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Abstract
Graphs appear in several settings, like social networks, rec-
ommendation systems, computer communication networks,
gene/protein biological networks, among others. A deep, re-
curring question is “What do real graphs look like?” That is,
how can we separate real ones from synthetic or real graphs
with masked portions? The main contribution of this pa-
per is ShatterPlots, a simple and powerful algorithm to ex-
tract patterns from real graphs that help us spot fake/masked
graphs.

The idea is to shatter a graph, by deleting edges, force
it to reach a critical (“Shattering”) point, and study the
properties at that point.

One of the most striking patterns is the “30-per-cent”: at
the Shattering point, all real and synthetic graphs have about
30% more nodes than edges. One of our most discriminative
patterns is the “NodeShatteringRatio ”, which can almost
perfectly separate the real graphs from the synthetic ones of
our extensive collection.

Additional contributions of this paper are (a) the careful,
scalable design of the algorithm, which requires only O(E)
time, (b) extensive experiments in a large collection of
graphs (19 in total), with up to hundreds of thousands of
nodes and million edges, and (c) a wealth of observations and
patterns, which show how to distinguish synthetic or masked
graphs from real ones.

1 Introduction
Graphs appear in numerous settings, like social networks,
scientific publication network, conferences vs. authors,
among others. The aim of this study is to find patterns to help
us spot fake and “masked” graphs. (By “masked” we mean
a graph that is a non-random sample of a real graph - for
example, a real graph after one has deleted all the nodes with
degree≤ 100). It proposes to extract the characteristics from

large graphs with the novel tool of ShatterPlots. Moreover,
the method is expected to be scalable, so that it can handle
graphs that span MegaBytes, GigaBytes or more.

The main idea behind ShatterPlots resembles high-
energy physics, where particles are smashed, and experts
study the results of the collisions to reach conclusions. Here,
the proposal is to shatter the given graph, that is, to drive it
to the “Shattering point”, by deleting edges at random, and
observing its behavior. The first research challenge is how
to interpret the results of the Shattering, and the second is
scalability and speed.

The answers to the above challenges are exactly the
contributions of this work. For the first, the study shows
that random edge deletion always leads to a high spike of
the diameter, exactly at the critical point called “Shattering
point”.

Figure 1: Our NodeShatteringRatio pattern allows an im-
pressive distinction between fake/masked graphs (triangles,
Amazon, Web Google) and real graphs (rest).

At the Shattering point, a list of surprising observations
for several real graphs is given. The most surprising is the
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“30 per cent” pattern, which states that under a random
edge deletion, real graphs have 30% more nodes than edges
when they reach their Shattering point, regardless of the
original graph. Another interesting observation is that at the
Shattering point, the count of the remaining edges is 1/λ1 of
the original edge count, where λ1 is the first eigenvalue of
the original graph. It is fascinating that 1/λ1 is the epidemic
threshold of graph [12].

The most striking pattern is the NodeShatteringRatio
, illustrated in Figure 1. This pattern allows perfectly
separating the real graphs from fake/masked ones, at least
for the graphs of our collection. Specifically, the fraction
Ns/Nt of the remaining nodes at the Shattering point is
much much lower for most real graphs, while it is about 0.7
for the masked ones (and for the Erdős-Rényi graphs). (Ns

is the number of nodes at the Shattering point and Nt is the
total number of nodes of the original graph.)

Finally, for scalability, a fast and adaptive algorithm that
can quickly discover the Shattering point is proposed. Its
performance is linear on the number of edges E, as shown
empirically.

The paper is organized as follows: Section 2 surveys
the related techniques; Section 3 proposes the data model
and the formal problem specification and further presents the
algorithms; Section 4 evaluates the algorithms with real data;
Section 5 and 6 present the patterns found and proofs and
outliers spotted. The scalability is presented in Section 7 and
Section 8 presents the conclusions.

2 Related Work
There is a significant body on research related to our prob-
lem, which is categorized into the following groups: graph
algorithms, graph patterns, epidemiology, phase transitions,
and outliers detection.

Graph Algorithms: Intuitively we expect the graph
to shatter at the point where natural communities or clus-
ters break apart. Popular methods for partitioning graphs
include the METIS algorithm [25], spectral partitioning
techniques [24], flow-based methods [21] information-
theoretical methods [15], and methods based on the “betwee-
ness” of edges [23], among others. Note that our work is
orthogonal to this, given that fast and scalable techniques
are used to examine the structure of the graph. Probably the
most related work is the k-cores [8] decomposition, which
recursively “peels” the graph. A recent extension for bipar-
tite graphs uses the KNC plots [30]. This approach would be
complementary to ours, since the authors examine different
aspects of the graph.

Graph patterns: Several old and recent patterns have
been discovered for large, real graphs.

The first is the skewed degree distribution phenomenon,
with power law tails, for the Internet [20], the Web [27,
9], citation graphs [41], online social networks and many

others. Deviations from the power-law pattern have also
been noticed [39], but the distribution is still very skewed.

The second is the Small diameter: This is the the “small-
world” phenomenon, or ‘six degrees of separation’ [48] The
diameter of a graph is d if every pair of nodes can be
connected by a path of length of at most d. Following the
computer network literature, the effective diameter [46] is
used: The minimum number of hops in which some fraction
(or quantile q, typically q = 90%) of all connected pairs of
nodes can reach each other. The effective diameter has been
found to be small and decreasing over time for large real-
world graphs, like Internet, Web, and social networks [3, 36,
32].

Phase transitions: The point where the graph shatters
is ultimately a point of phase transition, i.e., a point where
the connectivity structure abruptly changes. The Erdős-
Rényi graphs exhibit phase transitions [18] in the size of the
largest connected component. Several researchers argue that
real systems are “at critical points” [6, 45], like avalanches,
forests (with forest fires), mechanical tension causing earth-
quakes, among others. If this also holds for real networks,
then they should be ready to “shatter”, after few edges dele-
tion. The work presented in [14] makes a relevant study
about robustness of network topologies in regular graphs.
Phase transition is also known as bond and site percolation
threshold. An example of its application is presented in [29].

Epidemiology: Most of the previous researches on the
flow of information and influence through the networks has
been done in the context of epidemiology and the spread of
diseases over the network [5, 12].

The work on spread of diseases in networks and immu-
nization mostly focuses on determining the value of the epi-
demic threshold [5], a critical value of the virus transmission
probability above which the virus creates an epidemic.

The epidemiology community has developed the so-
called SIR and SIS models [5] of infection. The SIS model
(Susceptible – Infective – Susceptible) is suitable for the
common flu, where nodes may be infected, healed (and
susceptible), and infected again.

A recent study has showed that the epidemic threshold
of a graph is 1/λ1, that is, the inverse of its highest eigen-
value [12]. More details will be provided further, as well as
their connection with the bond percolation threshold.

Outliers detection in graphs: Finally, we focus on out-
lier detection, as the connectivity structure revealed by the
ShatterPlots. Autopart [11] finds outlier edges in a general
graph, however, we need to detect outliers nodes. Noble and
Cook [37] studied anomaly detection in general graphs with
labeled nodes, however, their goal was to identify abnor-
mal substructures in the graph, not abnormal nodes. Aggar-
wal and Yu [2] proposed algorithms to find outliers in high-
dimensional spaces, but their applicability to graphs is un-
clear: the nodes in a graph lie in a vector space formed by the

803 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



graph nodes themselves, so the vector space and the points
on it are related. As mentioned further, it is possible to ob-
serve very different patterns of shattered graphs when com-
pared to simple models, which allows detecting masked/fake
non-realistic graphs.

3 Proposed Method
We start with the problem definition and the motivating
questions. Then our design decisions are discribed, and our
algorithm is finally given.

3.1 Problem Definition. The aim is to find patterns at the
Shattering point, which is a clear spike in the diameter after
some edges deletion in real graphs, like social networks, ci-
tation and web graphs and recommendation systems (users-
to-products bipartite networks). The focus of this paper is on
the analyses of whether fake/masked graphs have a different
behavior than the real graphs at the Shattering point. What
can we say about real graphs at the Shattering Point? Can
we find interesting patterns in real graph at this point? Can
we use these patterns to spot fake/masked graphs?

The problem is defined as follows:

PROBLEM 1. Given a large, sparse graph check whether it
is masked or synthetic graph.

In fact, there are two types of questions that should be veri-
fied for all graphs. The first are “philosophical” questions,
whose answers will settle some conjectures. The second
set consists of “exploratory” questions, which refer to what
properties are expected to be seen, at the Shattering point of
a graph (assuming that it does have a Shattering point).

3.1.1 “Philosophical” Questions
PHQ 1. Do real graphs have a Shattering point?

Real networks are very resilient [4] at random node deletions
while some others, like Erdős-Rényi are not. One would
expect so, if we had random edge deletion (RED). However
are there exceptions in real graphs? Is it possible to have a
real graph, whose diameter increases continuously, without
an abrupt shattering under RED?

PHQ 2. Are real-life graphs just a bit above the Shattering
point?

One would expect so. For example, Bak [6] proposed
the theory of SOC (Self-Organized Critically), arguing that
several phenomena are just at their critical point, like
avalanches, finances of interrelated companies and tectonic
plaques. Several graph generators also focus on ’optimized
tolerance’ [10, 19]. Thus one might expect real graphs to
be connected, but barely so, and thus would be just above
Shattering. A communication network that is a way above
a Shattering point, would be wasting resources, one might
argue.

3.1.2 Exploratory Questions. Jumping ahead, it turns
out that all the real and synthetic graphs that were tried in
this study, do have a sharp Shattering point, bringing about a
number of questions:

EXQ 1. What is the Edge shattering ratio Es/Et (i.e., the
fraction of edges at the Shattering point)? Does it depend on
the graph size at all?,

where Es is the number of edges and Ns is the number
of nodes, both at the Shattering point. Et is the total number
of edges of the original graph and Nt is the total number of
nodes in the original graph. The symbols are defined in table
1.

EXQ 2. What about the Node shattering ratio Ns/Nt (i.e.,
the fraction of nodes at the Shattering point)?

EXQ 3. Do synthetic graphs have the same behavior at the
Shattering point? or do they follow different laws?

EXQ 4. What can we say about the node-to-edge ratio of
a graph at the Shattering point? And about the giant
connected component at the Shattering point?

3.2 Design decisions. Thinning methods: Several thin-
ning methods were tried, like Random Edge Deletion(RED),
and several versions of “Hostile” edge deletion. The most
striking patterns were found in the former, thus we shall ex-
clusively focus on RED here.

Choice of shattering criterion: The shattering criterion
should ideally have a sharp transition. We considered several
shattering criteria:

• Size (number of nodes) of the largest weakly connected
component

• Effective diameter (number of hops at which 90% of all
reachable pairs do reach each other)

• Total number of reachable pairs of nodes

The graph was expected to shatter at all of the above criteria,
i.e., there will be a Shattering point in the edge deletion
process, where the connectivity of the graph will be seriously
disrupted: e.g., the graph becomes disconnected, the size of
the largest component drops, the diameter spikes, and the
number of reachable pairs of nodes drops. The results of the
shattering of our 19 network datasets will be examined in
more detail in the following section.

3.3 Algorithm description Next, the algorithm for creat-
ing ShatterPlots is presented. However, instead of starting
with the full graph and deleting edges at random, the algo-
rithm starts with an empty graph and inserts edges at random.
Algorithm 3.1 shows the details.

The idea is to shuffle the edges file of a graph G and
builds the temporary graphH adding some numbers of edges
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ALGORITHM 3.1. Adaptive ShatterPlot
Input: Input graph G(N,E)
Output: Point of shattering (and stats about it)

Shuffle the |E|
Temporary H(N,Ø), on N nodes
ε = 0.005 or ε = 1/λ1

t = 0
Step(t) = ε ∗ |E|
while H ! = G do

Insert Step(t) edges in H at random
t = t+ 1
Measure the structural properties of H (diameter, con-
nected components, first eigenvalue, etc.)
Dt = effective diameter of H
if t > 1 then

if Dt −Dt−1 ≥ 1 then
Step(t) = Step(t− 1)/2

else if Dt −Dt−1 ≤ −1 then
Step(t) = 2 ∗ Step(t− 1)

end if
else if ε = 1/λ1 then
Step(t) = 0.005 ∗ |E|

end if
end while

Figure 2: ShatterPlot algorithm

(Step(t)) at random. Both have the same nodes (N ), and will
be exactly the same at the end of the algorithm. After each
insertion we measure the structural properties of the graph,
like diameter, number of reachable pairs of nodes, number
of triangles, first eigenvalue of the graph adjacency matrix
ond size of the largest connected component. The process is
repeated until the graph has been full, i.e., has contained all
edges from the edges file.

Ideally graph properties should be re-computed after the
insertion of each and every edge. Such an approach would
be slow, therefore a batch of edges must be inserted at a
time. The question is what is the appropriate size of such
a batch, so that the Shattering point will not be overshot
and missed? Our answer is an adaptive method: we start
with a small batch size, and if there is no major difference
in the graph structure (say, the diameter), the batch size is
increased. Conversely, it is decreased, if a spike seems to be
reached. The same process could be applied the other way
round, that is, instead of inserting edges, we could start with
a full graph and delete edges at random on it. Empirically,
the algorithm is very fast, and usually needs about 250 steps
to locate the Shattering point.

Scalability: next, we show that the Adaptive ShatterPlot
Algorithm scales well on the number of total edges Et,
demonstrating that the Adaptive ShatterPlot is capable of

handling large graphs. It scales even better, up to 8 times
faster, using the Eigenvalue pattern presented in Section 6.

First, edge insertion is assumed to be a constant time
operation. This is true for most graph implementations.
In some implementations it can be logarithmic/linear in
the average degree of the graph, but as real graphs are
sparse this is practically constant. Second, due to the
Approximate Neighborhood Function algorithm [38] (ANF),
it is responsible from calculating the effective diameter of the
graph in linear time O(E) on the number of edges E in the
graph.

DEFINITION 1. The effective diameter is the minimum num-
ber of hops in which 90% of all connected pairs of nodes can
reach each other.

Also, the effective diameter is a more robust measurement of
the pairwise distances between nodes of a graph.

However, this does not solve the problem immediately:
if we use a naive implementation of the ShatterPlot algorithm
and at every step add a constant number of edges, then the
full algorithm would scale quadratically with the number of
edgesO(E2) (O(E) for the number of ShatterPlot iterations,
and a factor of O(E) for running ANF at each step). Due
to the adaptive nature of our algorithm, which exponentially
adjusts the number of edges it adds from the graph, we only
need a roughly constant number of iterations, which makes
our algorithm scale well to the number of edges.

There are two versions of ShatterPlot algorithm. The
first is called Proportional ShatterPlots, in which the initial
value ε is 0.005 in Step(0). The other version is called
Eigenvalue ShatterPlots, given that 1/λ1 is used as the initial
value for ε at Step(0). For Eigenvalue ShatterPlots, none
of our extensive collections of graphs had the Shattering
point missed. As seen in the Eigenvalue pattern presented
in Section 6, all of our graphs are above the line, that
is, Es is higher than 1/λ1 ∗ Et at the Shattering point.
Therefore it is possible to overshot the initial value of ε to
1/λ1. If Eigenvalue ShatterPlots miss the Shattering point,
an easy solution is to backtrack the algorithm and apply the
Proportional ShatterPlots between 0 and the previous value
of A0. Wallclock times will be presented, illustrating the
scalability of our method and the improvements reached with
Eigenvalue ShatterPlots.

4 Experiments
This section presents the answers to our posed questions, our
observations and the results achieved.

4.1 Datasets. Table 1 presents the symbols used in this
section. The Shattering point is defined as the point where
the shattering of the graph occurs. Based on this definition
we will present the results of other measurements, such
as nodes and edges of a giant component, total number
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Symbols Definitions
SP Shattering point (= critical point)
REI Random Edge insertion
ct constant value
Nt Total number of nodes in the graph
Et Total number of edges in the graph
∆t Total number of Triangles in the graph
λ1 Highest eigenvalue of original graph
Ns Number of nodes at SPof degree ≥ 1
Es Number of edges at SP
ds Highest degree at SP

Nsgcc Nodes in largest weakly conn. comp. at SP
Esgcc Edges in largest weakly conn. comp. at SP
λ1,s Highest eigenvalue at SP
∆s Total number of Triangles at SP
Ds Effective diameter at SP

Table 1: Symbols, acronyms and definitions

of reachable pairs, number of nodes, number of edges,
diameter, highest degree, triangles and first eigenvalue at this
point, named respectively Nsgcc,Esgcc, NNpairs, Ns, Es,
Ds, ds, ∆S , and λ1,s.

Table 2 presents all the datasets used and the symbols
that represent each of them in the plots shown in the follow-
ing sections. The synthetic datasets were generated using
the algorithm described in their respective papers. For RB
the model describing [40] was used with 3, 4 and 7 levels for
each of the three graphs. For Erdős-Rényi the model used is
presented in [16], but instead ofG(n, p), where p is the prob-
ability of attaching an edge, and n is the number of nodes,
model G(n,m) was preferred, where m is the total number
of edges in a graph. The number of nodes and edges used are
n = 1k, 2k, 10k, 100k and m = 5k, 14k, 50k, 400k respec-
tively.

The Preferential Attachment graphs (PA) were created
using the model described in [7] and using 3k and 4k as
parameter of node and 3 and 5 as parameter of degree. In
Small Word graphs (SW), the generator follows the model
presented in [48] using the number of nodes (n), degree (d)
and Rewire Probability (p) as parameters. Therefore, for the
graphs in this paper we used n = 5k, 8k, 8k, d = 5, 6, 3 and
p = 0.4, 0.9, 0.5, respectively. For 2D grids of 30x30, 50x50
and 1000x1000 were created without wrapping up. All of
the graphs were undirected.

4.2 Choice of shattering criterion. Among the several
measurements used to detect critical point/Shattering point,
the best is the effective diameter D. The reason is that a
giant component and a number of reachable pairs do show
a critical point, that is, a sudden increase, as more and
more edges are inserted, but it is not clear how to define

Nodes Edges Description
Online social networks
� 75,877 405,739 Epinions network [42]
� 33,696 180,811 Enron email net [28]
Academic collaboration (co-authorship) networks
∗ 21,363 91,286 Arxiv cond-mat [33]
∗ 11,204 117,619 Arxiv hep-ph [33]
Information (citation) networks
x 34,401 420,784 Arxiv hep-th citations [22]
x 32,384 315,713 Blog citation (1 year) [34]
Web graphs
� 319,717 1,542,940 Stanford – UC Berkeley
� 855,802 4,291,352 Google web graph [1]
Amazon Product co-purchasing networks
� 473,315 3,505,519 Snapshot 2 [13]
Bipartite (authors-to-papers) networks
+ 54,498 131,123 Arxiv astro-ph [34]
Internet networks
� 13,579 37,448 AS Oregon [31]
� 22,963 48,436 AS graph from M. Newman
� 62,561 147,878 Gnutella, 31 Mar 2000 [43]
Grid networks
� 4,941 6,594 Power Grid western US [48]
Synthetic networks
·5 2D - Synthetic Grid
H Erdős-Rényi random graphs [18]
·5 BR - Barabasi Hierarchical Model [40]
·5 SW - SmallWorld [48]
·5 PA - Preferential Attachment [7]

Table 2: Datasets considered in our study. Their symbols at
the beginning of each row are later used in figures to denote
the datasets.

the exact Shattering point. In contrast, the diameter always
has a sharp peak, reminding us of the percolation threshold
[44]. Indeed the diameter is widely use to evaluate the
network breakdown during the random node deletion or
highest degree node deletion [4]. Figure 3 shows Gnutella,
AS-Oregon and Author-to-Paper datasets - the others have
been omitted for brevity, as they all have a similar behavior.

Rows correspond to measurements (diameter Ds, Nsgcc

and NNpairs). Each plot shows the measurement of interest
(diameter, etc) versus the number of retained edges, under
random edge insertion (REI).

The vertical lines correspond to the spike of the diameter
(Top row plot) As seen in Figure 3, it is possible to use
ShatterPlots to find the critical point, as it is the only one with
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Gnutella As-Oregon Author to Paper - DBLP

Effective diameter

Number of reachable pairs

Largest connected component

Figure 3: We randomly deleted edges and measurement graph structural properties. Graphs shatter in all measurement but
only the diameter has a nice and clear spike.

a sharp, clear spike. The main point is that the Shattering
point Es, at which the diameter spikes, always fall in the
region where the other measurement have a sudden drop.
Now, we have:

DEFINITION 2. The Shattering point Es of a graph is the
number of retained edges for which the (effective) diameter
spikes.

The ShatterPlot is exactly the plot of diameter Ds versus
retained edges Es. The remaining measurements shall not
be used.

Another important definition is:

DEFINITION 3. For Erdős-Rényi graphs, the Shattering
point as defined above, coincides with the phase transition

point.

This is important, as there exist several results from the the-
ory of random graphs used as sanity checks to our findings.

5 Results - Philosophical Questions
To answer the philosophical and exploratory questions posed
in section 3.1 many graphs were “shattered” (Table 2
presents the datasets used) and plots were built with the mea-
surements collected at Shattering point - Ns, Es, ds and λ1,s

of all our real graphs. Such was also made for synthetic,
Erdős-Rényi graphs, 2D-grid graphs, Hierarchical graphs,
Small Word, and Preferential Attachment for verification and
comparisons.

After “Shattering” real and synthetic graphs, it was
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possible to answer both philosophical questions PhQ 1 and
PhQ 2 based on the following patterns:

PATTERN 1. All measurements have a Shattering point at
about the same point for a given graph, but only the diameter
has a clear spike.

PATTERN 2. All graphs have a Shattering point, under REI.

Figure 4 shows the plots of structural measurements at
the Shattering point. The axis scaling is linear - linear to
(d), and log - log to (a), (b), (c), (e) and (f) and the theoreti-
cal/expected fitting curve (all of them with coefficient above
0.98), when there seems to be a strong correlation, are also
shown. Moreover, the fitting lines are displayed - a blue one
for the results we obtained, and a red one for the theoretical
or expected ones. All experiments are average of 10 runs.
The results for the Erdős-Rényi graphs are shown with dark
down triangles, and the synthetic ones with down triangles
for a better viewing in black-and-white. However, the paper
is better viewed in color.

6 Results - Exploratory Questions
As seen in Figure 4 (a) all graphs have a Shattering point.
The nodes-edges ratio at Shattering point Ns/Es of all
graphs follows a line which has a slope of 1.30, meaning that
at the Shattering point the number of nodes Ns is about 30%
higher than Es. This observation also answered Question
PhQ2 and part of ExQ3 and ExQ4.

When applied to Erdős-Rényi graphs, REI leads to a
Shattering point which is exactly the one predicted by theory.
In all our Erdős-Rényi graphs, the Shattering value Es

satisfied Es = Nt/2 and Ns = Nt ∗ (1 − 1/e), which is
exactly the condition for phase transition [16].

6.1 30-per-cent pattern.

PATTERN 3. (30-per-cent) All real graphs shatter when Ns

is about 30% higher than Es.

Theoretical Justification For Erdős-Rényi graphs, the
30-per-cent pattern can be proved: For Erdős-Rényi graphs
in the phase transition (= Shattering point), one has

Es = 1/2 ∗Ns ∗ e/(e− 1) = 0.79 ∗Ns(6.1)

where e = 2.718. Identically, Ns = 1.26Es, which very
close to 30%.

Proof. At Shattering point Ns = Nt ∗ (1 − 1/e) and Es =
Nt/2. Substituting Nt in the first equation by 2 ∗ Es the
proof becomes complete. QED

Discussion: It is surprising that the remaining graphs
also obey this pattern reasonably close. It is even more

surprising, as further demonstrated at the Shattering point,
real graphs clearly differ from Erdős-Rényi graphs, when
aspects other than the Es/Ns ratio (Question ExQ3) are
considered.

Outliers: This is one of the few patterns that
seems universal, and can not help us spot outliers and
masked/synthetic graphs. Several of our upcoming patterns
do, though.

6.2 Eigenvalue pattern. Let Es/Et be defined as the
Edge Shattering Ratio, which is the fraction of edges that
needs to be retained to be at the Shattering point. Figure
4 (b) shows that the percentage of edges remaining in the
graph at the Shattering point has a correlation with 1/λ. This
observation answered Question ExQ 1. Indeed, this pattern
shows that the Edge Shattering Ratio does not depend on the
size of the graph, but on the highest eigenvalue. Therefore
one has:

PATTERN 4. (Eigenvalue ) The edges ratio

Es/Et = ct ∗ 1/λ1.(6.2)

Theoretical Justification: The Edge Shattering Ratio
is the percentage of edges that still create a giant connected
component. λ1 is the epidemic threshold for an SIS model
(Susceptible-Infected-Susceptible), like the flu virus:

THEOREM 6.1. The epidemic threshold in an SIS model is
β/δ = 1/λ1,

where β is the virus birth rate, δ is the virus death rate and
λ1 is the highest eigenvalue of the original graph.

Proof. See [12] QED

Discussion: β/δ is the number of attacks per edge that
a virus-molecule can perform until the host has recovered.
Thus, during the lifetime of a virus-molecule, it has δ ∼= Et

edges available to it. At the epidemic threshold, this edge
count should be β ∼= Es. The Es/Et ratio is also known
as Bond Percolation Threshold. For 2D-grids the Bond
Percolation Threshold is well defined as 0.5 [26].

Outliers: In this pattern one can observe that some
graphs, like Preferential Attachment (PA), Hierarchical (RB)
and 2D-grids stand out.

6.3 NodeShatteringRatio pattern. Figure 4 (c) shows the
Node Shattering Ratio, which is the relation of nodes at the
Shattering point Ns (degree ≥ 1) versus number of nodes of
the entire graph Nt. Three lines have been fitted in Figure 4
(c). Line (a) - dotted line - is exactly Nt = Ns, which is the
maximum bound; line (b) - solid line - is the theoretical line
of Erdős-Rényi and line (c) - dashed line - is Ns = 0.37∗Nt

below of which all real graphs are found. As we can see, this
pattern answered Questions ExQ 2 and ExQ 3.

PATTERN 5. Synthetic graphs are close to Ns = 0.63 ∗Nt.
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(a) Ns vs. Es (b) Es/Et vs. 1/λ1

(c) Ns vs. Nt (d)
√
ds vs. λ1,s

(e) Nsgcc vs. Esgcc (f) ∆s vs. Es

Figure 4: Structural observations at the Shattering point (SP), where the graph shatters. Synthetic graphs in triangles; Erdős-
Rényi ones in black triangles. (a) number of non-isolated nodes (Ns) versus number of edges Es at the Shattering point
(30-per-cent pattern); (b) number of retained edges Es over total number of edges Et versus one over λ1, first eigenvalue
of original graph (Eigenvalue pattern); Amazon is deviated from the line, as well as synthetic graphs RB, PA and 2D-grid.
(c) number of survivor nodes Ns versus total number of nodes in the original graph Nt (NodeShatteringRatio pattern)
2D-grid are above the Erdős-Rényi line; SW are together with Erdős-Rényi , RB and PA are above line ‘c’ and below line
‘b’ (d)square root of highest degree at the Shattering point ds versus λ1,s at Shattering point ( Root-degree pattern); (e)
number of nodes Nsgcc versus number of edges Esgcc in the giant component at the Shattering point ( TreeGCC pattern);
(f) number of Triangles ∆s versus number of edges Es ( TriangleRatio pattern). It is possible to observe that the Power
Grid has a disproportionate number of triangles. Only the graphs with one or more triangles appear.
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Theoretical Justification: As shown in [16], for all
Erdős-Rényi in the phase transition one has

Ns = Nt ∗ (1− 1/e)(6.3)

and (1− 1/e) = 0.63, where e = 2.718.
Discussion: The explanation is that most real graphs

have many nodes with degree d = 1, which is a heavy
tail power law distribution, and these nodes have a high
probability of being isolated at the Shattering point. An
example is the AS Oregon dataset, in which the degree
distribution is presented in 5 (c). On the other hand most
nodes of graphs like 2D-grids have degree four, and Erdős-
Rényi graphs have a little variation, with most nodes having
their degree close to the average degree. All such graphs
have very few isolated nodes when they shatter, with even
fewer 2D-grids than Erdős-Rényi graphs. This is the reason
why the orange triangles (2D-grids) are above the line of
the black triangles (Erdős-Rényi graphs). In this way, this
pattern shows that synthetic graphs have many more nodes at
Shattering point than real ones. Although some graphs, like
Amazon and Gnutella (as shown in Figures 5 (a) and (b)),
are masked, they do not have a nice power law distribution.
As seen in 4 (c) these graphs shatter faster than the other real
graphs, like AS Oregon.

Outliers: The NodeShatteringRatio pattern is probably
the best detector of synthetic and masked graphs, at least for
the mix of graphs that have been studied in this paper. Notice
that all synthetic graphs are close to line ’b’ and above line
’c’ - Ns = 0.37 ∗Nt - in Figure 4(c).

6.4 Root-degree pattern. Figure 4 (d) plots the highest
eigenvalue at the Shattering point λ1,s, versus ds, the square
root of the highest degree in the graph at the Shattering point.
The Figure also shows the line with equation λ1,s =

√
ds.

PATTERN 6. All graphs obey λ1,s ≥
√
ds.

Some recent theorems have helped us justify this behav-
ior:

Theoretical Justification: As shown in [35] for all
graphs, one has

√
di(1 − o(1)) ≤ λi ≤

√
di(1 + o(1)), i =

1, 2, ..., k
where λi is the i-th eigenvalue and di is its respective

degree.
Theoretical Justification: As shown in [17], for all

Erdős-Rényi graphs one has λ = [1 + o(1)] ∗ max(N ∗
p,
√
degreemax)
where λ is the highest eigenvalue, N is the number of

nodes of a graph, p is the probability that a node will be
connected and degreemax is the maximum degree of the
graph.

Discussion: The theory presented above holds for any
graph, including the ones at the Shattering point. At the

Shattering point Erdős-Rényi graphs haveN∗p=1, given that
the maximum degree will be > 1. Base on this assumption
one can see why the pattern holds for Erdős-Rényi graphs.

Specifically for Erdős-Rényi graphs (black triangles), it
is possible to observe that their eigenvalue λ1,s is roughly
constant, independent of the number of nodes Nt the graph
started with.

PATTERN 7. The λ1,s for Erdős-Rényi graphs seems to be
constant: ≈ 2.8

the Power-Grid graph is below the line, meaning that it
is well connected at the Shattering point. Figure 6 shows
the highest degree node of the Power-Grid in the original
graph ( Figure 6 (a)) and at the Shattering point (Figure 6
(b)). It is possible to observe that the highest degree node
still has some triangles and many connections even at the
Shattering point. We can also verify it by looking at the
NodeShatteringRatio pattern as the Power Grid is very close
to line ’a’ (Figure 4 (c)), that is, Ns is very close to Nt.

Figure 6: Highest degree node of Power-Grid: (a) Original
Graph and (b) at the Shattering Point

6.5 TreeGCC pattern. Figure 4 (e) shows that all graphs
at the Shattering point have the same amount of edges Esgcc

and nodes Nsgcc in the Giant Connected Component. As we
can see, this pattern answered the second part of Question
ExQ 4.

PATTERN 8. All giant connected components of all graphs
at the Shattering Point have Esgcc

∼= Nsgcc.

Discussion: It is known that above the Shattering point
the graph is well connected and below it the graph is com-
pletely disconnected. Therefore, at the Critical/Shattering
point the graph is expected to be barely connected, mean-
ing that a small amount of edges removed makes the graph
totally disconnected. By observing this pattern, we can see
that the Giant Connected Component at the Shattering Point
looks like a tree. Notice that some graphs are plotted slightly
below the line (apparently, being ’fatter’ than a tree), for ex-
ample Power Grid. Also notice the subtle difference between
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(a) Degree Amazon (b) Degree Gnutella

(c) Degree AS Oregon (d) Degree Web Google

Figure 5: Degree Distribution of initial Graphs: (a) Amazon, (b) Gnutella, (c) AS Oregon and (d) Web Google graphs

this pattern and the 30-per-cent: here the (several) nodes are
ignored, and edges outside the giant connected component,
while in the 30-per-cent pattern, are included.

6.6 TriangleRatio pattern. Figure 4 (f) shows that, at the
Shattering point, most of the graphs have very few triangles.
In fact, the graphs with zero triangles were not ploted, due to
the logarithmic axis.

PATTERN 9. Graphs at the Shattering point have few or no
triangles (∆s ≈ 0).

Outliers: The Power Grid graph stands out.
Discussion: Graphs at the Shattering point are expected

to be barely connected. We can see it in the TreeGCC
pattern, where the giant connected component seems to be a
tree, and in the Root-degree pattern, where λ1,s is strongly
related to the highest degree at the Shattering point. We also
know that the number of triangles (∆) a node participates in
increases according to the degree of that node [47]. However
some graphs, like Power Grid, have a lot of triangles at the
Shattering point. Why does the Power Grid exhibit such a
different behavior? Some explanations are:

The Power Grid falls below the line in Figure 4 (d),
which means that it has more edges than the nodes in the
giant component, that is, the graph is “fatter” than a tree.
Another fact is that λ1,s is higher than

√
ds, as shown in

Figure 4 (d), meaning that the eigenvalue is not correlated
with the highest degree node, given that the highest degree
node is better connected than a star, as shown in Figure 6 (b).

Another fact is that the relation between the initial
number of triangles (∆t) of Power Grid is much higher than
the other graphs. For example, initially, Power Grid has
∆t = 651 while Web Google has ∆t = 13, 356, 298; at
the Shattering point, Power Grid has ∆s = 209 while Web
Google has ∆t = 556.

7 Scalability
The ShatterPlots is a fast tool that needs to read the edge file
only once at every iteration The number of iterations depends
on how quickly we can zoom to the shattering point Es.

Figure 7 shows the scalability of Proportional Shatter-
Plots and Eigenvalue ShatterPlots, plotting the wall-clock
time versus the dataset size. The input graphs are synthetic
Erdős-Rényi graphs, where the number of initial edges E =
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14k, 40k, 50k, 200k, 300k, 500k, 600k and the number of
nodes N=2k, 10K, 10k, 40K, 60k, 80k, 100k respectivily,
were controled. The experiments ran on a Quad Xeon (2.66
GHz), with 8Gb of RAM, under Linux (Ubuntu).

Black and gray triangles correspond to the Proportional
ShatterPlots and Eigenvalue ShatterPlots methods, respec-
tively. The same datasets were used for both algorithms.
The fitting lines (dotted-black, and solid red) show that both
methods seem to scale up linearly with the graph size signif-
icantly faster than Eigenvalue ShatterPlots (up to 8x).

Figure 7: Scalability of Proportional ShatterPlots is rep-
resented by black double dotted line on dark triangles and
Eigenvalue ShatterPlots by pink dotted line on gray trian-
gles.

Figure 8: ShatterPlots of an Erdős-Rényi graph with 500k
edges using Eigenvalue ShatterPlots (blue triangles) and
Proportional ShatterPlots (red circles).

8 Conclusions
This paper proposed a new tool for studying graphs called
’ShatterPlots’, and showed the surprising patterns found
to help us spot masked and synthetic graphs. The main
idea of ’ShatterPlots’ is to use a “crash test” approach: we
propose to shatter the graph, and observe its behavior. Our
contributions are:

• A careful, scalable design of the tool. ShatterPlots
needs less than O(E) effort on each iteration, and a
small number of iterations, due to our adaptive method.

• The use of Eigenvalue pattern to optimize the Shatter-
Plots (up to 8 times).

• Our observations, and confirmation/demolition of con-
jectures:

– all criteria shatter at the same point, but only the
diameter has a clear, sharp edge.

– real graphs are far from the Shattering point

• Discovery of new patterns:

– the Shattering point is at 1/λ1
∼= Es/Et, as one

might expect from the epidemic threshold theory;
– the 30-per-cent pattern states that for all graphs

used, at the Shattering point a graph has 30% more
nodes than edges.

– the NodeShatteringRatio pattern which allows
separating real graphs from synthetic ones.

• Our patterns can spot synthetic/masked graphs

Future work could focus on the analysis of graphs over
time, as well as on the parallelization of the method, say, on
a ’hadoop’/map-reduce architecture.
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