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Abstract

Adversarial robustness corresponds to the susceptibil-

ity of deep neural networks to imperceptible perturbations

made at test time. In the context of image tasks, many algo-

rithms have been proposed to make neural networks robust

to adversarial perturbations made to the input pixels. These

perturbations are typically measured in an ℓp norm. How-

ever, robustness often holds only for the specific attack used

for training. In this work we extend the above setting to con-

sider the problem of training of deep neural networks that

can be made simultaneously robust to perturbations applied

in multiple natural representations spaces. For the case of

image data, examples include the standard pixel represen-

tation as well as the representation in the discrete cosine

transform (DCT) basis. We design a theoretically sound

algorithm with formal guarantees for the above problem.

Furthermore, our guarantees also hold when the goal is to

require robustness with respect to multiple ℓp norm based

attacks. We then derive an efficient practical implementa-

tion and demonstrate the effectiveness of our approach on

standard datasets for image classification.1

1. Introduction

In recent years deep learning has enjoyed tremendous

success in solving a variety of machine learning tasks, even

achieving or surpassing human level performance in certain

cases [14, 15]. At the same time important vulnerabilities in

these systems have also been discovered. One such example

is their susceptibility to imperceptible perturbations made to

the input at test time [24]. This has led to the new paradigm

of adversarial machine learning, i.e., making deep neural

networks robust to test time perturbations. There has been

a flurry of recent works in this area with several proposed

defenses [18, 29, 6, 17] and methods to attack and evalu-

∗Equal contribution and corresponding authors.
1Code available at https://github.com/tensorflow/

neural-structured-learning/tree/master/research/

multi_representation_adversary.

ate these defenses [5, 3, 26]. When studying the design of

networks robust to adversarial attacks several aspects need

to be considered such as a) what perturbations can the ad-

versary apply to the input, and b) what information does

the adversary have about the neural network? One widely-

studied setting in the current literature is white box attacks

under ℓp norm perturbations [10, 18]. Here the adversary

has complete knowledge of the neural network and its pa-

rameters, and given an input x it can perturb it to x′ such

that ‖x− x′‖p ≤ ǫ for some p ≥ 1 specified apriori. In the

context of image data this corresponds to applying perturba-

tions to the input pixels. Current approaches for defending

against such attacks are based on studying variants of the

following robust objective:

min
θ

E(x,y)∼D

[

max
x′:‖x−x′‖p≤ǫ

L(fθ(x
′), y)

]

. (1)

Here (x, y) is an example and label pair drawn from the

data distribution, f is a neural network parameterized by

weights θ and L is a standard loss function such as the cross

entropy loss. As an example the popular projected gradient

descent (PGD) method [18] proposes to optimize the above

objective by alternately maximizing the inner objective via

gradient ascent and then performing the outer minimization

via gradient descent. The recent work of [22] combines the

above objective with Gaussian smoothing to achieve cer-

tified robustness guarantees, and another popular method

namely the TRADES algorithm [29] adds a regularization

term requiring the predictions of the network at x and x′ to

be close to each other.

In this work we aim to address two main limitations of

current approaches to adversarial machine learning. The

first concerns the choice of the representation in which the

adversary applies the perturbations. Using images as an ex-

ample, current approaches model the adversary as making

small magnitude changes in the pixel representation of the

image. However, given that the adversary has full access

to the input x, apriori there is no reason to restrict the per-

turbations to only the pixel representations. Real data such

as images have many other natural representations, such as

the discrete cosine transform (DCT) basis for images. One
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could envision an adversary making changes to the input

image in the DCT basis that are still imperceptible but don’t

satisfy the small ℓp norm property in the pixel basis. Empir-

ical attacks based on this have been shown to be successful

in recent works [4]. Hence it is important to consider adver-

sarial robustness in other representations for a model to be

truly robust. Secondly, current approaches fix a represen-

tation and the perturbation model, and design an algorithm

to achieve robustness for that specific setting. In general

such networks do not turn out to be robust to other types of

attacks. For example a network trained to be robust to ℓ∞
norm perturbations in the pixel representation may not be

robust to ℓ1 norm perturbations.

Ideally, one would like to train networks that can be si-

multaneously robust to multiple attack models in multiple

representation spaces. At the same time it is desirable to

have a scalable solution with training cost not that much

more than standard adversarial training in a fixed attack

model. This is precisely the problem that we solve in this

work. Our main contributions are listed below.

• We propose and motivate the problem of studying ro-

bustness to adversarial perturbations in multiple repre-

sentation spaces and under multiple attack models.

• We propose a min-max formulation of the above sce-

nario and use ideas from the theory of online learn-

ing, in particular the multiplicative weights update

method [13] to design an algorithm for our formula-

tion and provide theoretical guarantees to justify our

approach.

• We extend our theoretically principled algorithm to de-

sign a practical implementation that can scale to mul-

tiple representation spaces and multiple attack models

with training cost not significantly more than that of

standard adversarial training for a fixed attack model

and representation space. We demonstrate the effec-

tiveness of our algorithm for image classification tasks

on the MNIST [16] and the CIFAR-10 [14] datasets.

2. Related Work

There is a vast amount of literature on defenses and at-

tacks for adversarial robustness. See [26] for a survey. Here

we discuss the works most relevant to the results of the pa-

per. As mentioned in the introduction most existing de-

fenses for adversarial robustness design customized solu-

tion for a fixed attack model (ℓp norm) and representation

space (pixel basis). These methods are aimed at approxi-

mately solving the robust optimization objective in (1). The

FGSM method [10] solves the inner maximization prob-

lem via one step of a gradient ascent whereas the PGD

method [18] performs multiple iterations of gradient ascent

to better optimize the inner objective. Typically this scales

the cost of training linearly with the number of iterations

used in the inner maximization. There have been recent

works aimed at achieving the same performance as the PGD

method but with faster training time [23, 27].

The above approaches provide robustness to first order

attacks that are of the same type that are used in training.

There has also been a lot of recent work on provably certi-

fying the robustness of neural networks via approaches such

as interval bound propagation [11], semi-definite program-

ming [20], and randomized smoothing [6, 17].

Relatively little work exists on studying robustness to

multiple types of attacks simultaneously and in multiple

representation spaces. The recent work of [25] studies train-

ing classifiers that are simultaneously robust to perturba-

tions to the input pixels of different ℓp norms. However

they do not consider multiple representation spaces. Fur-

thermore, their approach does not come with theoretical

guarantees and scales linearly with the number of perturba-

tions considered. In contrast our algorithm comes with the-

oretical guarantees and has a training cost that is not much

more than that of adversarial training for a fixed attack. The

recent work of [4] motivates the problem of studying cer-

tified robustness in other representations such as the DCT

basis. However they do not consider training classifiers that

are simultaneously robust to multiple attack models.

3. Adversarial Robustness in Multiple Repre-

sentations

In this section we motivate the need for studying adver-

sarial robustness in representations other than the one that is

input to the network. Real world data can be represented in

many natural representations, each with their own appeal-

ing properties. For instance, in the context of images, the

DCT basis is a popular choice and it is well known that sig-

nals when represented in this basis are sparse. This has been

exploited in recent works [4] to achieve better robustness to

ℓ∞ perturbations in this representations.

In the context of adversarial learning a fundamental

question to ask is: what constitutes an imperceptible per-

turbation? Is it enough for an adversarially perturbed ex-

ample to have a small ℓp norm in the pixel representation?

As one can imagine, this is not a sufficient condition for

imperceptibility. Many works have notice that images and

their adversarial perturbations made in the pixel basis have

distinct spectral signatures when viewed in other bases such

as the discrete cosine transform (DCT). This has led to the

proposal of many learning systems for detecting pixel based

adversarial attacks using properties of images in other rep-

resentations [2, 28, 9]. In particular, the work of [19] shows

that one can achieve high accuracy in detecting adversarial

perturbations made in the pixel representation by training

a binary classifier to separate real and perturbed images.

Hence an adversary has to naturally think about attacking
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Figure 1. The figure shows examples of images from the CIFAR-10 dataset with their adversarially perturbed counterparts computed by

launching a PGD based attack in the DCT basis. The perturbed images, although imperceptible, are far from the original images in the

pixel basis in ℓ∞ norm.

the model in multiple representations simultaneously in or-

der to fool such systems.

Additionally, working in multiple representation spaces

can help an adversary craft stronger attacks. As an exam-

ple, the recent work of [4] provides examples where one

can generate imperceptible examples by perturbing the im-

age in the DCT basis and at the same time the perturbed ex-

amples are far way from the original image in the original

pixel basis. Such an attack can fool classifiers that are only

trained for defending against small norm ℓp attacks in the

pixel representation. We further illustrate this in Figure 1.

The figure shows examples of images from the CIFAR-10

dataset and corresponding adversarial perturbations com-

puted by launching a PGD based adversarial attack in the

DCT basis. For the case of CIFAR-10 it is generally ac-

cepted that ℓ∞ perturbations in the pixel basis upto a mag-

nitude of ǫ = 0.03 constitute imperceptible perturbations.

However, the adversarial images obtained in the Figure via

working in the DCT basis, while being imperceptible, have

much higher ℓ∞ distance from the true images in the pixel

representation.

From the above discussion we conclude that it is an im-

portant problem to design classifiers that are simultaneously

robust against adversarial attacks in multiple representation

spaces. Unfortunately, simply performing standard adver-

sarial training in a fixed space is not enough in order to

achieve this goal. As an example in Table 1 we show the

performance of two neural networks, one trained adversar-

ially in the pixel representation and the other in the DCT

representation. As can be seen the trained networks have

very poor robustness against the attacks that were not con-

sidered during training.

Test w/pixel

ℓ∞

Test w/DCT

ℓ∞

Nat. Acc.

Train

w/pixel ℓ∞

44.02

±1.02

27.30

±1.44

80.24

±0.40

Train

w/DCT ℓ∞

11.80

±0.68

51.92

±0.43

74.92

±0.61

Table 1. The rows of the table correspond to two classifiers that

have been adversarially trained via the PGD method for ℓ∞ ro-

bustness either in the pixel basis or the DCT basis. The first two

columns show the adversarial accuracies achieved by the classi-

fiers against ℓ∞ attacks in the pixel and the DCT basis. The last

column displays the natural accuracy. As can be seen no classifier

is simultaneously robust to both types of attacks.

As a result of the above observations what is needed is

a general algorithmic approach for such scenarios. We next

formulate and present such an approach.

4. Formulation and Algorithms

We next formulate the above scenario and design a near

optimal algorithm for simultaneously achieving robustness

across multiple representation spaces. We fix a canonical

representation (say the pixel basis) and denote x ∈ R
d as

examples and y being the label. We assume that the ex-
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ample and label pairs (x, y) are drawn from an unknown

joint distribution D. We then consider a given set of k
representation spaces with corresponding maps being given

by R1,R2, . . . ,Rk. Hence, given an example x ∈ R
d

its representation in space i is given by Ri(x) ∈ R
di . It

would be instructive to think of Ri as the DCT basis al-

though in general these maps could be non-linear. The

only assumption we require is that the maps be surjective,

i.e. R−1
i exists. We will overload notation and denote by

Ri both the ith representation and the map correspond-

ing to it. For each Ri and any x ∈ R
d, we denote by

Bi(x) the set of allowed perturbations to x in the represen-

tation space Ri. For example if we are modeling an ℓ∞
attack of radius ǫ in the representation Ri then we have

Bi(x) = {z ∈ R
di : ‖Ri(x) − z‖∞ ≤ ǫ}. In this work

we will be able to deal with very general perturbation sets.

Given a fixed representation space Ri, the problem of learn-

ing a robust classifier specific to Ri can be written as that

of minimizing:

min
θ

Li(θ) = E(x,y)∼D

[

max
z∈Bi(x)

L(fθ(R
−1
i (z)), y)

]

. (2)

Then given k representation spaces R1, . . . ,Rk our goal

is to solve the following:

min
θ

max
i

Li(θ). (3)

The above min-max formulation lends itself naturally

to techniques from online learning. In particular, consider

a two player game with the row player as the one that

chooses the network parameter θ and the column player as

the one that chooses the loss functions Li with the payoff

for the column player being Li(θ). From the minimax the-

orem [13] for two player games, we know that if for every

distribution over the k columns there exists a good solu-

tion θ, then there exists a distribution over solutions that

is simultaneously good for all the columns, i.e., the k loss

functions. This immediately provides a way to solve the

min-max formulation via solving a simple cost sensitive ad-

versarial optimization problem. Such techniques have been

widely used in the literature to solve a variety of constrained

problems in machine learning [1, 8]. Here we demonstrate

their applicability for adversarial robustness. There has also

been recent work on algorithms for solving optimization of

the form minθ maxλ∈Λ

∑

i λiLi(θ) [7] for Λ being a con-

vex set and functions Li being convex in θ. Our loss func-

tions are non-convex in θ and hence we need access to a

cost sensitive optimization oracle to provide overall guar-

antees for our formulation. We next define the adversarial

cost sensitive optimization problem.

Definition 4.1. Given weights w1, w2, . . . , wk with wi ≥
0 and non-negative losses L1, L2, . . . , Lk the adversarial

cost sensitive optimization corresponds to finding an ap-

proximately optimal solution θ̂ such that

k
∑

i=1

wiLi(θ̂) ≤ min
θ

k
∑

i=1

wiLi(θ) + δ. (4)

Here δ quantifies the additive error in approximating the

cost sensitive objective.

We will show how to convert an algorithm for solving

the adversarial cost sensitive optimization problem above

to provably optimize (3). The algorithm is based on the

popular multiplicative weights update method [13] and is

described in Figure 2. For the proposed algorithm we show

the following guarantee

Theorem 4.2. For a given set of non-negative losses

bounded in [0, R], if the adversarial cost sensitive optimiza-

tion in (4) can be solved to additive error δ for any setting of

non-negative weights then the algorithm in Figure 2 when

run with η = O(ǫ/R) and T = O(R
2 log k
ǫ2

) outputs a uni-

form distribution P over solutions θ1, θ2, . . . , θT such that

max
i

Eθ∼PLi(θ) ≤ min
θ

max
i

Li(θ) + ǫ+ δ. (5)

Furthermore if the loss function L in (2) is convex in its first

argument, such as the cross-entropy loss, squared loss and

hinge loss to name a few, then the average hypothesis f
θ̂

satisfies

max
i

Li(fθ̂) ≤ min
θ

max
i

Li(θ) + ǫ+ δ. (6)

Here Li(fθ̂) refers to the loss incurred by the ensembled

hypothesis as output by the algorithm in Figure 2.

The proof can be found in Appendix 8 in the supplemen-

tary material.

5. A Practical Implementation

While the algorithm in Figure 2 and the associated guar-

antee in Theorem 4.2 provide a principled way to approach

the optimization in (3), we need to make a number of mod-

ifications to the core algorithm in order to obtain a practi-

cal and scalable implementation. In particular, we do not

want the cost of training the robust classifiers to scale lin-

early with k the number of representation spaces. We first

discuss solving the adversarial cost sensitive optimization

in (4). In practice, each Li(θ) itself represents a hard op-

timization problem (of the form (2)). Luckily, there exists

first order algorithms such as the PGD method [18] to op-

timize each Li separately that work well in practice. We

now show how to combine them to solve (4). We follow

the methodology of stochastic optimization and proceed in

epochs. In each epoch, we sample a mini batch of B data
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Input: Training data {(x1, y1), . . . , (xm, ym)}, Scaling factor η.

1. Initialize wi = 1 for all i ∈ [k].

2. For t = 1 . . . , T do:

• Compute θt by approximately optimizing (4) with normalized

weights wi∑
k
j=1

wj
as inputs.

• For all i set wi = wi · e
ηLi(θt).

3. Output f
θ̂
= 1

T

∑T
t=1 fθt .

Figure 2. An algorithm achieving robustness simultaneously across representation spaces.

Input: Training data {(x1, y1), . . . , (xm, ym)}, Validation data {(xm+1, ym+1), . . . , (xm+s, ym+s)}, mini batch size B,

time steps T , update frequency r, window size h, Scaling factor η.

1. Initialize wi = 1 for all i ∈ [k].

2. For t = 1 . . . , T do:

• Repeat for r epochs:

– Get the next mini batch of size B. Sample loss Li with probability pi =
wi∑

k
j=1

wj
.

– Run the PGD based algorithm to optimize Li on the mini batch.

• For all i set wi = wi · e
ηLval

i (θt). Here Lval is the loss evaluated on the validation set.

3. Output θ̂ = 1
h

∑T
t=T−h+1 θt.

Figure 3. A scalable variant of the algorithm in Figure 2.

points, sample a loss Li with probability proportional to its

current wi and then run the corresponding PGD based algo-

rithm for optimizing Li on the current mini batch. After a

few epochs of optimization we update the weights wi of the

losses as described in the algorithm in Figure 2. In order to

evaluate the losses for the weight update we use a separate

validation set. This significantly reduces the variance in our

estimates.

Next we consider approximating the output f
θ̂
. Notice

that the guarantee of Theorem 4.2 applies to an ensemble of

T neural networks provided by parameters θ1, θ2, . . . , θT .

Maintaining this ensemble requires a high storage cost and

makes the final output model impractically big. We first no-

tice that if the losses Li were convex, then the guarantee of

Theorem 4.2 will also hold for the average parameter, i.e.,

θ̂ = 1
T

∑

t θt. To get a practical implementation we make

a near convexity assumption on the losses and simply take

the average of the model weights. Furthermore, in our ex-

periments we observe that taking the average of the last few

model parameters performs better than the uniform average

of all the model weights. Fixing these choices leads to a

scalable variant as shown in Figure 3.

6. Experimental Evaluation

We next demonstrate the effectiveness of our approach

on the task of learning a classifier for image classification

that is simultaneously robust to adversarial attacks in multi-

ple representations spaces.

Datasets. We perform the experimental evaluation on two

public datasets namely the MNIST dataset [16] and the

CIFAR-10 dataset [14]. The MNIST dataset consists of

60, 000 training images with each being a 28×28×1 tensor.

The CIFAR-10 dataset consists of 50, 000 training images

each of dimensionality 32× 32× 3. Both the datasets con-

sist of 10, 000 test images and correspond to a multi class

classification problem with 10 class labels. In each case we

reserve 10% of the training data to be used as the valida-

tion set in the Algorithm from Figure 3. This validation set

will be used to evaluate the loss Lval in the algorithms. In

the Appendix we also include experiments on the Tiny Im-

ageNet dataset [21].

Representation Spaces and Attack Models. To demon-

strate the scalability of our approach we consider two dif-
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ferent representation spaces namely the pixel basis and the

DCT basis. In each representation space we consider three

types of ℓp norm based attacks for p = 1, 2,∞. Hence, in

total we have 6 loss functions Li to optimize as in (3). All

our experiments are conducted on a ResNet-50 deep neural

network that is a popular architecture for training on image

classification tasks [12]. To compute adversarial examples

in the pixel basis for norm bounded ℓ∞ and ℓ2 perturbations

we use the standard PGD based attack as proposed in [18].

For computing a norm bounded ℓ1 perturbation we use the

sparse ascent algorithm namely the SLIDE method as pro-

posed in [25]. To compute an adversarial attack in the DCT

basis we append the ResNet-50 architecture with a linear

DCT transformation follows by an inverse DCT transfor-

mation as shown in Figure 4. Notice that both the DCT and

the Inverse DCT are fixed linear layers and in the absence

of any perturbations the output of the network in Figure 4 is

exactly the same as the original ResNet-50 network.

Using the modified architecture we first compute the

DCT representation of the image and then launch an adver-

sarial perturbation in the DCT basis using either the PGD

method (for ℓ2, ℓ∞ attacks) or the SLIDE method (for ℓ1 at-

tacks). In this way we get the perturbed image after taking

the inverse DCT transform of the perturbed example x′ as

shown in Figure 1. After computing the adversarial pertur-

bation and passing it through the inverse DCT transform we

clip the pixel values in [0, 1] to make the example a valid

input for the ResNet-50 network. We pick pixel and DCT

spaces as examples to demonstrate the effectiveness of our

algorithm. Our approach is general and can be applied to

other natural spaces. In the appendix we also include exper-

iments with other perturbations/spaces such as rotations.

Figure 4. The modified network architecture for computing an ad-

versarial perturbation in the DCT basis.

Baselines. We next describe the baselines that we use

when comparing our proposed approach. The problem of

being simultaneously robust to multiple adversarial attacks

has been largely ignored in the literature so far. The recent

work of [25] studies being robust in pixel basis to different

ℓp norm based attacks. However the proposed method is not

scalable to a large number of attacks.

We instead compare our proposed algorithm with follow-

ing two baseline heuristics. We choose these heuristics due

to their simplicity and more importantly due to their scal-

ability. Furthermore, the reader should also compare our

results to those in Table 1 that shows the results of training

a state-of-the-art model trained using the PGD [18] method

for a single representation space.

Round Robin. The round robin heuristic sketched in Fig-

ure 5 follows the same outline as the algorithm in Figure 3

except that instead of maintaining and updating weights, it

simply picks the loss function Li to apply to a mini batch in

a fixed order. It is easy to see that this method scales very

well.

Input: Training data {(x1, y1), . . . , (xm, ym)}.

Input: Mini batch size B, time steps T .

1. Initialize index = 1.

2. For t = 1 . . . , T do:

• Get the next mini batch of size B.

• Set i = index.

• Use PGD to optimize Li on the mini

batch to get θt.

• index = (index+ 1) mod k + 1.

3. Output θ̂ = θT .

Figure 5. The round robin heuristic.

Greedy. The greedy heuristic also follows the same outline

as the algorithm in Figure 3. However, for each time step it

chooses the loss with the worst error (on the validation set)

to apply next. See Figure 6.

Hyperparameter Configurations. Next we discuss the

hyperparameters we use when computing the adversarial

perturbations for the different ℓp norm based attacks. When

running our proposed algorithm in Figure 3 and the greedy

heuristic, we set T = 40, r = 5 for CIFAR-10 (200 epochs

total), and T = 20, r = 3 for MNIST (60 epochs total).

We train the round robin heuristic for the same number of

epochs.

For the case of ℓ∞ and ℓ2 attacks, during training we use

10 steps of gradient ascent to optimize the inner maximiza-

tion in (2). During evaluation we again run the PGD based

attack on our model across all the representation spaces and

use 40 steps of the PGD method to solve the inner maxi-
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Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)

Pixel (ℓ∞) 36.03± 6.69 29.99± 1.49 35.70± 6.36 39.13± 1.74

Pixel (ℓ2) 69.03± 1.58 71.92± 0.36 69.51± 2.21 71.27± 0.22

Pixel (ℓ1) 45.84± 2.85 53.45± 0.70 44.22± 4.79 46.90± 1.46

DCT (ℓ∞) 44.72± 8.60 45.63± 1.75 39.44± 6.76 42.27± 2.77

DCT (ℓ2) 68.99± 1.58 72.01± 0.28 69.66± 2.21 71.24± 0.12

DCT (ℓ1) 37.51± 6.78 41.44± 0.82 39.62± 5.71 42.96± 1.12

Min. Accuracy 34.62± 5.60 29.99± 1.49 35.70± 6.36 39.13± 1.74

Union Attack 31.95± 4.55 29.70± 1.42 33.17± 5.95 36.18± 1.89

Nat. Acc. 78.56± 1.46 81.80± 0.38 79.64± 0.51 80.66± 0.89

Table 2. Comparison of the adversarial accuracies achieved on the CIFAR-10 dataset.

Input: Training data {(x1, y1), . . . , (xm, ym)}.

Input: Validation data:

{(xm+1, ym+1), . . . , (xm+s, ym+s)}.

Input: Mini batch size B, time steps T , update

frequency r.

1. For t = 1 . . . , T do:

• Set i = argmaxj L
val
j .

• Repeat for r epochs:

– Get the next mini batch of size B.

– Use PGD to optimize Li on the

mini batch to get θt.

2. Output θ̂ = θT .

Figure 6. The greedy heuristic.

mization in (1). For the case of ℓ1 attacks we use 20 it-

erations of the SLIDE method during training to compute

adversarial perturbations and 100 iterations of the method

during evaluation. We experiment with both running the

PGD method with 20 random restarts, and a simpler attack

with no restarts. The experiments we report here are for the

latter case. The qualitative conclusions of our experiments

remain the same when using 20 random restarts. See the

supplementary material for details.

For the MNIST dataset we use perturbation magnitudes

of 0.4, 1 and 5 for ℓ∞, ℓ2 and ℓ1 norm based attacks re-

spectively. The corresponding magnitudes for the CIFAR-

10 dataset are 0.06, 0.1 and 7.84. We keep the perturbation

magnitudes the same across both the pixel and the DCT ba-

sis. In our experiments when performing gradient ascent

for ℓ steps to compute a perturbation, we use a step size of

2.5 ǫ
ℓ
, where ǫ is the perturbation magnitude.

Metrics. For each of our trained classifiers we report the

adversarial accuracy for each of the 6 individual attacks

launched separately on the trained model. In addition we

also report the worst adversarial accuracy among the 6 at-

tacks on the same model. Notice that this is the metric that

our proposed algorithm in Figure 3 aims to optimize. Fi-

nally, we also report the accuracy of our trained models on

a union attack, i.e., for each example we produce all 6 ad-

versarial perturbations and consider the attack successful if

any one of them succeeds in making the prediction of the

model incorrect. Finally, notice that our proposed algorithm

in Figure 3 has a parameter h namely the window size. We

report results for h = 1 and h = 3. These correspond to

either using the parameters of the last time step or using the

model averaged over the last three time steps.

Results. We compare our algorithm to the baseline as

shown in Table 2 for the CIFAR-10 dataset and in Table 4

for the MNIST dataset. In both the cases the performance

of the multiplicative weights update based algorithm is sig-

nificantly better than the baseline on the minimum accuracy

metric and the union attack metric. This difference is signif-

icantly higher for the MNIST dataset where both the greedy

and the round robin heuristics are unstable and have much

higher variances. The round robin heuristic switches among

different losses much more often and pays unnecessary at-

tention to the adversaries which it already covers well. The

greedy heuristic, on the other hand, switches less frequent

than our proposed algorithm. But greedy fails to address

the runner-up adversary which may be almost as difficult

as the chosen one, causing instability. We also notice that

using the average of the last three model parameters in the

multiplicative weights method is slightly better than simply

using the parameters of the last time step.

Comparison of Training Times. We next demonstrate

the scalability of our proposed algorithm. Table 3 shows the

training time of our method, measured in wall clock time,

as compared to the baselines when optimizing over all 6
loss functions. Moreover, the first two columns represent

the training times for optimizing a single loss function (ℓ∞
attack) in either the pixel or the DCT basis. As can be seen

our the training cost of our approach scales sublinearly with

the number of representation spaces.

On the Convexity Assumption. Recall that the guaran-

tees of Theorem 4.2 apply to the algorithm in Figure 2 that

requires one to produce a hypothesis that is an ensemble of
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Dataset Pixel (ℓ∞) DCT (ℓ∞) Round Robin Greedy Mult. Weights

MNIST 2.25 2.09 3.36 2.67 2.90

CIFAR-10 7.66 7.06 10.61 8.70 9.51

Table 3. Training time in hours (wall clock time) for the baselines and our proposed method. The first two columns represent the training

time for optimizing a single loss, i.e., ℓ∞ attack in the pixel and the DCT basis respectively. The next three columns represent the training

time of the three methods when optimizing over all the 6 losses simultaneously. The reported numbers are averaged over 5 runs.

Greedy Round Robin Mult. Weights (h = 1) Mult. Weights (h = 3)

Pixel (ℓ∞) 63.12± 19.50 64.40± 25.12 67.73± 14 66.56± 13.45

Pixel (ℓ2) 22.51± 17.66 10.23± 8.40 71.23± 2.68 71.77± 4.25

Pixel (ℓ1) 64.33± 30.73 43.14± 23.57 73.20± 10.54 73.66± 9.47

DCT (ℓ∞) 61.53± 21.45 59.47± 32.83 60.65± 10.60 60.32± 11.34

DCT (ℓ2) 25.80± 18.82 12.28± 12.16 84.58± 2.52 84.46± 4.18

DCT (ℓ1) 66.00± 31.83 38.23± 21.47 72.39± 8.43 73.13± 7.33

Min. Accuracy 22.13± 17.17 9.76± 8.69 57.64± 7.83 57.57± 8.46

Union Attack 12.32± 9.80 3.72± 4.96 35.30± 4.48 35.87± 6.69

Nat. Acc. 77.16± 37.64 60.93± 32.31 91.00± 10.50 91.43± 9.61

Table 4. Comparison of the adversarial accuracies achieved on the MNIST dataset.

Mult.

Weights (h =

3) (wt. avg.)

Mult.

Weights (h =

3) (ensem-

ble)

Pixel (ℓ∞) 39.13± 1.74 40.52± 1.28

Pixel (ℓ2) 71.27± 0.22 71.41± 0.24

Pixel (ℓ1) 46.90± 1.46 48.14± 0.99

DCT (ℓ∞) 42.27± 2.77 43.95± 2.05

DCT (ℓ2) 71.24± 0.12 71.38± 0.20

DCT (ℓ1) 42.96± 1.12 44.49± 0.58

Min. Accu-

racy

39.13± 1.74 40.52± 1.28

Union Attack 36.18± 1.89 37.76± 1.30

Nat. Acc. 80.66± 0.89 80.46± 0.81

Table 5. Adversarial accuracies on the CIFAR-10 dataset by when

using the average of the last three model parameters (convexity

assumption) vs. ensembling the outputs of the last three models.

the intermediate trained models. If the loss functions were

convex then one could replace the ensembling with simply

averaging the model weights and retain the theoretical guar-

antees. Even though we have non-convex losses we still

make the near convexity assumption and average the model

weights to produce a scalable implementation. In Table 5

and Table 6 we compare the performance of our weight av-

eraging strategy with that of the ideal one that ensembles

the models. As can be seen the loss in making the near con-

vexity assumption is negligible.

7. Discussion

We motivated the problem of designing neural networks

that are simultaneously robust to multiple types of adver-

sarial attacks in multiple representation spaces. We pro-

vided a theoretically sound algorithm with training cost that

grows sublinearly with the number of representation spaces.

Mult.

Weights (h =

3) (wt. avg.)

Mult.

Weights (h =

3) (ensem-

ble)

Pixel (ℓ∞) 66.56± 13.45 66.61± 13.77

Pixel (ℓ2) 71.77± 4.25 71.89± 3.79

Pixel (ℓ1) 73.66± 9.47 73.38± 9.45

DCT (ℓ∞) 60.32± 11.34 59.87± 11.32

DCT (ℓ2) 84.46± 4.18 84.34± 4.13

DCT (ℓ1) 73.13± 7.33 73.08± 7.38

Min. Acc. 57.57± 8.46 57.23± 8.51

Union Attack 35.87± 6.69 35.54± 6.69

Nat. Acc. 91.43± 9.61 91.44± 9.62

Table 6. Adversarial accuracies on the MNIST dataset when using

the average of the last three model parameters (convexity assump-

tion) vs. ensembling the outputs of the last three models.

We designed a scalable implementation and showed that

it significantly outperforms strong baselines with training

cost not much more than that of standard adversarial train-

ing. Several future directions emerge from this work. No-

tice that in our proposed algorithm we use the PGD based

method of [18] to optimize the individual losses. There

has been very recent work proposing faster training meth-

ods that achieve similar performance to that of the PGD

method [23, 27]. It would be interesting to incorporate them

in our framework to drive down the training cost even fur-

ther. The benefits of this could be significant as the number

of representation spaces grows.

Finally, we hope that future work on adversarial robust-

ness will consider multiple representation spaces for evalua-

tion of robustness of classifiers to adversarial perturbations.
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