real-time information about bus arrivals using panel data. Transportation
Research Record, 2082(1):107–115, 2008.

[43] Chang-Jiang Zheng, Yi-Hua Zhang, and Xue-Jun Feng. Improved iterative pre-
diction for multiple stop arrival time using a support vector machine. Transport,
27(2):158–164, 2012.

https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.5670410304
https://onlinelibrary.wiley.com/doi/abs/10.1002/atr.5670410304
https://ai.googleblog.com/2019/06/predicting-bus-delays-with-machine.html
https://ai.googleblog.com/2019/06/predicting-bus-delays-with-machine.html
https://developers.google.com/transit/gtfs-realtime/reference/
https://developers.google.com/transit/gtfs-realtime/reference/
https://developers.google.com/transit/gtfs
https://epubs.siam.org/doi/book/10.1137/1.9781611975673
https://epubs.siam.org/doi/book/10.1137/1.9781611975673
"https://medium.com/transit-app/hello-nairobi-cc27bb5a73b7"
"https://medium.com/transit-app/hello-nairobi-cc27bb5a73b7"
http://transitcenter.org/wp-content/uploads/2016/07/Whos-On-Board-2016-7_12_2016.pdf
http://transitcenter.org/wp-content/uploads/2016/07/Whos-On-Board-2016-7_12_2016.pdf

	Abstract
	1 Introduction
	1.1 Our approach: BusTr

	2 Related work
	3 Datasets
	4 Model
	4.1 Structure of an example
	4.2 Full-trip context features
	4.3 Per-quantum features
	4.4 Model structure

	5 Training
	5.1 Spatial input ablation
	5.2 Feature selection
	5.3 Training protocol
	5.4 Hyperparameter tuning

	6 Experiments
	6.1 Simple baselines
	6.2 Comparison against DeepTTE
	6.3 Feature ablation
	6.4 Generalization

	7 Conclusion
	References

